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Abstract

weilrep is a Sage program for working with Weil representations and their modular forms and Jacobi
forms. In particular it computes Fourier expansions of (bases of) vector-valued modular forms and Jacobi
forms. It also computes additive theta lifts and Borcherds products, and offers some features for vector-
valued quasimodular forms, mock modular forms and harmonic weak Maass forms. This note gives a
short explanation of what weilrep calculates and several examples of how to use it.
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1 Weil representations

The class WeilRep represents the dual Weil representation attached to an even lattice (Λ, Q), i.e. the
representation ρ of Mp2(Z) defined on the standard generators S =

(
0 −1
1 0

)
and T = ( 1 1

0 1 ) by

ρ(T )eγ = e(−Q(γ))eγ

and

ρ(S)eγ =
1√
|Λ′/Λ|

e(sig(Λ)/8)
∑

β∈Λ′/Λ

e(〈γ, β〉)eβ .

Here e(x) = e2πix; and eγ is the standard basis of C[Λ′/Λ]; and 〈γ, β〉 := Q(γ + β)−Q(γ)−Q(β).
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1.1 Construction

A WeilRep instance is constructed with

WeilRep(S)

where S denotes either (1) a Gram matrix; i.e. a symmetric integer matrix whose diagonal consists of
even integers; or (2) a QuadraticForm defined over the integers.

1.2 Basic attributes

Let

w = WeilRep(S)

be a Weil representation. The following basic attributes can be computed.

1.2.1 Gram matrix

The underlying Gram matrix can be recovered with

S = w.gram_matrix()

1.2.2 Quadratic form

The underlying quadratic form can be recovered with

Q = w.quadratic_form()

1.2.3 Signature

The signature of the underlying discriminant form can be recovered with

w.signature()

This is an element of Z/8Z (equal to the signature of the Gram matrix S modulo 8).

1.2.4 Discriminant

The discriminant |det(S)| is computed with

w.discriminant()

1.2.5 Symmetric weights

Call a weight k ∈ 1
2Z symmetric for the Weil representation attached to S if 2k + sig(S) ≡ 0 mod 4.

In other words, every modular form of weight k is symmetric. (Similarly, call weights k antisymmetric if
2k + sig(S) ≡ 2 mod 4.) The method

w.is_symmetric_weight(k)

outputs 1 if k is a symmetric weight; 0 if k is an antisymmetric weight; and None otherwise.

1.2.6 Discriminant group

The method

w.ds()

outputs a set of representatives of the discriminant group S−1ZN/ZN as a list of vectors.
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1.2.7 Dual

The method

w.dual()

returns the unitary dual of this representation. (This is the Weil representation attached to the matrix −S.)

1.2.8 Rescaling

Let N ∈ Z, N 6= 0. If w is the WeilRep associated to the even lattice L = (L,Q) then w(N) returns the
WeilRep associated to the even lattice

L(N) = (L,N ·Q).

In particular w(−1) is the dual of w.

1.2.9 Matrix representation

Let M ∈ SL2(Z). Suppose w is the WeilRep associated to a discriminant form A = (A,Q) and

ρ : Mp2(Z)→ GLC[A]

is the corresponding Weil representation. Calling

w(M)

computes the matrix ρ(M̃) over C i.e. numerically with respect to the canonical basis {eγ : γ ∈ A} in the

ordering determined by w.ds(). Here M̃ = (M,φ) ∈ Mp2(Z) is the preimage whose branch φ of the square
root of j(M ; τ) satisfies

Re[φ(τ)] > 0 for all τ ∈ H.

Note that if w has odd rank then this is not multiplicative: w(MN) 6= w(M)w(N) in general.

1.3 Construction of modular forms

A modular form of weight k ∈ 1
2Z for the Weil representation ρ attached to a discriminant form (A,Q) is a

holomorphic function
f : H −→ C[A]

that satisfies
f(M · τ) = (cτ + d)kρ(M)f(τ), (M, (cτ + d)1/2) ∈ Mp2(Z), τ ∈ H

and which is bounded in the limit limy→∞ f(x+ iy) for every x.

Suppose w is a WeilRep instance. Modular forms for w can be constructed in the following ways.

1.3.1 Eisenstein series

w.eisenstein_series(k, prec, allow_small_weight = False)

This returns the Eisenstein series
Ek,0 =

∑
M∈Γ∞\Γ

e0

∣∣∣
k,ρ
M

for the dual Weil representation associated to the Gram matrix S with Fourier expansion up to precision
prec. Here Γ = Mp2(Z) and Γ∞ is the subgroup generated by T = (( 1 1

0 1 ) , 1) and Z = (
(−1 0

0 −1

)
, i). It

only accepts weight k ≥ 1. Warning: if k = 3/2 or k = 2 then the result may be a mock modular form or
quasimodular form respectively!
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The formula for the Fourier coefficients is essentially that given by Bruinier and Kuss [8]. We compute the
local L-functions using Cowan–Katz–White’s formula [9] for the Igusa zeta functions attached to quadratic
functions (in other words, the local densities); this has the advantage that one dos not even need to compute
the full Jordan decomposition of the quadratic form.

Example. The Eisenstein series of weight three for the Weil representation attached to the lattice with
Gram matrix ( 2 1

1 2 ). Input:

w = WeilRep(matrix([[2,1],[1,2]]))

print(w.eisenstein_series(3,5))

Output:

[(0, 0), 1 + 72*q + 270*q^2 + 720*q^3 + 936*q^4 + O(q^5)]

[(2/3, 2/3), 27*q^(2/3) + 216*q^(5/3) + 459*q^(8/3) + 1080*q^(11/3) + 1350*q^(14/3) + O(q^5)]

[(1/3, 1/3), 27*q^(2/3) + 216*q^(5/3) + 459*q^(8/3) + 1080*q^(11/3) + 1350*q^(14/3) + O(q^5)]

1.3.2 Old Eisenstein series

Certain oldform Eisenstein series can be computed using

w.eisenstein_oldform(k, b, prec)

Here b should be a nonzero isotropic vector in the discriminant group of w. This returns the oldform
Eisenstein series ∑

λ∈Z/dbZ

Ek,λb,

where db is the denominator of b (i.e. minimal with dbb ∈ ZN ), and

Ek,b =
∑

M∈Γ∞\Γ

eb

∣∣∣
k
M.

Example. The old Eisenstein series of weight 7/2 for the lattice with Gram matrix (8). Input:

w = WeilRep(matrix([[8]]))

w.eisenstein_oldform(7/2, vector([1/2]), 5)

Output:

[(0), 1 + 126*q + 756*q^2 + 2072*q^3 + 4158*q^4 + O(q^5)]

[(1/8), O(q^5)]

[(1/4), 56*q^(3/4) + 576*q^(7/4) + 1512*q^(11/4) + 4032*q^(15/4) + 5544*q^(19/4) + O(q^5)]

[(3/8), O(q^5)]

[(1/2), 1 + 126*q + 756*q^2 + 2072*q^3 + 4158*q^4 + O(q^5)]

[(5/8), O(q^5)]

[(3/4), 56*q^(3/4) + 576*q^(7/4) + 1512*q^(11/4) + 4032*q^(15/4) + 5544*q^(19/4) + O(q^5)]

[(7/8), O(q^5)]

1.3.3 New Eisenstein series

Warning: this is experimental (and not at all optimized).

Certain newform Eisenstein series can be computed using

w.eisenstein_newform(k, b, prec)
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Here b should be a nonzero isotropic vector in the discriminant group of w. This returns the newform
Eisenstein series ∑

λ∈Z/dbZ

∑
χ

χ(λ)Ek,λb,

where db is the denominator of b, and where χ runs through all primitive Dirichlet characters modulo db. For
fixed χ we use the coefficient formula of [16] to compute the Fourier coefficients of

∑
λ χ(λ)Ek,λb numer-

ically; then the sum over all primitive χ is rational and we compute it as such by guessing denominators
and rounding. (The denominator we guess is usually far too large.)

Example. Compute the Eisenstein series of weight 5/2 attached to the Gram matrix ((18)) using

w = WeilRep(matrix([[18]]))

w.eisenstein_newform(5/2, vector([1/3]), 5)

Via the theta decomposition the output corresponds to the Jacobi Eisenstein series of weight 3 and index 9.
The individual Eisenstein series Ek,b can also be approximated as Poincaré series (of index 0), see section

1.5.

1.3.4 Theta series

Note that theta series here come from negative-definite Gram matrices because we use the dual Weil repre-
sentation. This convention is generally more natural in the context of Jacobi forms but in this case rather
unfortunate.

This method simply takes the output of PARI’s qfminim() and writes it as a vector-valued theta function.
If w is a WeilRep instance that comes from a negative-definite Gram matrix or quadratic form then one can
construct theta series using

w.theta_series(prec, P = None, test_P = True)

The required parameter is the precision prec. If P is given then it should be a polynomial over Q in
the appropriate number of variables which is homogeneous. Note: if P is not harmonic with respect to the
quadratic form underlying w then the theta series is a quasimodular form; see section 2.6.

Example. The theta series associated to the quadratic form Q(x, y) = x2 + y2:

Θ(τ) =
∑

a,b∈ 1
2Z

qa
2+b2ea,b.

w = WeilRep(diagonal_matrix([-2, -2]))

w.theta_series(5)

Output:

[(0, 0), 1 + 4*q + 4*q^2 + 4*q^4 + O(q^5)]

[(1/2, 0), 2*q^(1/4) + 4*q^(5/4) + 2*q^(9/4) + 4*q^(13/4) + 4*q^(17/4) + O(q^(21/4))]

[(0, 1/2), 2*q^(1/4) + 4*q^(5/4) + 2*q^(9/4) + 4*q^(13/4) + 4*q^(17/4) + O(q^(21/4))]

[(1/2, 1/2), 4*q^(1/2) + 8*q^(5/2) + 4*q^(9/2) + O(q^(11/2))]

The theta series associated to the polynomial P (x) = x2:

Θ(τ ;P ) =
∑

a,b∈ 1
2Z

a2qa
2+b2ea,b.
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R.<x, y> = PolynomialRing(QQ)

w = WeilRep(diagonal_matrix([-2, -2]))

w.theta_series(5, P = x^2)

Output:

[(0, 0), 2*q + 4*q^2 + 8*q^4 + O(q^5)]

[(1/2, 0), 1/2*q^(1/4) + q^(5/4) + 9/2*q^(9/4) + 9*q^(13/4) + q^(17/4) + O(q^(21/4))]

[(0, 1/2), 4*q^(5/4) + 4*q^(13/4) + 16*q^(17/4) + O(q^(21/4))]

[(1/2, 1/2), q^(1/2) + 10*q^(5/2) + 9*q^(9/2) + O(q^(11/2))]

1.3.5 Poincaré series

Let (A,Q) be a discriminant form of signature σ ∈ Z/8Z, and let k ≥ 5/2 be a weight with κ := k−σ/2 ∈ Z.
The Poincaré series of weight k ≥ 5/2 and index (β,m) where β ∈ A and m ∈ Z−Q(β) is the series

Pk,m,β(τ) =
∑

M∈Γ∞\Γ

(
qm

eβ + (−1)κeβ
2

)∣∣∣
k,ρ∗

M.

These series have real but generally irrational Fourier coefficients, given by the following formula (cf. [6])

Pk,m,β(τ) =
qm

2
(eβ + (−1)κe−β) +

∑
n,γ

c(n, γ)qneγ ,

where: if m > 0, then

c(n, γ) = 2π(m/n)(1−k)/2
∞∑
c=1

c−1Jk−1(4π
√
mn/c)Re

[
e−πik/2Kc(β,m, γ, n)

]
;

if m < 0, then

c(n, γ) = 2π(|m|/n)(1−k)/2
∞∑
c=1

c−1Ik−1(4π
√
|m|n/c)Re

[
e−πik/2Kc(β,m, γ, n)

]
;

and if m = 0 then Pk,m,β coincides with an Eisenstein series. Here Jk, Ik denote the Bessel J- and I-functions
and Kc(β,m, γ, n) is the Kloosterman sum

Kc(β,m, γ, n) =
∑

d∈(Z/cZ)×

e2πi(ma+nd)/c
〈
ρ(M)−1eβ , eγ

〉
,

if M = (
(
a b
c d

)
, φ) ∈ Mp2(Z) is an element of the metaplectic group with bottom row c, d which satisfies

Re[φ(τ)] > 0 for all τ ∈ H.

Note in particular that if m is negative then the result is a “nearly-holomorphic” modular form.
These series can be computed approximately with the method

w.poincare_series(k, b, m, prec, nterms)

Here, k is the weight; b is a rational vector (a representative of β); m ∈ Z−Q(β); prec is the precision; and
N =nterms denotes the N at which we truncate the above series in the coefficient formula.

Example. We numerically compute the (unique, up to a multiple) cusp form of weight 8 for the Weil
representation attached to the Gram matrix ( 2 1

1 2 ) as a Poincaré series. Note that 8 is an ‘antisymmetric
weight’ so all Poincaré series associated to the component β = (0, 0) vanish. We can obtain a nonzero form
of weight 8 using the index (β,m) = ((1/3, 1/3), 2/3). After renormalizing, we find:
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w = WeilRep([[2, 1], [1, 2]])

w.poincare_series(8, vector([1/3, 1/3]), 2/3, 4, nterms = 50) / (-1.58320744005359)

Output:

[(0, 0), O(q^4)]

[(2/3, 2/3), 0.000000000000000*q^(-1/3) + 1.00000000000000*q^(2/3) - 15.9999999992044*q^(5/3)

+ 103.999999990887*q^(8/3) - 320.000000336077*q^(11/3) + O(q^(14/3))]

[(1/3, 1/3), 0.000000000000000*q^(-1/3) - 1.00000000000000*q^(2/3) + 15.9999999992044*q^(5/3)

- 103.999999990887*q^(8/3) + 320.000000336077*q^(11/3) + O(q^(14/3))]

This may be compared with the cusp form computed using exact arithmetic (cf. 1.4.2)

w.cusp_forms_basis(8, 4)

Output:

[(0, 0), O(q^10)]

[(2/3, 2/3), q^(2/3) - 16*q^(5/3) + 104*q^(8/3) - 320*q^(11/3) + O(q^(14/3))]

[(1/3, 1/3), -q^(2/3) + 16*q^(5/3) - 104*q^(8/3) + 320*q^(11/3) + O(q^(14/3))]

Of course the series q2/3 − 16q5/3 + 104q8/3 + 320q11/3 ± ... appearing here is just η16(τ).

1.3.6 Bruinier–Bundschuh isomorphism

Bruinier and Bundschuh [7] gave an isomorphism between the spaces of modular forms for lattices of odd
prime discriminant and scalar-valued modular forms of prime level with the quadratic character whose
Fourier expansions are supported either entirely on quadratic residues or entirely on quadratic nonresidues.

These lifts can be constructed with the method

w.bb_lift(mf)

Here mf is a ModularFormElement of the appropriate level and character that satisfies the plus/minus-space
condition on Fourier coefficients.

Example. To obtain the Eisenstein series of weight three for the Gram matrix S = ( 2 1
1 2 ). Input:

w = WeilRep(matrix([[2,1],[1,2]]))

chi = DirichletGroup(3)[1]

mf = ModularForms(chi,3,prec=20).basis()[0]

w.bb_lift(mf)

Output:

[(0, 0), 1 + 72*q + 270*q^2 + 720*q^3 + 936*q^4 + 2160*q^5 + O(q^6)]

[(2/3, 2/3), 27*q^(2/3) + 216*q^(5/3) + 459*q^(8/3) + 1080*q^(11/3) + 1350*q^(14/3) + 2592*q^(17/3) + O(q^6)]

[(1/3, 1/3), 27*q^(2/3) + 216*q^(5/3) + 459*q^(8/3) + 1080*q^(11/3) + 1350*q^(14/3) + 2592*q^(17/3) + O(q^6)]

1.3.7 Poincaré square series

Let β ∈ Λ′/Λ and m ∈ Z−Q(β) be an index and define by Qk,m,β the Poincaré square series

Qk,m,β =
∑
λ∈Z

Pk,λ2m,λβ .

Here Pk,m,β denotes the Poincaré series of exponential type (as in [6]). The Fourier coefficients of these series
are rational and they can be computed in terms of Eisenstein series (associated to other lattices) [17]. (In
fact these are the basic modular forms which are used here to produce cusp forms.) In this code we require
k ≥ 5/2.

These series are implemented with
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w.pss(k, beta, m, prec)

The construction of modular forms of antisymmetric weights is similar [19] and implemented with

w.pssd(k, beta, m, prec)

1.3.8 Mock modular forms

Currently only mock Eisenstein series and mock Poincaré series can be constructed; see section 2.7 for details.

1.4 Bases of modular forms

1.4.1 Modular forms

The method

w.modular_forms_basis(k, prec, eta_twist = 0)

returns a basis in echelon form of the space of modular forms Mk(ρ⊗χN ) with Fourier expansions to preci-
sion O(qprec), where χ is the multiplier system of the Dedekind eta function η(τ) = q1/24

∏∞
n=1(1− qn) and

N is the optional parameter eta twist (which is 0 unless specified otherwise).

For symmetric weights at least 5/2 or antisymmetric weights at least 7/2 we use linear combinations of
Eisenstein series and PSS (cf. 1.3.1, 1.3.7). In weights 0 and 1/2 we use an algorithm based on Ehlen–
Skoruppa’s method for computing Weil invariants [10]. Otherwise we try to reduce the problem to higher
weight forms, generally by writing Mk as the intersection

Mk(ρ) = E4(τ)−1Mk+4(ρ) ∩ E6(τ)−1Mk+6(ρ)

where E4, E6 are the scalar Eisenstein series.

Example. Modular forms of weight 11/2 for the Weil representation attached to the Cartan matrix A5,
with Fourier expansions up to O(q5):

WeilRep(CartanMatrix([’A’, 5])).modular_forms_basis(11/2, 4)

Output:

[(0, 0, 0, 0, 0), 1 + 180*q + 4404*q^2 + 26562*q^3 + O(q^4)]

[(5/6, 2/3, 1/2, 1/3, 1/6), 20*q^(7/12) + 1472*q^(19/12) + 14076*q^(31/12) + 57920*q^(43/12) + O(q^4)]

[(2/3, 1/3, 0, 2/3, 1/3), q^(1/3) + 693*q^(4/3) + 8680*q^(7/3) + 43252*q^(10/3) + O(q^4)]

[(1/2, 0, 1/2, 0, 1/2), 552*q^(5/4) + 7040*q^(9/4) + 39888*q^(13/4) + O(q^4)]

[(1/3, 2/3, 0, 1/3, 2/3), q^(1/3) + 693*q^(4/3) + 8680*q^(7/3) + 43252*q^(10/3) + O(q^4)]

[(1/6, 1/3, 1/2, 2/3, 5/6), 20*q^(7/12) + 1472*q^(19/12) + 14076*q^(31/12) + 57920*q^(43/12) + O(q^4)]

--------------------------------------------------------------------------------

[(0, 0, 0, 0, 0), 34*q - 156*q^2 + 162*q^3 + O(q^4)]

[(5/6, 2/3, 1/2, 1/3, 1/6), -7*q^(7/12) - 13*q^(19/12) + 171*q^(31/12) - 157*q^(43/12) + O(q^4)]

[(2/3, 1/3, 0, 2/3, 1/3), q^(1/3) + 18*q^(4/3) - 14*q^(7/3) - 380*q^(10/3) + O(q^4)]

[(1/2, 0, 1/2, 0, 1/2), q^(1/4) - 30*q^(5/4) + 81*q^(9/4) - 12*q^(13/4) + O(q^4)]

[(1/3, 2/3, 0, 1/3, 2/3), q^(1/3) + 18*q^(4/3) - 14*q^(7/3) - 380*q^(10/3) + O(q^4)]

[(1/6, 1/3, 1/2, 2/3, 5/6), -7*q^(7/12) - 13*q^(19/12) + 171*q^(31/12) - 157*q^(43/12) + O(q^4)]

We see that this is a two dimensional space. The vector-valued modular forms are separated by a row of
dashes.
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1.4.2 Cusp forms

The method

w.cusp_forms_basis(k, prec, eta_twist = 0)

returns a basis in echelon form of the space of cusp forms Sk(ρ) with Fourier expansions to precision O(qprec).
If the optional parameter N = eta twist is given then we instead compute a basis of cusp forms associated
to the Weil representation twisted by χN where χ is the eta multiplier.

Example. Cusp forms of weight 4 for the Weil representation attached to the Cartan matrix A6, with
Fourier expansions up to O(q4):

WeilRep(CartanMatrix([’A’, 6])).cusp_forms_basis(4, 4)

Output:

[(0, 0, 0, 0, 0, 0), O(q^4)]

[(6/7, 5/7, 4/7, 3/7, 2/7, 1/7), -17*q^(4/7) + 68*q^(11/7) - 135*q^(18/7) + 125*q^(25/7) + O(q^4)]

[(5/7, 3/7, 1/7, 6/7, 4/7, 2/7), 5*q^(2/7) + 27*q^(9/7) - 89*q^(16/7) + 40*q^(23/7) + O(q^4)]

[(4/7, 1/7, 5/7, 2/7, 6/7, 3/7), q^(1/7) - 45*q^(8/7) + 340*q^(22/7) + O(q^4)]

[(3/7, 6/7, 2/7, 5/7, 1/7, 4/7), -q^(1/7) + 45*q^(8/7) - 340*q^(22/7) + O(q^4)]

[(2/7, 4/7, 6/7, 1/7, 3/7, 5/7), -5*q^(2/7) - 27*q^(9/7) + 89*q^(16/7) - 40*q^(23/7) + O(q^4)]

[(1/7, 2/7, 3/7, 4/7, 5/7, 6/7), 17*q^(4/7) - 68*q^(11/7) + 135*q^(18/7) - 125*q^(25/7) + O(q^4)]

1.4.3 Modular forms with specified order at ∞

The method

w.basis_vanishing_to_order(k, N, prec, inclusive=False)

returns a basis in echelon form of the space of modular forms of weight k which vanish to order at least N
at ∞. Setting the optional parameter inclusive to True forces the coefficient of qN itself to zero.

Example. Let M13(ρ∗) be the space of modular forms of weight 13 for the Gram matrix S =
(−2 −1
−1 −2

)
.

To compute the subspace of modular forms which vanish to order at least 2/3:

WeilRep(matrix([[-2,-1],[-1,-2]])).basis_vanishing_to_order(13, 2/3, 4)

Output:

[(0, 0), q - 18*q^2 + 108*q^3 + O(q^4)]

[(1/3, 1/3), 3*q^(4/3) - 69*q^(7/3) + 690*q^(10/3) + O(q^4)]

[(2/3, 2/3), 3*q^(4/3) - 69*q^(7/3) + 690*q^(10/3) + O(q^4)]

1.4.4 Nearly holomorphic modular forms

A nearly-holomorphic modular form is a function which transforms like a modular form and is holomorphic
on H but may have a pole at cusps. The method

w.nearly_holomorphic_modular_forms_basis(k, N, prec, inclusive = False)

returns a basis of the space of nearly-holomorphic modular forms of weight k with a pole of order at most N
at ∞ with principal parts which are as simple as possible. Setting the optional parameter inclusive to False
does not allow forms with pole order exactly N .

Example. In [20] Zagier considered a sequence of forms gD(τ) ∈M+
3/2(Γ0(4)) whose Fourier expansions

take the form

gD(τ) = q−D +

∞∑
n=0

B(D,n)qn, B(D,n) ∈ Z

in his work on traces of singular moduli. We can realize these as modular forms for the Gram matrix (2)
and compute them as follows.
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WeilRep(matrix([[2]])).nearly_holomorphic_modular_forms_basis(3/2, 2, 3)

Output:

[(0), -2 - 492*q - 7256*q^2 - 53008*q^3 + O(q^4)]

[(1/2), q^(-1/4) + 248*q^(3/4) + 4119*q^(7/4) + 33512*q^(11/4) + 192513*q^(15/4) + O(q^4)]

--------------------------------------------------------------------------------

[(0), q^-1 - 2 - 143376*q - 26124256*q^2 - 1417904008*q^3 + O(q^4)]

[(1/2), -26752*q^(3/4) - 8288256*q^(7/4) - 561346944*q^(11/4) - 18508941312*q^(15/4) + O(q^4)]

--------------------------------------------------------------------------------

[(0), -565760*q - 190356480*q^2 - 16555069440*q^3 + O(q^4)]

[(1/2), q^(-5/4) + 85995*q^(3/4) + 52756480*q^(7/4) + 5874905295*q^(11/4) + 292658282496*q^(15/4) + O(q^4)]

--------------------------------------------------------------------------------

[(0), q^-2 - 18473000*q - 29071392966*q^2 - 8251987131648*q^3 + O(q^4)]

[(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + O(q^4)]

1.4.5 Borcherds obstruction space

Define the Borcherds obstruction space as the space of holomorphic modular forms whose constant terms are
multiples of e0. Following [3] (for lattices of the correct signature) elements of this space may be thought of
as obstructions to the existence of Borcherds products with specificed divisor and weight. In large weight
(at least 5/2) this is spanned by the cusp space Sk(ρ) and the Eisenstein series Ek,0.

This space can be computed with

w.borcherds_obstructions(k, prec)

where k is the weight and prec is the precision to which the Fourier series are computed.

1.4.6 Bases of quasimodular forms

See section 2.6 for the definition of quasimodular forms and their properties. Given a WeilRep w, a basis of
quasimodular forms in echelon form can be constructed using

w.quasimodular_forms_basis(k, prec)

where k is the weight, and prec is the precision of the Fourier expansions.

1.5 Dimension formulas

We use the Riemann-Roch theorem to compute dimensions of spaces of modular forms in weight at least 2.
In small weights we compute a basis of Mk(ρ) first and then take its length. (This is slow!)

1.5.1 Modular forms

The method

w.modular_forms_dimension(k, eta_twist=0)

computes the dimension
dimMk(ρ⊗ χN ),

where χ is the multiplier system of η(τ) = q1/24
∏∞
n=1(1− qn) and N is the optional parameter eta twist (by

default N = 0).
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1.5.2 Cusp forms

The method

w.cusp_forms_dimension(k, eta_twist=0)

computes the dimension
dimSk(ρ⊗ χN ),

where χ is the multiplier system of η(τ) = q1/24
∏∞
n=1(1− qn) and N is the optional parameter eta twist (by

default N = 0).

1.5.3 Hilbert series

The Hilbert series of the Weil representation ρ for the lattice L is the series

Hilbρ(t) :=

∞∑
k=0

dimMk+ε(ρ)tk,

where ε = 0 if L has even rank and ε = 1/2 if L has odd rank. It has the form

Hilbρ(t) =
P (t)

(1− t4)(1− t6)

for some polynomial P (t).

The method

w.hilbert_series()

computes the Hilbert series Hilbρ(t) as a power series.

The method

w.hilbert_polynomial()

computes the polynomial P (t).

2 Vector-valued modular forms

Vector-valued modular forms are instances of the WeilRepModularForm class. Suppose f is a vector-valued
modular form.

2.1 Fourier coefficients

2.1.1 Fourier expansion

The Fourier expansion of f is recovered with

f.fourier_expansion()

The output is a list of tuples of the form (g,N, φg(q)) where g is a vector, N ∈ Q and φg is a power series
in q, meant to indicate that

f =
∑
g

q−Nφg(q)eg.
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2.1.2 Coefficients

f.coefficients() produces the Fourier coefficients of f as a dictionary. The keys are tuples (g1, ..., gd, n) and
the output is the coefficient of qne(g1,...,gd) in f .

Example. Let f be the (vector-valued) Cohen Eisenstein series of weight 5/2:

f(τ) = (1−70q−120q2−240q3−550q4− ...)e0 + (−10q1/4−48q5/4−250q9/4−240q13/4−480q17/4− ...)e1/2.

Construct it with

f = WeilRep([-2]).eisenstein_series(5/2, 5)

To extract the coefficient −70 use

f.coefficients()[(0, 1)]

To extract the coefficient −48 use

f.coefficients()[(1/2, 5/4)]

2.1.3 Coefficient vector

f.coefficient_vector()

sorts the Fourier coefficients of f and combines them to a vector.

Example. Let f be the Cohen Eisenstein series from the previous section. The coefficient vector

f.coefficient_vector()

is

(1, -10, -70, -48, -120, -250, -240, -240, -550, -480)

The coefficient vector method takes a few optional arguments, most importantly:
- starting from: the exponent at which we begin counting coefficients;
- ending with: the exponent at which we stop counting coefficients.

2.1.4 Components

The method

f.components()

produces the components of f as a dictionary. The keys are tuples (g1, ...gd), where (g1, ..., gd) is a vector
in the dual lattice, and the output is the Fourier series fg1,...,gd (i.e. the component in f) as a power series
with exponents rounded up to integers.

2.2 Arithmetic operations

Addition and subtraction are defined as usual.
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2.2.1 Multiplication

Multiplication of vector-valued modular forms should be understood as the tensor product. If f ∈Mk1(ρS1
)

and g ∈ Mk2(ρS2
) are vector-valued modular forms for Weil representations associated to S1 and S2 then

f ⊗ g is a modular form for the direct sum S1 ⊕ S2.

Example. Input:

w = WeilRep(matrix([[-2]]))

E = w.eisenstein_series(5/2, 5)

E * E

The output is a modular form of weight 5 for the dual Weil representation attached to
(−2 0

0 −2

)
:

[(0, 0), 1 - 140*q + 4660*q^2 + 16320*q^3 + 46900*q^4 + O(q^5)]

[(1/2, 0), -10*q^(1/4) + 652*q^(5/4) + 4310*q^(9/4) + 25420*q^(13/4) + 63340*q^(17/4) + O(q^5)]

[(0, 1/2), -10*q^(1/4) + 652*q^(5/4) + 4310*q^(9/4) + 25420*q^(13/4) + 63340*q^(17/4) + O(q^5)]

[(1/2, 1/2), 100*q^(1/2) + 960*q^(3/2) + 7304*q^(5/2) + 28800*q^(7/2) + 95140*q^(9/2) + O(q^5)]

To multiply f ∈ M`(ρ) by a scalar-valued modular form g of weight k one should convert g to a vector-
valued moduar form (for the rank zero lattice) using the command

smf(k, g)

and then multiply as usual.

Example. To multiply the Cohen Eisenstein series of weight 5/2 by the discriminant ∆, use

E = WeilRep(matrix([[-2]])).eisenstein_series(5/2, 5)

E * smf(12, delta_qexp(5))

2.3 Other methods

2.3.1 Bol operator

If f is a modular form of integral weight k ≤ 1 then its image under the Bol operator

D =
( 1

2πi

d

dτ

)1−k
f(τ)

is a modular form of weight 2− k. This is implemented by the method

f.bol()

2.3.2 Conjugation

The method

f.conjugate(A)

can be used to change lattice bases. If f is a modular form for the Gram matrix S then f.conjugate(A) is a
modular form for the Gram matrix ATSA. (Note: A does not need to be invertible.)
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2.3.3 Derivative and Serre derivative

The derivative of a modular form is generally a quasimodular form, not a modular form. This is implemented
with the method

f.derivative()

See section 2.6 for more details.

If f is a modular form of weight k then its Serre derivative

Sf(τ) =
1

2πi
f ′(τ)− k

12
f(τ)E2(τ)

is a modular form of weight k + 2. This is implemented by the method

f.serre_derivative()

2.3.4 Hecke operators

The method

f.hecke_T(N)

applies the Hecke operator TN to f using the formula of [1]. The lattice does not have to be positive-definite.
(Warning: this is only implemented when N is coprime to the level of the lattice!)

Similarly the methods

f.hecke_U(N)

and

f.hecke_V(N)

apply the index-raising Hecke operators UN and VN (cf. [4], [15]). These are maps

UN : Mk(ρ) −→Mk(ρ(N2)), and VN : Mk(ρ) −→Mk(ρ(N)),

where ρ(N) denotes the Weil representation for the lattice L(N) with quadratic form rescaled by N , i.e.
L(N) = (L,N ·Q). They specialize to the Eichler–Zagier Hecke operators on Jacobi forms when L is positive-
definite.

Finally the method

f.hecke_P(N)

implements the index-lowering Hecke operator PN of [4]. This is a map

PN : Mk(ρ(N2)) −→Mk(ρ)

with the property PN ◦ UN = id.
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2.3.5 Lattice reduction

Suppose L is an isotropic lattice over Z of signature (b+, b−) with a norm zero vector z. The method

f.reduce_lattice()

implements the lattice-reduction map from L to the signature (b+ − 1, b− − 1) lattice z⊥/z. In the notation
of Borcherds ([2], especially sections 5, 6) this takes the form FM as input and yields the form FK . The
norm-zero vector z can be provided; if no z is given then we try to find one using PARI qfsolve().

In this setup note that |L| = N2 · |z⊥/z| for some N . In particular if L is isotropic but has squarefree
discriminant (or if L has odd rank, and |L|/2 is squarefree) then this method always yields a modular form
on a smaller lattice whose discriminant form is equivalent to that of L.

2.3.6 Principal part

Suppose F is a nearly holomorphic modular form.

F.principal_part()

outputs its principal part (its terms with negative exponent, and the e0-component of its constant term) as
a WeilRepPrincipalPart instance. This is useful in the Borcherds lift as it determines the weight and divisor
of the output.

2.3.7 Rankin–Cohen brackets

If f1 and f2 are modular forms of weight k1 and k2 attached to the Gram matrices S1 and S2, and N ∈ N0,
then we obtain modular forms of weight k1 + k2 + 2N as Rankin–Cohen brackets:

[f1, f2]N =

N∑
r=0

(−1)r
(
k1 +N − 1

N − r

)(
k2 +N − 1

r

)
dr

dτ r
f1(τ)⊗ dN−r

dτN−r
f2(τ) ∈Mk1+k2+2N (S1 ⊕ S2).

These are cusp forms if N ≥ 1. The Rankin–Cohen brackets are implemented as the function rankin cohen(N,
f 1, f 2).

Note that certain expressions which are trivial for scalar modular forms are generally nonzero for vector-
valued forms. For example, if f has weight k then its first Rankin–Cohen bracket with itself,

[f, f ]1 = k
(
f ⊗ f ′ − f ′ ⊗ f

)
is generally nonzero.

Example. The first Rankin–Cohen bracket of the standard unary theta function with itself is nonzero.
Compute it with

w = WeilRep(matrix([[-2]]))

theta = w.theta_series(10)

rankin_cohen(1, theta, theta)

When N = 0 the Rankin–Cohen bracket reduces to the (tensor) product of two modular forms.
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2.3.8 Theta contraction

Suppose f is a modular form of weight k for a Gram matrix S̃ which can be written as a block matrix

S̃ =

(
S Sβ

(Sβ)T 2m+ βTSβ

)
where m ∈ Q, m > 0. The theta contraction Θf of f is a twisted product of f with a rank one theta function.
The result is a modular form of weight k+ 1/2 for the Gram matrix S. This is useful in the context of theta
lifts as it corresponds to the pullbacks of modular forms on orthogonal groups.

Example. Compute the theta contraction of the weight three Eisenstein series E attached to the Gram
matrix ( 2 1

1 2 ). Input:

S = matrix([[2, 1], [1, 2]])

E = WeilRep(S).eisenstein_series(3,5)

print(E.theta_contraction())

Output:

[(0), 1 + 126*q + 756*q^2 + 2072*q^3 + 4158*q^4 + O(q^5)]

[(1/2), 56*q^(3/4) + 576*q^(7/4) + 1512*q^(11/4) + 4032*q^(15/4) + 5544*q^(19/4) + O(q^5)]

i.e. ΘE is the Eisenstein series of weight 7/2 attached to the Gram matrix (2).

2.3.9 Trace map

Suppose f ∈Mk(ρ) and g ∈M`(−ρ) are modular forms whose Gram matrices are negatives of one another.
The operation

f & g

computes the trace-map

〈f, g〉 :=
∑
γ

fγ(τ)gγ(τ) ∈Mk+`,

which is a (scalar) modular form of weight k + `.

2.4 Operations on lists of modular forms

The output of most functions that yield lists of vector-valued modular forms is actually an instance of the
WeilRepModularFormsBasis class. In addition to the usual commands that apply to lists, WeilRepModular-
FormsBasis has a few extra methods.

Suppose X is a WeilRepModularFormsBasis instance.

2.4.1 Coordinates

Suppose f is a vector-valued modular form for the same lattice and of the same weight as X. Write
X = (x1, ..., xn). Then

X.coordinates(f)

computes a vector v = (v1, ..., vn) such that

f = v1x1 + ...+ vnxn

(and raises a ValueError if this does not exist).

Warning: we only compute v using the known Fourier coefficients. If an insufficient number of coefficients
are known then the result is likely to be wrong.
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2.4.2 Principal parts

X.principal parts() enumerates the principal parts of all elements of X as a string separated by newlines.

2.4.3 Theta contraction

X.theta() computes the theta contraction of all elements of X simultaneously. The result is again a Weil-
RepModularFormsBasis instance.

2.5 Automorphisms

Let A = (A,Q) be a discriminant form. By an automorphism of A we mean a Z-linear map g : A → A for
which Q ◦ g = Q. (In other words the group of automorphisms is the orthogonal group O(A).)

2.5.1 Automorphism group

Let

w = WeilRep(S)

be a WeilRep instance. The automorphism group of w can be constructed with

G = w.automorphism_group()

(Warning: this can be slow, particularly if G is reasonably big!)

G acts as a list of WeilRepAutomorphisms g. To view G explicitly it is better to type list(G). Each g
can be used as follows:
(i) if f is a WeilRepModularForm, with Fourier expansion

f(τ) =
∑
x∈A

fx(τ)ex,

then g(f) is the WeilRepModularForm

g(f)(τ) =
∑
x∈A

fx(τ)eg·x.

(ii) if x ∈ A then g(x) ∈ A is the image of x under g.
Additionally WeilRepAutomorphisms can be multiplied (corresponding to composition) and inverted using
the syntax

~g

Some additional methods for the WeilRepAutomorphismGroup G are:
– Generators: G.gens(). This produces a list of generators of G.
– Character group: G.characters(). This produces a list of all the characters, or homomorphisms χ : G→ C×.
Here a character is represented as a list

χ = [χ1, ..., χN ],

where: if G = [g1, ..., gN ] then χi = χ(gi).

19



2.5.2 Invariant modular forms

Let w be a WeilRep instance with automorphism group G, and let χ : G→ C× be a character.

The method

w.invariant_forms_dimension(k, chi = chi)

computes the dimension
dimMk,χ(ρ),

where Mk,χ(ρ) is the subspace of forms f ∈Mk(ρ) for which g ·f = χ(g)f for all g ∈ G. If k ≥ 5/2 then this is
reasonably fast (up to determining G) as we can use the Riemann–Roch formula. If χ is not given then we as-
sume that χ is the trivial character. (Warning: in this case the weight k must satisfy 2k+σ(A,Q) ≡ 0 mod 4.)

Note: if G is not abelian then Mk(ρ) generally does not decompose into
⊕

χMk,χ(ρ).
Similarly the method

w.invariant_cusp_forms_dimension(k, chi = chi)

computes the dimension dimSk,χ(ρ) where Sk,χ(ρ) = Mk,χ(ρ) ∩ Sk(ρ).

The method

w.invariant_forms_basis(k, prec, chi = chi)

computes a WeilRepModularFormsBasis of Mk,χ(ρ) up to precision prec. Similarly the method

w.invariant_cusp_forms_basis(k, prec, chi = chi)

computes a WeilRepModularFormsBasis of Sk,χ(ρ) up to precision prec.

2.6 Quasimodular forms

See e.g. section 5.3 of [21] for an introduction to quasimodular forms. This extends immediately to vector-
valued forms.

Let A = (A,Q) be a discriminant form. A quasimodular form for the Weil representation of A is a
holomorphic vector-valued function f = f0 : H→ C[A] with a Fourier expansion of the form

f(τ) =
∑
γ∈A

∑
n∈Z−Q(γ)

c(n, γ)qneγ

with the property that there are finitely many holomorphic functions f1, ..., fd : H → C[A] such that the
completion of f0,

F (τ) =

d∑
r=0

fr(τ)(4πy)−r

transforms like a modular form. The forms fi(τ) are then also quasimodular forms.

Typical examples of quasimodular forms are theta series attached to non-harmonic polynomials; Eisen-
stein series of weight two; and derivatives (of any order) of holomorphic modular forms.
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2.6.1 Completion

Suppose f is a quasimodular form. The completion of f to an almost-holomorphic modular form can be
computed with the method

f.completion()

The result is a WeilRepAlmostHolomorphicModularForm instance that prints the nonholomorphic modular
form F (τ) as in the following example:

w = WeilRep(matrix([[2, 0], [0, -2]]))

w.eisenstein_series(2, 5).completion()

yields

Almost holomorphic modular form f_0 + f_1 * (4 pi y)^(-1), where:

f_0 =

[(0, 0), 1 - 16*q - 24*q^2 - 64*q^3 - 72*q^4 + O(q^5)]

[(1/2, 0), -16*q^(3/4) - 32*q^(7/4) - 48*q^(11/4) - 96*q^(15/4) - 80*q^(19/4) + O(q^(23/4))]

[(0, 1/2), -4*q^(1/4) - 24*q^(5/4) - 52*q^(9/4) - 56*q^(13/4) - 72*q^(17/4) + O(q^(21/4))]

[(1/2, 1/2), -8*q - 48*q^2 - 32*q^3 - 96*q^4 + O(q^5)]

--------------------------------------------------------------------------------

f_1 =

[(0, 0), -6 + O(q^5)]

[(1/2, 0), O(q^(23/4))]

[(0, 1/2), O(q^(21/4))]

[(1/2, 1/2), -6 + O(q^5)]

Additionally, the completion of f acts as a list of quasimodular forms: in the above example, letting

X = w.eisenstein_series(2, 5).completion()

the terms f0, f1 can be accessed as X[0], X[1]. The first term f0 can also be accessed as the holomorphic
part:

X.holomorphic_part()

2.6.2 Other operations

Many (but not all) of the operations that apply to modular forms also apply to quasimodular forms. In
particular, quasimodular forms can be added, multiplied (tensored), etc. The following additional features
are useful. Suppose f is a quasimodular form.

f.depth()

computes the depth of f , i.e. the minimal d ∈ N such that F (τ) =
∑d
r=0 fr(τ)(4πy)−r for some quasimodular

forms fr.

f.shift()

applies the map δ in section 5.3 of [21] i.e. it sends f to the term f1 in its completion.
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2.7 Mock modular forms

There is some support for vector-valued mock modular forms and harmonic Maass forms. For background
see [5].

A harmonic weak Maass form of weight k is a real-analytic function f : H → C[A] satisfying the
transformation rules

f(M · τ) = (cτ + d)kρ(M)f(τ), M = (
(
a b
c d

)
, (cτ + d)1/2) ∈ Mp2(Z)

and a growth condition at ∞ and which solves the differential equation

∆kf = 0,

where

∆k = −4y2 ∂2

∂τ∂τ
+ 2iky

∂

∂τ
.

Such a function is represented by its Fourier series which takes the form

f(τ) =
∑
n≥−N

af (n)qn + bf (0)y1−k +
∑
n<0

bf (n)Γ(1− k, 4π|n|y)qn, af (n), bf (n) ∈ C, q = e2πiτ .

When k = 1 the term y1−k must be replaced by log(y). Here Γ(s, x) =
∫∞
x
e−tts−1 dt is the upper incomplete

Gamma function; when computing numerically it may be better to write

Γ(1− k, 4π|n|y)qn = U(k, k; 4π|n|y)e2πi|n|(−τ)

where U is the confluent hypergeometric U -function, as this is less likely to cause roundoff or overflow errors.

The holomorphic part of f , ∑
n≥−N

af (n)

is called a mock modular form of weight k. The remaining coefficients bf (n) can be expressed conveniently
through a modular form of weight 2− k called the shadow :

ξkf(τ) := 2i(−4π)k−1yk∂τf(τ) = (1− k)bf (0) +
∑
n>0

bf (−n)n1−kqn.

(Warning: the factor (−4π)k−1 is not always present in the references.) (Warning: when k = 1 the factor in
front of bf (0) is incorrect.)

The following constructions of modular forms are supported.

2.7.1 Zagier Eisenstein series

Suppose L = (L,Q) is an even lattice whose signature is 1 mod 4 with WeilRep w. The value at s = 0 of
the spectrally deformed Eisenstein series

E3/2(τ ; s) =
∑

M∈Γ∞\Γ

(yse0)
∣∣∣
3/2,ρ

M =
1

2

∑
c,d∈Z

gcd(c,d)=1

ys

|cτ + d|2s(cτ + d)3/2
ρ(M)−1e0,

(where M ∈ Mp2(Z) may be any element whose bottom row is c, d and whose square root branch agrees
with the branch used in (cτ + d)3/2) is a harmonic Maass form (since ∆k is self adjoint) but may fail to be
holomorphic. In general the Zagier Eisenstein series is the holomorphic part of E3/2(τ ; 0).
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The holomorphic part is the formal result of the Bruinier–Kuss formula [8] and the shadow can be com-
puted as in [18].

Example. The original Zagier Eisenstein series appears when L = Z with norm Q(x) = x2. We compute
its completion to a Maass form with

WeilRep([[2]]).eisenstein_series(3/2, 10).completion()

which outputs

Harmonic Maass form with holomorphic part

[(0), 1 - 6*q - 12*q^2 - 16*q^3 - 18*q^4 - 24*q^5 - 24*q^6 - 24*q^7 - 36*q^8 - 3

[(1/2), -4*q^(3/4) - 12*q^(7/4) - 12*q^(11/4) - 24*q^(15/4) - 12*q^(19/4) - 36*q

and shadow 1/pi times

[(0), 3/2 + 3*q + 3*q^4 + 3*q^9 + O(q^10)]

[(1/2), 3*q^(1/4) + 3*q^(9/4) + 3*q^(25/4) + O(q^(41/4))]

From this one can read off that the nonholomorphic Fourier coefficients bf (n) are

bf (0) = − 3

π
, bf (n2) =

3|n|
π
, n < 0, bf (n) = 0 otherwise.

The coefficients of the holomorphic part are the Hurwitz class numbers H(4n). Altogether

E3/2(τ ; 0) =

∞∑
n=0

H(n)qn/4en/2 −
3

π
√
y
e0 −

3

2π
√
y

∑
n∈Z
n 6=0

(∫ ∞
1

t−3/2e−πn
2yt dt

)
q−n

2/4en/2.

2.7.2 Maass Eisenstein series

Warning: this needs further testing when the weight is half-integral.

The Maass Eisenstein series Ẽk(τ) of weight k < 0 is the value at s = 1−k of Ek(τ ; s) =
∑
M∈Γ∞\Γ(yse0)|kM.

Since
∆kEk(τ ; s) = s(1− k − s)Ek(τ ; s)

it follows that Ẽk(τ) is annihilated by ∆k and therefore defines a harmonic Maass form. The mock Eisenstein
series is its holomorphic part.

When k is an integer, (and in particular the underlying lattice L = (L,Q) has even rank) the mock
Eisenstein series has a Fourier expansion of the form

πk−1
(
C +

∑
n>0

c(n)qn
)
, C ∈ C[A], c(n) ∈ Q[A].

The constant term C involves non-critical values of quadratic L functions (or the Riemann zeta function)
e.g. ζ(3) which probably cannot be simplified.

Non-critical values of quadratic L-functions are represented formally by

L(s,D) =

∞∑
n=1

χD(n)n−s, χD(n) :=

(
D

n

)
.

More precisely these are instances of the QuadraticLFunction class from the file weilrep misc.py, which is
not available by default but can be imported manually. They can be evaluated numerically (using Pari/GP)
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with the usual .n(). These values are expressed in terms of the Riemann zeta function if possible (i.e. if D
is a square).

The mock Eisenstein series of weight k to precision prec can be computed using

w.mock_eisenstein_series(k, prec)

Its completion to a harmonic Maass form can be computed using

w.maass_eisenstein_series(k, prec)

Example. The scalar-valued Maass Eisenstein series of weight (−2) for the full group SL2(Z) can be
computed with

WeilRep([]).maass_eisenstein_series(-2, 5)

which yields

Harmonic Maass form with holomorphic part pi^(-3) times

-45/2*zeta(3) - 45/2*q - 405/16*q^2 - 70/3*q^3 - 3285/128*q^4 + O(q^5)

and shadow

3 + 720*q + 6480*q^2 + 20160*q^3 + 52560*q^4 + O(q^5)

Compare this with the explicit formula

Ẽ−2(τ) = y3 − 45

2π3

[
ζ(3) +

∞∑
n=1

σ−3(n)
(
qn + qn(1 + 4πny + 8π2n2y2)

)]
.

(Here q = e2πiτ and q = e2πi(−τ), and τ = x+ iy.)

Example. Let (L,Q) be the lattice Z2 with Gram matrix ( 2 1
1 2 ). The Maass Eisenstein series of weight

(−1) is computed by typing

WeilRep([[2, 1], [1, 2]]).maass_eisenstein_series(-1, 5)

which outputs

Harmonic Maass form with holomorphic part pi^(-2) times

[(0, 0), -81/8*L(2, -3) - 9*q - 135/16*q^2 - 10*q^3 + O(q^4)]

[(2/3, 2/3), -243/32*q^(2/3) - 243/25*q^(5/3) - 4131/512*q^(8/3) - 1215/121*q^(11/3) + O(q^(14/3))]

[(1/3, 1/3), -243/32*q^(2/3) - 243/25*q^(5/3) - 4131/512*q^(8/3) - 1215/121*q^(11/3) + O(q^(14/3))]

and shadow

[(0, 0), -2 + 180*q + 432*q^2 + 1476*q^3 + O(q^4)]

[(1/3, 1/3), 18*q^(1/3) + 234*q^(4/3) + 900*q^(7/3) + 1296*q^(10/3) + O(q^(13/3))]

[(2/3, 2/3), 18*q^(1/3) + 234*q^(4/3) + 900*q^(7/3) + 1296*q^(10/3) + O(q^(13/3))]

Here the constant term of the holomorphic part involves the L-value

L(2,−3) =

∞∑
n=1

χ−3(n)n−2 ≈ 0.781302412896486.

To get a numerical approximation use the method .n(), i.e.

WeilRep([[2, 1], [1, 2]]).maass_eisenstein_series(-1, 2).n()

for which the output is:
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Harmonic Maass form with holomorphic part

[(0, 0), -0.801520163230027 - 0.911890652781040*q + O(q^2)]

[(2/3, 2/3), 0.000000000000000*q^(-1/3) - 0.769407738284002*q^(2/3) - 0.984841905003523*q^(5/3) + O(q^(8/3))]

[(1/3, 1/3), 0.000000000000000*q^(-1/3) - 0.769407738284002*q^(2/3) - 0.984841905003523*q^(5/3) + O(q^(8/3))]

and shadow

[(0, 0), -2.00000000000000 + 180.000000000000*q + O(q^2)]

[(1/3, 1/3), 0.000000000000000*q^(-2/3) + 18.0000000000000*q^(1/3) + 234.000000000000*q^(4/3) + O(q^(7/3))]

[(2/3, 2/3), 0.000000000000000*q^(-2/3) + 18.0000000000000*q^(1/3) + 234.000000000000*q^(4/3) + O(q^(7/3))]

(Note: the multiplier π−2 is applied automatically!)

2.7.3 Maass Poincaré series

Let (L,Q) be an even lattice and β ∈ L′/L. Let m ∈ Z − Q(β) be an index (similarly to the holomorphic
Poincaré series) with m < 0. The Maass Poincaré series of weight k ∈ 1

2Z (where k is integral if L has
even rank; and k is half-integral otherwise) is defined by Poincaré averaging:

Fk,m,β(τ) :=
∑

M∈Γ∞\Γ

(
φk,m(τ)eβ

)∣∣∣
k,ρ
M,

where
φk,m(τ) := (1− k) · qmγ(1− k, 4π|m|y), τ = x+ iy

and γ is the lower incomplete Gamma function:

γ(s, z) :=

∫ z

0

ts−1etts−1 dt = Γ(s)e−z
∞∑
n=0

zn+s

Γ(n+ s+ 1)
, Re[s] > 0.

This defines a harmonic weak Maass form whose shadow is (a simple multiple of) the Poincaré series Pk,−m,β
for the Weil representation associated to the lattice (L,−Q).

Similarly to the method poincare series() it can be computed by calling

w.maass_poincare_series(k, b, m, prec, nterms = 50)

where b = β is the appropriate element of L′/L; m is the index; prec is the precision (the highest power of q
in the Fourier expansion); and nterms is the number of terms used in the coefficient formula (an infinite sum
over values of Bessel functions and Kloosterman sums, cf. Proposition 1.9 of [6]); by default we compute
using the first 50 terms in this series. The holomorphic part can be called with

w.mock_poincare_series(k, b, m, prec, nterms = 50)

The first Fourier coefficients are generally more accurate.

Example. The scalar-valued Maass Poincaré series of weight (−2) and index (−1), using the first 50
terms in the coefficient formula. Input:

WeilRep([]).maass_poincare_series(-2, vector([]), -1, 2)

Output:

Harmonic weak Maass form with holomorphic part

1.00000000000000*q^-1 - 240.000000000000 - 141443.999817774*q - 8.52927999981621e6*q^2 + O(q^3)

and shadow

0.000000000000000 + 0.318058316204658*q - 3.75224055055394*q^2 + O(q^3)

In fact, the Maass Poincaré series is

E10(τ)/∆(τ) = q−1 − 240− 141444q − 8529280q2 − ...

and the shadow is zero.
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2.8 Visualization

The plot() and plot q() methods provide phase plots of vector-valued modular forms. This is inspired by the
paper [13] which considers plotting modular forms in much more detail.

Suppose f is a vector-valued modular form (or quasi-modular form; almost-holomorphic modular form;
mock modular form; etc.) The method

f.plot()

by default creates a list of complex plots for each of the components of f(τ) on the domain

{τ = x+ iy : −1 ≤ x ≤ 1, 0 < y ≤ 2}.

This accepts all optional arguments for Sage’s complex plot() (e.g. plot points, show axes, etc.) as well as
the following optional arguments:
x range: the range for x (by default [−1, 1]);
y range: the range for y (by default [0.01, 2]);
show : a Boolean (default True). If True, then we attempt to show all plots as they are created, with a
description of the vector component, before returning the list of plots.
isotherm: a Boolean (default True). If True then the magnitude of f is indicated by isotherm lines rather
than brightness.
function: if this is given, it should be a function that accepts complex vectors and outputs complex numbers.
We apply this function first and then plot. For example to sum the components together use

f.plot(function = sum)

Most forms can be plotted to reasonable accuracy with very few Fourier coefficients. To get better pic-
tures it is usually more important to adjust the plot points parameter.

Example. The Cohen Eisenstein series of weight 7/2 can be constructed as a vector-valued modular
form to precision O(q5), i.e.

(1 + 126q+ 756q2 + 2072q3 + 4158q4 + ...)e0 + (56q3/4 + 576q7/4 + 1512q11/4 + 4032q15/4 + 5544q19/4 + ...)e1/2

by entering

f = WeilRep([2]).eisenstein_series(7/2, 5)

Plotting with default settings (i.e. f.plot()) yields the pictures

for the components of e0 and e1/2, respectively. Raising the parameter plot points to 400 yields the better
pictures

26



Both examples use only the first five Fourier coefficients.

The method

f.plot_q()

creates a similar list of complex plots of the components of f ; this time as functions of q on the unit disc.
This accepts the same optional parameters as f.plot(), with the exception of x range and y range (which are
both fixed to [−1, 1]).

Example. A plot of the scalar Maass Eisenstein series of weight −2. Entering

f = WeilRep([]).maass_eisenstein_series(-2, 5)

f.plot_q(plot_points = 300)

produces the image
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3 Jacobi forms

Let M = (M,Q) be a positive-definite even lattice. A Jacobi form of weight k ∈ Z and index m is a
holomorphic function

φ = φ(τ, z) : H× (m⊗ C) −→ C

that satisfies

φ
(aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

(
2πiQ(z)c/(cτ + d)

)
φ(τ, z)

for all
(
a b
c d

)
∈ SL2(Z), and

φ(τ, z + τλ) = exp
(
− 2πiτQ(λ)− 〈λ, z〉

)
φ(τ, z), φ(τ, z + λ) = φ(τ, z)

for all λ ∈M , as well as a vanishing condition on Fourier coefficients: the expansion of φ takes the form

φ(τ, z) =

∞∑
n=0

∑
λ∈M ′

c(λ, n)qnζλ, q := e2πiτ , ζλ := e2πi〈λ,z〉,

and c(λ, n) = 0 if Q(λ) > n.

Jacobi forms of scalar index m ∈ N (as in [11]) are the same as Jacobi forms for the lattice M = Z with
quadratic form Q(x) = mx2.

Construct the module of Jacobi forms of index m with

JacobiForms(m)

where m is either a positive-definite Gram matrix or a positive integer.

3.1 Basic attributes

Let

j = JacobiForms(m)

be a JacobiForms instance. The following basic attributes can be computed.

3.1.1 Index

j.index()

returns the index (as a matrix, or as a number if the matrix is one-dimensional).

j.index_matrix()

always returns the index as a matrix.

3.1.2 Weil representation

j.theta_decomposition()

returns the Weil representation corresonding to this module of Jacobi forms.

3.2 Construction of Jacobi forms

Suppose j is a JacobiForms instance: j = JacobiForms(m).
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3.2.1 Jacobi Eisenstein series

The Jacobi Eisenstein series is the sum ∑
M∈J∞\J

1
∣∣∣
k,m

M,

where J is the Jacobi group and J∞ the stabilizer of∞, and |k,m is the Petersson slash operator. cf. chapter
2 of [11].

j.eisenstein_series(k, prec)

computes the Jacobi Eisenstein series of weight k to precision prec (with respect to the q = e2πiτ variable).
For example the Jacobi Eisenstein series E4,1 of weight 4 and index 1 can be computed to precision O(q5)
with

JacobiForms(1).eisenstein_series(4, 5)

More directly,

jacobi_eisenstein_series(k, m, prec)

constructs the Jacobi Eisenstein series of weight k and index m.

Similarly the commands

j.eisenstein_oldform()

and

j.eisenstein_newform()

can be used to compute other Eisenstein series.

3.2.2 Theta blocks

Theta blocks were introduced in [12]. For a = (a1, ..., ar) ∈ Z\{0} and n ∈ Z define

ϑa,n := ηn(τ)

r∏
i=1

ϑ(τ, aiz)

where

η(τ) = q1/24
∞∏
n=1

(1− qn) =

∞∑
n=1

(
12

n

)
qn

2/24

and

ϑ(τ, z) = q1/8ζ1/2
∞∏
n=1

(1− qn)(1− qnζ)(1− qn−1ζ−1) =
∑
n∈Z

(
−4

n

)
qn

2/8ζn/2.

When
∑
i=1 ai is even and r/8 +n/24 ∈ Z this transforms like a Jacobi form. (Whether it is holomorphic in

the cusps is a trickier point.)

Theta blocks are implemented with the command theta block(a,n,prec).

Example (from [12]). The (unique, up to scalar) Jacobi form of weight 2 and index 25 is the theta block
with a = [1, 1, 1, 1, 2, 2, 2, 3, 3, 4] and n = −6. To compute it (here only to precision O(q2)): Input:

print(theta_block([1,1,1,1,2,2,2,3,3,4],-6,2))

Output:

(w_0^-10 - 4*w_0^-9 + 3*w_0^-8 + 6*w_0^-7 - 7*w_0^-6 - 2*w_0^-5 - 4*w_0^-4 + 10*w_0^-3 + 6*w_0^-2

- 10*w_0^-1 + 2 - 10*w_0 + 6*w_0^2 + 10*w_0^3 - 4*w_0^4 - 2*w_0^5 - 7*w_0^6 + 6*w_0^7 + 3*w_0^8

- 4*w_0^9 + w_0^10)*q + O(q^2)
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3.2.3 Jacobi Poincaré series

j.poincare_series(k, n, r, prec, nterms)

computes the Jacobi Poincaré series:

f(τ, z) =
∑

M∈J∞\J

(qnζr)
∣∣∣
k,m

M

of index (n, r). Here n ∈ Z should be an integer and r ∈ ZN should be a vector (or an integer, if N = 1),
where N is the index rank i.e. number of abelian variables. The procedure is the same as the vector-valued
Poincaré series: the Fourier coefficients are series over Bessel function values and Kloosterman sums, and we
compute approximations by truncating these series at nterms.

3.2.4 Jacobi forms from vector-valued modular forms

If f is a vector-valued modular form for the Weil representation attached to a positive-definite Gram matrix
m, then f comes with the method

f.jacobi_form()

which produces the Jacobi form of index m whose theta decomposition is f itself.

3.3 Spaces of Jacobi forms

Again let

j = JacobiForms(m)

be a JacobiForms instance.

3.3.1 Jacobi forms

The method

j.basis(k, prec)

computes a basis of (holomorphic) Jacobi forms of weight k for the given index with Fourier expansions to
precision prec (with respect to the q = e2πiτ variable).

Generally we use whatever methods are avaiable to compute bases of spaces of vector-valued modular
forms and then pass to the associated Jacobi forms. For scalar-index Jacobi forms of low weights (2 and 3)
we sometimes look through families of theta blocks first.

The method

j.dimension(k)

computes the dimension of the space of (holomorphic) Jacobi forms of weight k using the Riemann-Roch
formula.

Jacobi forms of all weights form a finite free C[E4, E6]-module so the Hilbert series of dimensions has the
form

Hilb =
∑
k≥0

dim Jk t
k =

P (t)

(1− t4)(1− t6)

for some polynomial P ∈ C[t]. The method
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j.hilbert_series()

computes the Hilbert series as a power series. The method

j.hilbert_polynomial()

computes the polynomial P .

3.3.2 Cusp forms

The method

j.cusp_forms_basis(k, prec)

computes a basis of Jacobi cusp forms of weight k for the given index with Fourier expansions to precision
prec (with respect to the q = e2πiτ variable).

Generally we use whatever methods are avaiable to compute bases of spaces of vector-valued cusp forms
and then pass to the associated Jacobi forms. For scalar-index Jacobi forms of low weights (2 and 3) we
sometimes look through families of theta blocks first.

The method

j.cusp_forms_dimension(k)

computes the dimension of the space of Jacobi cusp forms of weight k using the Riemann-Roch formula.

3.3.3 Weak Jacobi forms

A weak Jacobi form is a holomorphic function that transforms like a Jacobi form and has Fourier expansion
of the form

φ(τ, z) =

∞∑
n=0

∑
r

c(n, r)qnζr

but without restrictions on r.

The method

j.weak_forms_basis(k, prec)

computes a basis of weak Jacobi forms of weight k for the given index with Fourier expansions to precision
prec. (Here the weight k may be negative!)

The method

j.weak_forms_dimension(k)

computes the dimension Jwk of the space of weak Jacobi forms of weight k.

Weak Jacobi forms of all weights form a finite free C[E4, E6]-module, so the Hilbert series of dimensions
has the form

Hilbw =
∑

k�−∞

dim Jwk t
k =

P (t)

(1− t4)(1− t6)

for some Laurent polynomial P ∈ C[t, t−1]. The method

j.weak_hilbert_series()

computes the weak Hilbert series Hilbw as a power series. The method

j.weak_hilbert_polynomial()

computes the Laurent polynomial P .
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3.4 Operations on Jacobi forms

3.4.1 Arithmetic operations

Jacobi forms of the same weight and index can be added and subtracted. Jacobi forms whose indices have
the same rank can be multiplied in the usual way. Also Jacobi forms can be multiplied by modular forms
(i.e. ModularFormElements).

3.4.2 Direct product

Call the direct product of two Jacobi forms f (of index m1) and g (of index m2) the Jacobi form in rank(m1)+
rank(m2) elliptic variables obtained by inserting distinct elliptic variables in f and g and multiplying i.e.

(f × g)(τ, (z1, z2)) = f(τ, z1) · g(τ, z2).

This is a Jacobi form of index m1 ⊕m2. It is implemented as the operation ∗∗.

Example. Let E4,1 be the Jacobi Eisenstein series of weight 4 and index 1. We will take its direct
product with itself. Input:

E41 = jacobi_eisenstein_series(4,1,2)

E41 ** E41

Output:

1 + (w_0^2 + w_1^2 + 56*w_0 + 56*w_1 + 252 + 56*w_1^-1 + 56*w_0^-1 + w_1^-2 + w_0^-2)*q + O(q^2)

3.4.3 Hecke operators

The Hecke operators TN are currently only implemented for values N that are coprime to the level of the
lattice. (Warning: when the index m is a scalar then the level is 4m!) This is the method hecke T(N). The
formula is taken from section 2.6 of A. Ajouz’s thesis [1].

Example. The image of E4,1 under T3. Input:

E41 = jacobi_eisenstein_series(4, 1, 40)

print(E41.hecke_T(3))

The Hecke U -operators are defined by(
φ|UN

)
(τ, z) = φ(τ,Nz).

If φ has index m then φ|UN has index N2m. This is implemented with the method hecke U(N).

Example. The image of E4,1 under U2. Input:

E41 = jacobi_eisenstein_series(4,1,3)

print(E41.hecke_U(2))

Output:

1 + (w_0^-4 + 56*w_0^-2 + 126 + 56*w_0^2 + w_0^4)*q

+ (126*w_0^-4 + 576*w_0^-2 + 756 + 576*w_0^2 + 126*w_0^4)*q^2 + O(q^3)
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The Hecke V -operators are defined by(
φ|VN

)
(τ, z) = Nk−1

∑
M

(cτ + d)−ke−2πiNcQ(z)/(cτ+d)φ
(aτ + b

cτ + d
,
Nz

cτ + d

)
where M =

(
a b
c d

)
runs through SL2(Z)-cosets of matrices with integer entries and determinant N . If φ has

index m then φ|VN has index Nm. This is implemented with the method hecke V(N).

Example. The image of E4,1 under V2. Input:

E41 = jacobi_eisenstein_series(4,1,5)

print(E41.hecke_V(2))

Output:

9 + (126*w_0^-2 + 576*w_0^-1 + 756 + 576*w_0 + 126*w_0^2)*q

+ (9*w_0^-4 + 576*w_0^-3 + 2520*w_0^-2 + 4032*w_0^-1 + 5166 + 4032*w_0 + 2520*w_0^2 + 576*w_0^3 + 9*w_0^4)*q^2

+ O(q^3)

3.4.4 is cusp form, is holomorphic

Suppose f is a (weak, weakly holomorphic) Jacobi form. The methods f.is cusp form() and f.is holomorphic()
attempt to determine from the Fourier expansion of f whether f is a cusp form resp. a holomorphic Jacobi
form.

Note: unlike regular modular forms, these properties cannot be determined from the q-expansion up to
exponent 0. The methods f.is cusp form() and f.is holomorphic() are rigorous - we do not guess! If we
cannot determine whether the form is holomorphic (or cuspidal) from the known coefficients then we raise
a ValueError (and suggest a better precision to use).

3.4.5 Pullback

Let f(τ, z) be a Jacobi form with z ∈ Cd and let a ∈ Zc×d be a matrix of rank c. The method pullback(a)
computes the Jacobi form f(τ, az). If f has index m then its pullback along a has index amaT (and the
same weight).

Example. The pullback of the weight 4 Jacobi Eisenstein series of index ( 2 1
1 2 ) along the matrix a = (1, 2)

is a Jacobi form of index 7. Input:

f = jacobi_eisenstein_series(4,matrix([[2,1],[1,2]]),2)

f.pullback(matrix([[1,2]]))

Output:

1 + (w_0^-5 + w_0^-4 + 27*w_0^-3 + 27*w_0^-2 + 28*w_0^-1 + 72

+ 28*w_0 + 27*w_0^2 + 27*w_0^3 + w_0^4 + w_0^5)*q + O(q^2)

3.4.6 Theta decomposition

The method

f.theta_decomposition()

returns the Theta decomposition of a Jacobi form f as a vector-valued modular form, cf. chapter 5 of [11].
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3.4.7 Zero-values

Let f(τ, z0, ..., zd−1) be a Jacobi form in d elliptic variables. The method substitute zero(indices) returns the
Jacobi form obtained by setting some subset of the zi to zero. (In other words setting wi = e2πizi to 1.)
indices should be a list containing distinct numbers between 0 and d− 1.

Example. The zero-value of the Jacobi Eisenstein series of weight four and index 1. Input:

E41 = jacobi_eisenstein_series(4,1,5)

E41.substitute_zero([0])

Output:

1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + O(q^5)

(This is a JacobiForm instance of index (empty matrix).)

The higher Taylor coefficients about zero are not (yet?) implemented.

3.5 Recovering Fourier coefficients from Jacobi forms

Let f be a JacobiForm instance.

The method

f.coefficient_vector()

outputs the Fourier coefficients c(n, r) of f without redundancy as a vector sorted by increasing value of
n− r2/4m (and its generalization to lattice index Jacobi forms).

The method

f.q_coefficients()

outputs the Fourier coefficients of f with respect to q only as a list of multivariate Laurent polynomials in
variables wi = e2πizi .

The method

f.fourier_expansion()

outputs the Fourier expansion of f as a power series in q.

4 Modular forms on orthogonal groups

The class OrthogonalModularForms represents spaces of modular forms on the Type IV domain attached to
an even lattice (L,Q). We only allow lattices that are split by a hyperbolic plane over Z; i.e. those of the
form

L = L0 ⊕H

where H is the hyperbolic plane (Z2 with quadratic form (x, y) 7→ xy) and where L0 is Lorentzian. In this
section we only consider the case where L0 is itself of the form K ⊕H with K positive-definite; for general
L see the next chapter.

An OrthogonalModularForms instance can be constructed by calling
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OrthogonalModularForms(S)

where S is a Gram matrix for the positive-definite part K, or

OrthogonalModularForms(w)

where w is a WeilRep instance for a positive-definite quadratic form.
Orthogonal modular forms for the Gram matrix S (of rank n) have Fourier expansions of the form

f(Z) = f(τ, z, w) =

∞∑
a,c=0

∑
b∈L

α(a, b, c)qarbsc,

where τ, w ∈ H and z ∈ Cn with Q(im(z)) < im(τ) · im(w), and where q = e2πiτ , r = e2πibT z and s = e2πiw.

Note:

ParamodularForms(N)

is a shortcut for the OrthogonalModularForms instance with Gram matrix S = ((2N)).

Throughout this section we let ΓL denote the orthogonal modular group attached to L. Here this means
the group

ΓL = ker
(

O+(L) −→ Aut(L′/L)
)
,

where O+(L) is the spinor kernel : the intersection O(L)∩O+(L⊗R) where O+(L⊗R) is the group generated
by reflections along positive-norm vectors in L⊗ R.

4.1 Construction of modular forms

Let

m = OrthogonalModularForms(S)

be an orthogonal modular forms instance.

4.1.1 Eisenstein series

The method

m.eisenstein_series(k, prec)

computes the weight k Eisenstein series

Ek(Z) =
∑

M∈ΓL,∞\ΓL

j(M ;Z)−k,

where ΓL is the orthogonal modular group; j(M ;Z) is the cocycle; and ΓL,∞ is the subgroup of ΓS that
leaves the constant 1 invariant. (Note: this is actually computed as a theta lift in the sense of section 4.1.2.)

Here k should be an even integer (sufficiently large) and prec denotes the precision with respect to both
q and s.

Example. The Siegel Eisenstein series of degree 2 and weight 4 up to precision 5. Input:

ParamodularForms(1).eisenstein_series(4, 5)
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4.1.2 Additive theta lift

Let K be a positive-definite even lattice of rank n and let Mk(ΓL) denote the space of modular forms of
weight k for the Type IV domain attached to L = K ⊕ II2,2. The additive theta lift is a linear map

Φ : Mk−n/2(ρK) −→Mk(ΓL).

The map Φ takes cusp forms to cusp forms. This is implemented with the method theta lift().

Example. The theta lift of the weight 8 cusp form attached to the A2 root lattice. Input:

w = WeilRep(matrix([[2, 1], [1, 2]]))

f = w.cusp_forms_basis(8, 5)[0]

f.theta_lift()

4.1.3 Borcherds lift

Let K be a positive-definite even lattice of rank n. The Borcherds lift [2] is a multiplicative map

Φ : M !
−n/2(ρK) −→M∗(ΓL)

where M !
−n/2 denotes nearly-holomorphic modular forms. The result may transform with a character. This

is implemented with the method borcherds lift().

Example. The product of ten theta-constants is a Siegel modular form of degree two with weight 5 with
a character of order two. Construction as a Borcherds product: input

w = WeilRep(matrix([[2]]))

f = w.nearly_holomorphic_modular_forms_basis(-1/2, 1/4, 5)[0]

f.borcherds_lift()

4.1.4 Gritsenko lift

If f is a Jacobi form then its Gritsenko lift

Φ(f) =

∞∑
n=0

(f |Vn)sn

is an orthogonal modular form of the same weight. This is closely related to the additive theta lift. It is
implemented with the method gritsenko lift().

Example. The Gritsenko lift of the Jacobi cusp form of index 2 and weight 11. Input:

f = JacobiForms(2).cusp_forms_basis(11, 5)[0]

f.gritsenko_lift()

4.1.5 Spezialschar

The method spezialschar(k, prec) computes a basis of the Maass Spezialschar of weight k to precision prec
(i.e. cusp forms which are additive lifts).

Example. The Spezialschar of Siegel modular forms of degree two and weight 10. Input:

ParamodularForms(1).spezialschar(10, 5)
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Calling spezialschar with no arguments produces the Maass Spezialschar as an abstract object. This can
be used to test whether a modular form is a lift. For example, construct the Siegel modular form Borcherds
product of weight 24 as follows:

f = WeilRep([2]).nearly_holomorphic_modular_forms_basis(-1/2, 5/4, 10)[2]

f = f.borcherds_lift()

and test whether it is a Maass lift (it is not) using

f in ParamodularForms(1).spezialschar()

4.2 Representations of modular forms

4.2.1 Fourier expansion

The Fourier expansion of the modular form can be recovered with fourier expansion(). The result is a power
series in variables q, s over a ring of Laurent polynomials in the variables r0, ..., rn−1 where n is the rank of
the lattice.

4.2.2 Fourier–Jacobi expansion

The Fourier–Jacobi expansion of the modular form f is the representation

f(τ, z, w) =

∞∑
n=0

φn(τ, z)sn, s = e2πiw

where each φn is a Jacobi form of the same weight. This is implemented with fourier jacobi(). The result is
a list of JacobiForm instances.

Example. The Fourier–Jacobi expansion of the Siegel Eisenstein series of degree 2 and weight 4. Input:

E4 = ParamodularForms(1).eisenstein_series(4, 5)

E4.fourier_jacobi()

4.2.3 Coefficient dictionary

The method coefficients() produces a dictionary of the modular form f ’s Fourier coefficients.

4.3 Inputs for Borcherds products

Let

m = OrthogonalModularForms(S)

be an OrthogonalModularForms instance.

4.3.1 Finding all holomorphic products of a given weight

The method borcherds input by weight(k, prec) outputs a list of all nearly-holomorphic vector-valued modu-
lar forms (to precision prec) whose Borcherds lifts are holomorphic and have weight k.

Example. To find the two Siegel modular forms of degree 2 and weight 35 that are Borcherds products:
input

ParamodularForms(1).borcherds_input_by_weight(35, 5)

which produces the input functions to precision O(q5).
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4.3.2 Bases of holomorphic products

Let D ∈ R>0 be a bound. The method borcherds input basis(D, prec) outputs a list (F1, ..., FN ) of nearly-
holomorphic vector-valued modular forms (to precision prec) with a pole at∞ of order at most D, and which
is minimal with the following property: the input functions F with pole order at most D whose Borcherds
lifts are holomorphic are exactly the linear combinations

F = k1F1 + ...+ kNFN , ki ∈ N0.

Example. To compute the semigroup of holomorphic Borcherds products for the paramodular group of
level N = 5 with zeros on Humbert surfaces of discriminant at most 10. Input:

ParamodularForms(5).borcherds_input_basis(1/2, 5)

Taking the Borcherds lifts of these forms yields 13 semigroup generators. These generators have weights
4, 5, 10, 11, 17, 18, 23, 24, 29, 30, 36, 42, 48.

The method borcherds input Qbasis(D, prec) is similar, but the list (F1, ..., FN ) it outputs is minimal
with the following weaker property: every input function F with pole order at most D whose Borcherds lift
is holomorphic is a linear combination

F = λ1F1 + ...+ λNFN

where λi ∈ Q≥0. Computing a Q-basis in this sense is often much faster than computing a true Hilbert
basis.

4.4 Other methods

4.4.1 Jacobian

Suppose L has rank n and a list F0, ..., Fn of (n+ 1) orthogonal modular forms of weights k0, ..., kn is given.
The function

jacobian([F_0,...,F_n])

computes the modular Jacobian, or Rankin–Cohen–Ibukiyama operator:

J(F0, ..., Fn) = det

(
k0F0 ... knFn
∇F0 ... ∇Fn

)
.

Example. The Jacobian of the Siegel Eisenstein series E4, E6, E10, E12 is the Siegel cusp form of weight
35. Check this with

m = ParamodularForms(1)

C = -589927441461779261030400000/2354734631251

jacobian([m.eisenstein_series(k, 7) for k in [4, 6, 10, 12]]) / C

(We divide at the end to remove the funny multiple from the Fourier coefficients.)

4.4.2 Linear relations

The method omf rank(X) determines the dimension of the space spanned by the list of orthogonal modular
forms X. (Warning: we only check the rank using the known coefficients! This does not use any sort of
Sturm bound so it cannot prove that a given set of modular forms does not have full rank!)

The method omf relations(X) determines the linear relations satisfied by the list of orthogonal modular
forms X. (A similar warning applies here; we only check that the relations hold among all known coefficients.)

Example. We check that the square of the Siegel Eisenstein series of weight 4 equals the Siegel Eisenstein
series of weight 8.
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m = ParamodularForms(1)

e4 = m.eisenstein_series(4, 5)

e8 = m.eisenstein_series(8, 5)

omf_relations([e4 * e4, e8])

4.4.3 Maass relations

The method f.is lift() tests whether the given orthogonal modular form f satisfies the Maass relations, i.e.
whether it is a lift.

Example. Test whether the Borcherds product of weight 9 associated to the Gram matrix ( 2 1
1 2 ) satisfies

the Maass relations:

m = OrthogonalModularForms(matrix([[2, 1], [1, 2]]))

X = m.borcherds_input_Qbasis(1/3, 15)[0]

X.borcherds_lift().is_lift()

4.4.4 Siegel Phi operator

The Siegel Phi operator is a linear map

Φ : Mk(ΓL)→Mk, Φf(τ) := lim
w→i∞

f(τ, 0, w).

(In other words Φf is the constant term of f ’s Fourier–Jacobi expansion.) This is given by the method f.phi().

Note: the result is implemented as an orthogonal modular form of weight k/2 for the Lorentzian lattice
Z with generator of norm −1 (see the next chapter). This corresponds to weight k for Mp2(Z).

4.4.5 Witt operator

The Wiitt operator is a linear map

W : Mk(ΓL)→Mk(Mp2(Z)×Mp2(Z)), Wf(τ, w) := f(τ, 0, w).

(In other words we evaluate all terms in f ’s Fourier–Jacobi expansion at z = 0.) This is given by the method
f.witt().

Note: the result is implemented as an orthogonal modular form for the Lorentzian lattice Z2 with
quadratic form Q(x, y) = x(y − x).

5 Modular forms on orthogonal groups II

In this chapter we compute with orthogonal modular forms attached to more general lattices of the form
L + II1,1(N), where II1,1(N) is the hyperbolic plane rescaled by N (i.e. the plane Z2 with quadratic form
(x, y) 7→ Nxy) and where L is a Lorentzian lattice i.e. of signature (l− 1, 1). Construct an OrthogonalMod-
ularForms instance as follows:

(1) If N = 1, then

OrthogonalModularForms(S)

where S is a Gram matrix for the Lorentzian part L, or

OrthogonalModularForms(w)
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where w is a WeilRep instance for a Lorentzian quadratic form.

(2) For general N , call

OrthogonalModularForms(w + II(N))

where w is the WeilRep for the Lorentzian part L.

Warning: for most applications we need to fix a generator of the negative cone attached to L. The
program always tries to choose the vector (1, 0..., 0). In other words the Gram matrix S must always have a
strictly negative upper-left entry ; otherwise many things do not work! (In earlier versions we used the vector
(0, ..., 0, 1) and considered the bottom-right entry!)

5.1 Construction of modular forms

Suppose m = OrthogonalModularForms(w) is an orthogonal modular forms instance where w is Lorentzian
or of the form w0 + II(N) where w0 is Lorentzian.

5.1.1 Eisenstein series

The method

m.eisenstein_series(k, prec)

computes the Fourier series of the Eisenstein series of weight k to precision prec.

5.1.2 Additive theta lifts

The additive theta lift of a modular form f of weight 1 + k − n/2 is implemented with the method

f.theta_lift()

The result is an orthogonal modular form of weight k.

A basis of the space of cuspidal theta lifts can be computed using the method

m.lifts_basis(k, prec)

where k is the desired weight and prec is the precision to which the Fourier series is computed.

5.1.3 Borcherds lift

Suppose f is a nearly-holomorphic modular form of weight 1 − n/2 with integral Fourier coefficients. The
Borcherds product constructed from f is implemented with the method

f.borcherds_lift()

To compute Hilbert bases of input functions into the Borcherds lift, use the commands

m.borcherds_input_basis(pole_order, prec)

and

m.borcherds_input_Qbasis(pole_order, prec)
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exactly as in section 4.3.2. (Generally the Qbasis is much faster.) Finding all products of a given weight
is not (yet?) implemented.

Example. Suppose L = II1,1. The lift of j(τ)− 744 is the modular function j(τ1)− j(τ2). To check this,
input:

j = OrthogonalModularForms(II(1)).borcherds_input_basis(1, 10)[1]

j.borcherds_lift()

Example. The lattice A1(2)+2U(2) admits 10 products of singular weight 1 (cf. [14]). We can compute
them as follows. (Warning: this computation is slow; just under 40 seconds on my computer)

w = WeilRep(matrix([[4]]))

m = OrthogonalModularForms(w + II(2) + II(2))

X = m.borcherds_input_basis(1/8, 15)

for x in X:

print(x.principal_part())

print(x.borcherds_lift())

print(’-’ * 80)

This yields the 10 genus two theta constants.

5.2 Other functions

The functions jacobian(), omf rank(), omf relations() from section 4 can also be applied to the more general
orthogonal modular forms considered here. The Siegel Phi and Witt operators can be applied to orthogonal
modular forms for lattices constructed from WeilReps of the form w+II(n1)+II(n2) with w positive-definite.

5.3 Special modular forms

5.3.1 Hilbert modular forms

Hilbert modular forms for real-quadratic number fields can be identified with certain orthogonal modular
forms for subgroups of O(2, 2).

IfK is a real-quadratic number field then HMF(K) represents orthogonal modular forms for the (lorentzian)
lattice of integers of K, which are essentially the same as Hilbert modular forms. Modular forms attached
to HMF are represented as power series of the form

f(τ1, τ2) =
∑
ν

c(ν)qν1 q
ν′

2 ,

where qn = e2πiτn and where ν runs through totally-nonnegative elements of the dual lattice O#
K i.e. ν, ν′ ≥ 0

where ν′ is the conjugate. As an example, for Hilbert modular forms over Q(
√

5):

x = var(’x’)

K.<sqrt5> = NumberField(x^2 - 5)

h = HMF(K)

Some congruence subgroups are implemented using

h = HMF(K, level)

where level is a natural number.
Given a HilbertModularForm f on the full modular group you can compute its character by

f.character()
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Fourier coefficients of f can be extracted using

f[a]

where a ∈ O#
K (or more generally in K, for Hilbert modular forms with characters)

The constructions of orthogonal modular forms from section 5 all apply here.

5.3.2 Siegel modular forms and Paramodular forms

For N ∈ N, ParamodularForms(N) represents orthogonal modular forms on A1(N) + II2,2. These have an
interpretation as paramodular forms.

These are represented as orthogonal modular forms in the usual sense. The only extra feature is that
their coefficients of f can be extracted using

f[A]

where, if f has trivial character then A is a symmetric half-integral matrix i.e. it has integral diagonal and
half-integral off-diagonal entries. (If f has a character then the exponents A may be more general.)

5.3.3 Hermitian modular forms

Hermitian modular forms of degree two can be identified with certain orthogonal modular forms for subgroups
of O(4, 2).

Suppose K is an imaginary-quadratic number field. HermitianModularForms(K) represents orthogonal
modular forms for the (positive-definite) lattice of integers OK of K. More generally

HermitianModularForms(K, level = N)

represents orthogonal modular forms for the lattice OK ⊕U(N)⊕U where U = II1,1. These are represented
as power series of the form

f
(

( τ z1
z2 w )

)
=
∑
A

c(A)qarb1r
b
2s
c,

where q = e2πiτ , ri = e2πizi , s = e2πiw, and where

A =
(
a b
b c

)
runs through Hermitian half-integral matrices with values in K. The Fourier coefficients of f can be extracted
with

f[A]

where A is a matrix.
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