
POINCARÉ SQUARE SERIES OF SMALL WEIGHT

BRANDON WILLIAMS

Abstract. We extend the author’s earlier computation and give coefficient formulas for the (quasimodular)

Poincaré square series of weight 3/2 and weight 2 for the dual Weil representation for an even lattice. These

formulas can be used to compute Borcherds products for orthogonal groups of type O(2, 1) and O(2, 2).
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1. Introduction

Let ρ∗ denote the dual Weil representation for an even lattice Λ of signature (b+, b−) with quadratic form

q; that is, the dual of the unitary representation of the metaplectic group Γ̃ = Mp2(Z) which encodes the
transformation behavior of theta series. We assume that 2k + b+ − b− ≡ 0 (mod 4). In [18] the author gave
formulas for a family of modular forms Qk,m,β ∈ Mk(ρ∗) with rational coefficients with the property that
Qk,m,β −Ek span all cusp forms (where Ek is the Eisenstein series) and which are characterized through the
Petersson scalar product by

(f,Qk,m,β − Ek) = 2
Γ(k − 1)

(4mπ)k−1

∞∑
λ=1

c(mλ2, λβ)

λ2k−2
, f(τ) =

∑
γ∈A

∑
n∈Z−q(γ)

c(n, γ) ∈ Sk(ρ∗).

This construction is valid in weights k ≥ 5/2; and for weight k ≥ 3, Qk,m,β is just the zero-value of a Jacobi
Eisenstein series for an appropriate generalization of ρ∗.

The purpose of this note is to extend this construction to weights k = 3/2 and k = 2. Convergence issues
make these cases more difficult. One immediate problem is that the Eisenstein series may fail to define a
modular form; in fact, it is not hard to find lattices where Mk(ρ∗) = 0. For example, the space of scalar-
valued modular forms of weight 2 is zero. These weights remain relevant to the problem that motivated
[18] of computing spaces of obstructions for the existence of Borcherds products. Modular forms of weight
k = 3/2 resp. k = 2 are obstructions to the existence of Borcherds products on Grassmannians G(2, 1) (which
includes scalar modular forms) resp. G(2, 2) (which includes Hilbert modular forms) as explained in [3]. The
construction can be summarized as follows:

Proposition 1. (i) In weight k = 3/2, there are modular forms Qk,m,β ∈ Mk(ρ∗) with rational coefficients
and the property that

(f,Qk,m,β) = 2
Γ(k − 1)

(4mπ)k−1

∞∑
λ=1

c(mλ2, λβ)

λ2k+s−2

∣∣∣
s=0

for all cusp forms f .
(ii) In weight k = 2, there are quasimodular forms Qk,m,β with rational coefficients such that Qk,m,β −Ek is
a cusp form satisfying

(f,Qk,m,β − Ek) = 2
Γ(k − 1)

(4mπ)k−1

∞∑
λ=1

c(mλ2, λβ)

λ2k+s−2

∣∣∣
s=0

for all cusp forms f .

Here the notation |s=0 may be understood as taking the value of an analytic continuation at s = 0,
regardless of whether the series above actually converge at s = 0.
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The failure of the Jacobi Eisenstein series of weight k ≤ 5/2 to define a Jacobi form is closely related to
the failure of the usual Eisenstein series of weight k − 1/2 to define a modular form. In particular, k = 2
is the most difficult weight to treat because Eisenstein series of weight 3/2 are often mock theta functions

that require a real-analytic correction term to transform correctly under Γ̃.

Even in the cases where there are no cusp forms, the computation of Qk,m,β may be interesting; for
example, in the simplest case where Λ is unimodular and m = 1, the equation Q2,1,0 = E2 is equivalent to
the Kronecker-Hurwitz class number relation

∞∑
r=−∞

H(4n− r2) = 2σ1(n)−
∑
d|n

min(d, n/d) =
∑
d|n

max(d, n/d).

Acknowledgements: I am grateful to Richard Borcherds for helpful discussions.
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2. Notation and background

We abbreviate e2πix by e(x).

Λ is an even lattice with nondegenerate quadratic form q of signature (b+, b−) and dimension e = b+ +b−.
The corresponding discriminant form is Λ′/Λ with group ring C[Λ′/Λ]. The natural basis of C[Λ′/Λ] is
denoted eγ , γ ∈ Λ′/Λ, and 〈−,−〉 is the scalar product〈 ∑

γ∈Λ′/Λ

aγeγ ,
∑

γ∈Λ′/Λ

bγeγ

〉
=

∑
γ∈Λ′/Λ

aγbγ .

We write dγ and dβ to denote the denominator, or level, of γ, β ∈ Λ′/Λ; these are the smallest natural
numbers such that

dγ · γ, dβ · β ∈ Λ.

We denote by Γ̃ = Mp2(Z) the metaplectic group, which is the double cover of SL2(Z) consisting of pairs

(M,φ), with M =

(
a b
c d

)
∈ SL2(Z) and a branch φ of the square root of cτ + d on the upper half-plane

H. The square root φ is almost always omitted from notation. Recall that Γ̃ is generated by the elements

S =
((

0 −1
1 0

)
,
√
τ
)

and T =
((

1 1
0 1

)
, 1
)

with defining relations S8 = I and S2 = (ST )3.

The Weil representation is the map

ρ : Γ̃ −→ AutC[Λ′/Λ],

ρ(T )eγ = e
(
q(γ)

)
eγ , ρ(S)eγ =

e((b− − b+)/8)√
|Λ′/Λ|

∑
β∈Λ′/Λ

e
(
− 〈γ, β〉

)
eβ ,
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with unitary dual ρ∗.

H denotes the Heisenberg group. The underlying set is H = Z3, and the group operation is

(λ1, µ1, t1) · (λ2, µ2, t2) = (λ1 + λ2, µ1 + µ2, t1 + t2 + λ1µ2 − λ2µ1).

For any β ∈ Λ′/Λ, we define a finite analogue of the classical Schrödinger representation by

σβ : H −→ AutC[Λ′/Λ], σβ(λ, µ, t)eγ = e
(
µ〈β, γ〉+ (t− λµ)q(β)

)
eγ−λβ .

The Jacobi group is the semidirect product J = Ho Γ̃ by the action

(λ, µ, t) ·
(
a b
c d

)
= (aλ+ cµ, bλ+ dµ, t),

and for β ∈ Λ′/Λ we denote by ρβ the representation

ρβ : J −→ AutC[Λ′/Λ]

that restricts to ρ on Γ̃ and to σβ on H. (See section 3 of [18].)

The weight-k action of Γ̃ on holomorphic functions

f : H = {τ = x+ iy : y > 0} −→ C
is written using the Petersson slash operator:

f
∣∣∣
k,ρ∗

M(τ) = (cτ + d)−kρ∗(M)−1f
(aτ + b

cτ + d

)
, M =

(
a b
c d

)
∈ Γ̃,

and a modular form of weight k for ρ∗ is a holomorphic function f satisfying f |k,ρ∗M = f for all M ∈ Γ̃ and
the usual growth condition at ∞. We denote by Mk(ρ∗) the space of weight-k modular forms and by Sk(ρ∗)
the space of weight-k cusp forms, which are modular forms that vanish in ∞.

Both Mk(ρ∗) and Sk(ρ∗) are always finite-dimensional. In weight k > 2 the dimensions of Mk(ρ∗) and
Sk(ρ∗) can be computed effeciently through the Riemann-Roch theorem. This tends to fail in weight k ≤ 2,
where most formulas instead produce expressions for the “Euler characteristic” dimMk(ρ∗) − dimS2−k(ρ).
On the other hand, Ehlen and Skoruppa [9] have described an algorithm that computes dimensions in weight
k = 2 and k = 3/2 that in practice seems quite efficient, relying on the known structure for M0(ρ∗) (which
consists of constant Weil invariants) and M1/2(ρ∗) (where the components are theta series and related old-
forms by the Serre-Stark theorem [15]) which was computed more precisely in [17]).

Similarly, for β ∈ Λ′/Λ and m ∈ Z − q(β), the weight-k and index-m action of the Jacobi group J on
holomorphic functions f(τ, z) (where τ ∈ H and z ∈ C) is

f
∣∣∣
k,m,ρ∗β

(ζ,M)(τ, z)

= (cτ + d)−ke
(
mλ2τ + 2mλz +m(λµ+ t)− cm(z + λτ + µ)2

cτ + d

)
ρ∗β(ζ,M)−1f

(aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
,

for M =

(
a b
c d

)
∈ Γ̃ and ζ = (λ, µ, t) ∈ H, and we define Jacobi forms of weight k and index m for ρ∗β to be

holomorphic functions f satisfying f |k,m,ρ∗β (ζ,M) = f for all (ζ,M) ∈ J and satisfying a growth condition

at ∞: the Fourier coefficient of qnζreγ must be 0 unless r2 ≤ 4mn. Here, q = e(τ) and ζ = e(z).

In weight k ≥ 3, the basic example of a Jacobi form is the Jacobi Eisenstein series

Ek,m,β(τ, z) =
∑

(ζ,M)∈J∞\J

e0

∣∣∣
k,m,ρ∗β

(ζ,M).

(We interpret e0 as a constant function of τ and z.) Here, J∞ is the subgroup of J that fixes e0: it is
generated by S2 and T and by the elements of H of the form (0, µ, t), µ, t ∈ Z. A formula for the Fourier
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coefficients of Ek,m,β(τ, z) is given in [18]. The expressions for the Fourier coefficients there make sense for
k ∈ {3/2, 2, 5/2} as well, but the result is usually not a Jacobi form; we also denote this series by Ek,m,β .

At several points throughout this note we will consider the integral

I(k, y, ω, s) = y1−k−se2πωy

∫ ∞
−∞

(t+ i)−k(t2 + 1)−se(−ωyt) dt

and a Dirichlet series L̃(n, r, γ, s) which are defined in section 3.

3. The real-analytic Jacobi Eisenstein series

Fix an even lattice Λ, an element β ∈ Λ′/Λ and a positive number m ∈ Z− q(β).

Definition 2. The real-analytic Jacobi Eisenstein series of weight k and index m twisted at β is

E∗k,m,β(τ, z, s) =
ys

2

∑
c,d

∑
λ∈Z

(cτ + d)−k|cτ + d|−2se
(
mλ2(M · τ) +

2mλz − cmz2

cτ + d

)
ρ∗(M)−1eλβ .

Here, c, d runs through all pairs of coprime integers, and M =

(
a b
c d

)
∈ Γ̃ is any element with bottom row

(c, d). This series converges locally uniformly for Re[s] > 3−k
2 .

After writing

E∗k,m,β(τ, z, s) =
∑

(ζ,M)∈J∞\J

(yse0)
∣∣∣
k,m,ρ∗β

(ζ,M),

it is clear that E∗k,m,β(τ, z, s) transforms like a Jacobi form of weight k and index m:

E∗k,m,β

(aτ + b

cτ + d
,

z

cτ + d
, s
)

= (cτ + d)ke
( mcz2

cτ + d

)
ρ∗(M)E∗k,m,β(τ, z, s)

and

E∗k,m,β(τ, z + λτ + µ) = e
(
−mλ2τ − 2mλz −m(λµ+ t)

)
σ∗β(ζ)E∗k,m,β(τ, z, s)

for any M =

(
a b
c d

)
∈ Γ̃ and ζ = (λ, µ, t) ∈ H. This series has an analytic continuation to s ∈ C, for

which one can reduce to the continuation of the usual Eisenstein series by the same argument as [1] uses in
the scalar-valued case. (Another point of view is that the components are essentially expansions of a Jacobi
Eisenstein series for a congruence subgroup at various cusps.)

Using the argument of [18], we see that E∗k,m,β(τ, z, s) has the Fourier expansion

E∗k,m,β(τ, z, s) =
∑
λ∈Z

qmλ
2

ζ2mλeλβ +
∑

γ∈Λ′/Λ

∑
r∈Z−〈γ,β〉

∑
n∈Z−q(γ)

c′(n, r, γ, s, y)qnζreγ ,

where q = e(τ) and ζ = e(z) and the coefficient c′(n, r, γ, s, y) represents the contribution from all M ∈ Γ̃∞\Γ̃
other than the identity, given by

c′(n, r, γ, s, y) =

√
i
b−−b+−1√

2m|Λ′/Λ|
I(k − 1/2, y, n− r2/4m, s)L̃(n, r, γ, k + e/2 + 2s).

Here, I(k, y, ω, s) denotes the integral

I(k, y, ω, s) = y1−k−se2πωy

∫ ∞
−∞

(t+ i)−k(t2 + 1)−se(−ωyt) dt,

and L̃ is the L-series

L̃(n, r, γ, s) = ζ(s− e− 1)−1L(n, r, γ, s− 1),
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where

L(n, r, γ, s) =
∏

p prime

( ∞∑
ν=0

N(pν)p−νs
)
,

and N(pν) is the number of zeros (v, λ) ∈ Ze+1/pνZe+1 of the polynomial q(v + λβ − γ) +mλ2 − rλ+ n.

Remark 3. Gross and Zagier consider in [11] the integral

Vs(ω) =

∫ ∞
−∞

(t+ i)−k(t2 + 1)−se(−ωt) dt,

(notice that k in that paper represents k+1
2 here), and they show that for ω 6= 0, the completed integral

V ∗s (ω) = (π|ω|)−s−kΓ(s+ k)Vs(ω)

is an entire function of s that satisfies the functional equation

V ∗s (ω) = sgn(ω)V ∗1−k−s(ω).

Since

I(k, y, ω, s) =
ye2πωy(π|ω|)s+k

Γ(s+ k)
V ∗s (ωy),

this extends I(k, y, ω, s) meromorphically to all s ∈ C and gives the functional equation

I(k, y, ω, s) = sgn(ω)(π|ω|)2s+k−1 Γ(1− s)
Γ(s+ k)

I(k, y, ω, 1− k − s), ω 6= 0.

The integral for ω = 0 is

I(k, y, 0, s) = π(−i)k21−s(2y)1−k−sΓ(2s+ k − 1)

Γ(s)Γ(s+ k)
.

Remark 4. The local L-series

Lp(n, r, γ, s) =

∞∑
ν=0

N(pν)p−νs

that occur in L(n, r, γ, s) can be evaluated in the same way as the local L-series of [19]. Namely, for fixed
γ, β ∈ Λ′/Λ and n ∈ Z− q(γ), m ∈ Z− q(β), r ∈ Z− 〈γ, β〉, we define discriminants

D′ = d2
βd

2
γ(−1)e/2+1(4mn− r2)|Λ′/Λ|

if e is even and
D′ = 2md2

β(−1)(e+1)/2|Λ′/Λ|
if e is odd.

Define the “bad primes” to be p = 2 as well as all odd primes dividing |Λ′/Λ| or md2
β or the numerator

or denominator of (n− r2/4m)d2
βd

2
γ , and set

D = D′ ·
∏

bad p

p2, D = D′ ·
∏

bad p

p2.

If e is even, then for primes p - D,

Lp(n, r, γ, s) =

∞∑
ν=0

N(pν)p−νs =


1

1−pe−s

[
1 +

(
D
p

)
pe/2−s

]
: r2/4m− n 6= 0;

1−pe−2s

(1−pe−s)(1−p1+e−2s) : r2/4m− n = 0;

and if e is odd, then for primes p - D,

Lp(n, r, γ, s) =

∞∑
ν=0

N(pν)p−νs =


1

1−pe−s

[
1−

(
D
p

)
p(e−1)/2−s : r2/4m− n 6= 0;

1−(Dp )p(e−1)/2−s

(1−pe−s)
[

1−(Dp )p(e+1)/2−s
] : r2/4m− n = 0;
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where
(
D
p

)
,
(
D
p

)
denote the Legendre (quadratic reciprocity) symbol. This gives the meromorphic exten-

sions

L̃(n, r, γ, s) =


L(s−1−e/2,χD)
ζ(2s−2−e)

∏
bad p

1−pe+1−s

1−pe+2−2sLp(n, r, γ, s− 1) : r2/4m− n 6= 0;

ζ(2s−3−e)
ζ(2s−2−e)

∏
bad p

(1−pe+1−s)(1−pe−3−2s)
1−pe−2−2s Lp(n, r, γ, s− 1) : r2/4m− n = 0;

for even e, and

L̃(n, r, γ, s) =


1

L(s−(e+1)/2,χD)

∏
bad p

[
(1− pe+1−s)Lp(n, r, γ, s− 1)

]
: r2/4m− n 6= 0;

L(s−(e+3)/2,χD)
L(s−(e+1)/2,χD)

∏
bad p

[
(1− pe+1−s)Lp(n, r, γ, s− 1)

]
: r2/4m− n = 0;

for odd e.

Together, this gives the analytic continuation of the Fourier coefficients c′(n, r, γ, s, y) of E∗k,m,β(τ, z, s) to

s ∈ C (possibly with poles) which must be the Fourier coefficients of the continuation of E∗k,m,β(τ, z, s) away

from Re[s] > 3−k
2 .

Remark 5. We denote by Ek,m,β(τ, z) the series that results by naively evaluating the coefficient formula
of [18] at k = 3/2 or k = 2 (without the weight 5/2 correction). In the derivation of this formula it was

assumed that I(k−1/2, y, n−r2/4m, 0) = 0 for n−r2/4m ≤ 0 and that L̃(n, r, γ, s) is holomorphic at s = 0.
These assumptions are not generally satisfied when k ≤ 5/2, and Ek,m,β(τ, z) generally fails to be a Jacobi
form in those cases. (In particular, Ek,m,β(τ, 0) generally fails to be a modular form.)

4. A Petersson scalar product

Recall that the Petersson scalar product on Sk(ρ∗) is defined by

(f, g) =

∫
Γ̃\H
〈f(τ), g(τ)〉yk−2 dxdy, f, g ∈ Sk(ρ∗).

This is well-defined because cusp forms f(τ) satisfy the “trivial bound” ‖f(τ)‖ ≤ C ·y−k/2 for some constant

C (this is clear on the standard fundamental domain by continuity, and ‖f(τ)‖yk/2 is invariant under Γ̃), and

because 〈f(τ), g(τ)〉yk−2 dxdy is invariant under Γ̃. More generally, we can define (f, g) for any functions
f, g that transform like modular forms of weight k and for which the integral above makes sense. (This
includes the case that f, g ∈Mk(ρ∗) and only one of f, g is a cusp form.)

In many cases it is useful to apply the following “unfolding argument” to evaluate 〈f, g〉, which is well-
known. If g(τ) can be written in the form

g(τ) =
∑

M∈Γ̃∞\Γ̃

u
∣∣∣
k,ρ∗

M

for some function u(τ) that decays sufficiently quickly as y →∞, then for any cusp form f ,

(f, g) =

∫
Γ̃\H

∑
M∈Γ̃∞\Γ

〈f, u|k,ρ∗M〉yk−2 dxdy

=

∫ 1/2

−1/2

∫ ∞
0

〈f, u〉yk−2 dy dx.

This is because there is a unique representative of every class M ∈ Γ̃∞\Γ that maps the strip [−1/2, 1/2]×
[0,∞) to itself, “unfolding” the fundamental domain of Γ̃\H to the strip.

Example 6. Taking the Petersson scalar product with the real-analytic Eisenstein series

E∗k(τ, s) =
∑

M∈Γ̃∞\Γ̃

(yse0)
∣∣∣
k,ρ∗

M
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gives

〈f,E∗k(τ, s)〉 =

∫ ∞
0

∫ 1/2

−1/2

〈f(τ), e0〉dx︸ ︷︷ ︸
=0

yk+s−2 dy = 0

for all cusp forms f and sufficiently large Re[s] (and more generally by analytic continuation).

The more important example will be

g(τ) = E∗k,m,β(τ, 0, 0)− E∗k(τ, 0) = lim
s→0

∑
M∈Γ̃∞\Γ̃

(∑
λ6=0

yse(mλ2τ)eλβ

)∣∣∣
k,ρ∗

M.

Lemma 7. For any cusp form f(τ) =
∑
γ∈Λ′/Λ

∑
n∈Z−q(γ) c(n, γ)qneγ ,

(f, g) = 2
Γ(k − 1)

(4πm)k−1

∞∑
λ=1

c(mλ2, λβ)

λ2k+s−2

∣∣∣
s=0

.

Proof. If Re[s] is large enough to guarantee that all series involved converge absolutely and locally uniformly,
then the unfolding argument gives

(f,E∗k,m,β(τ, 0, s)− E∗k(τ, s)) =
∑
λ 6=0

∫ 1/2

−1/2

∫ ∞
0

〈f(τ), e(mλ2τ)eλβ〉yk+s−2 dy dx

= 2 ·
∞∑
λ=1

c(mλ2, λβ)

∫ ∞
0

e−4πmλ2yyk+s−2 dy

= 2 · Γ(k + s− 1)

∞∑
λ=1

c(mλ2, λβ)

(4πmλ2)k+s−1
.

Series of the form
∑∞
λ=1

c(mλ2,λβ)
λs are closely related to symmetric square L-functions (see for example [16])

and have analytic continuations, for which one can reduce to the scalar case because the components of f
are cusp forms of higher level. We take analytic continuations of both sides to s = 0. �

Remark 8. For k ≥ 5/2, a simple Möbius inversion argument was used in [18] to show that if a cusp form

f(τ) =
∑
n,γ c(n, γ)qneγ satisfies

∑∞
λ=1

c(mλ2,λβ)
(4πmλ2)k−1 = 0 for all β ∈ Λ′/Λ and m ∈ Z − q(β), m > 0, then

f = 0 identically. In weight k = 2 one can use Deligne’s bound c(n, γ) = O(n1/2+ε), which implies that
s = 0 is on the boundary of the region of absolute convergence, and apply essentially the same argument:
taking the limit s→ 0 in the Möbius inversion argument gives the same result. On the other hand, in weight
k = 3/2 this argument would require switching the order of a limit process and an analytic continuation,
which seems difficult to justify (although in practice both procedures seem to give the same result).

In the following sections, we will construct modular forms Q3/2,m,β(τ) ∈ M3/2(ρ∗) resp. cusp forms
Q2,m,β − E2 ∈M2(ρ∗) with rational coefficients that satisfy

(f,Qk,m,β) = 2Γ(k − 1) ·
∞∑
λ=1

c(mλ2, λβ)

(4πmλ2)k+s−1

∣∣∣
s=0

.

For the above reason, the proof of [18] that such forms contain Sk(ρ∗) within their span is not rigorous when
k = 3/2 although the author is not aware of any examples where this fails.

5. Weight 3/2

Proposition 9. The value E∗3/2,m,β(τ, z, 0) at s = 0 is a holomorphic Jacobi form of weight 3/2. It differs

from the result E3/2,m,β(τ, z) of the coefficient formula of [18] naively evaluated at k = 3/2 by a weight 1/2
theta series.
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Proof. The L-series term is

L̃(n, r, γ, 3/2 + e/2 + 2s) =


1

L(2s,χD)

∏
bad p(1− pe/2−1−2s)Lp(n, r, γ, 1/2 + e/2 + 2s) : n− r2/4m 6= 0;

L(2s,χD)
L(1+2s,χD)

∏
bad p(1− pe/2−1−2s)Lp(n, r, γ, 1/2 + e/2 + 2s) : n− r2/4m = 0.

This is holomorphic in s = 0 because the Dirichlet L-series L(s, χD) never has a pole at s = 0 or a zero at
s = 1 and because the local L-factors Lp(n, r, γ, 1/2 + e/2 + 2s) are rational functions of s with finitely many
poles, while the dimension e can be made arbitrarily large without changing the underlying discriminant
form (and therefore the value of L̃). Note that Lp(n, r, γ, 1/2 + e/2 + 2s) may have a simple pole at 0 if

e = 2, but this is canceled by the factor 1− pe/2−1−2s; in this case, we will write

(1− pe/2−1)Lp(n, r, γ, 1/2 + e/2) = lim
s→0

(1− pe/2−1−2s)Lp(n, r, γ, 1/2 + e/2 + 2s)

by abuse of notation.

Despite this, the coefficient formula [18] still requires a correction because the zero-value I(1, y, 0, 0) = −πi
is nonzero. This is easiest to calculate as a Cauchy principal value:

I(1, y, 0, 0) = lim
s→0

∫ ∞
−∞

(t+ i)−1(t2 + 1)−s dt = PV
[ ∫ ∞
−∞

(t+ i)−1
]

= −πi.

The corrected series

E∗3/2,m,β(τ, z, 0) = E3/2(τ, z)− πi
√
i
b−−b+−1√

2m|Λ′/Λ|

∑
r2=4mn

L̃(n, r, γ, 3/2 + e/2)qnζr

= E3/2(τ, z)− π (−1)(1+b−−b+)/4√
2m|Λ′/Λ|

∑
r2=4mn

L̃(n, r, γ, 3/2 + e/2)qnζr

is holomorphic in τ and therefore defines a Jacobi form. �

Remark 10. The exponent (n, r) = (0, 0) occurs in this correction term and therefore E∗3/2,m,β(τ, z, 0) will

generally not have constant term 1 · e0 and may even vanish identically. This is not surprising because there
are many cases where no nonzero Jacobi forms of weight 3/2 exist at all.

Definition 11. We define Q3/2,m,β(τ) = E∗3/2,m,β(τ, 0, 0). In particular, this differs from the computation

of [18] by a weight 1/2 theta series.

These series produce modular forms which represent the functional through the Petersson inner product as
claimed in proposition 1. There is a unique cusp form that represents the same functional, and its difference
with Q3/2,m,β will lie in the Eisenstein subspace, but this subspace is more difficult to describe in weight
3/2; in particular, the difference will almost never be the Eisenstein series E3/2(τ) of [19] (which is often not
a modular form at all).

Example 12. Let Λ = Z3 with quadratic form q(x, y, z) = 2xz + y2; then M3/2(ρ∗) is one-dimensional,
spanned by

Q3/2,1,0(τ) =
(1

2
+ 3q + 6q2 + 4q3 + ...

)
(e(0,0,0) − e(0,0,1/2) − e(1/2,0,0))

+
(

4q3/4 + 12q11/4 + ...
)

(e(0,1/2,0) − e(0,1/2,1/2) − e(1/2,1/2,0))

+
(
− 6q1/2 − 12q3/2 − 12q5/2 − ...

)
e(1/2,0,1/2)

+
(
− 3q1/4 − 12q3/4 − 15q9/4 − ...

)
e(1/2,1/2,1/2),

with constant term 1
2e(0,0,0) − 1

2e(0,0,1/2) − 1
2e(1/2,0,0). Unlike the case of weight k ≥ 5/2, there is no way

to produce a modular form with constant term 1 · e0. (Following [3], the theta series in M1/2(ρ) act as
obstructions to producing modular forms in M3/2(ρ∗) with arbitrary constant term.)
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6. Weight 2

The value E∗2,m,β(τ, z, 0) at s = 0 is not generally holomorphic:

Proposition 13. There are constants A(n, r, γ), γ ∈ Λ′/Λ, n ∈ Z− q(γ), r ∈ Z− 〈γ, β〉 given by

A(n, r, γ) =
48(−1)(4+b+−b−)/4√

m · |Λ′/Λ|

∏
bad p

1− pe/2−1

1 + p−1
Lp(n, r, γ, 1 + e/2)×

{
1 : r2 6= 4mn;

1/2 : r2 = 4mn

such that

E∗2 (τ, z, 0) = E2(τ, z) +
1
√
y

∑
γ∈Λ′/Λ

∑
n∈Z−q(γ)

∑
r∈Z−〈γ,β〉

A(n, r, γ)β(πy(r2/m− 4n))qnζreγ .

Here, β(x) is a sort of incomplete Gamma function:

β(x) =
1

16π

∫ ∞
1

u−3/2e−xu du,

and we abuse notation and write (1−pe/2−1)Lp(n, r, γ, 1+e/2) = lims→0(1−pe/2−1−s)Lp(n, r, γ, 1+e/2+s)
in the cases where Lp has a simple pole at 1 + e/2.

Proof. In weight k = 2, the L-series term is

L̃(n, r, γ, 2 + e/2 + 2s) =


L(2s+1,χD)
ζ(4s+2)

∏
bad p

1−pe/2−1−2s

1−pe/2−2s Lp(n, r, γ, 1 + e/2 + 2s) : n− r2/4m 6= 0;

ζ(4s+1)
ζ(4s+2)

∏
bad p

(1−pe/2−1−2s)(1−p−1−4s)
1−p−2−4s Lp(n, r, γ, 1 + e/2 + 2s) : n− r2/4m = 0.

Here, D denotes the discriminant

D = (r2 − 4mn)|Λ′/Λ|d2
βd

2
γ

∏
bad p

p2.

This L-series has a pole in s = 0 when n− r2/4m = 0 or when D is a square, and in these cases the residue
at s = 0 is

Res
(
L̃(n, r, γ, 2 + e/2 + 2s), s = 0

)
=

3

π2

[ ∏
bad p

1− pe/2−1

1 + p−1
Lp(n, r, γ, 1 + e/2)

]
×

{
1 : n− r2/4m 6= 0;

1/2 : n− r2/4m = 0.

The pole of L̃ cancels with the zero of I(3/2, y, n− r2/4m, s) at s = 0, whose derivative there is

d

ds

∣∣∣
s=0

I(3/2, y, n− r2/4m, s) = −16π2(1 + i)y−1/2β(π|4n− r2/m|y).

(This is essentially the same computation that arises when studying the weight 3/2 Eisenstein series in
[19]). �

In particular, E∗2 (τ, 0, 0) is generally far from being a holomorphic modular form. Instead, we define a
family of cusp forms Q∗2,m,β(τ, s) ∈ S2(ρ∗) by taking the orthogonal projection of E∗2,m,β(τ, 0, s) − E∗2 (τ, s)

to S2(ρ∗) with respect to the Petersson scalar product, i.e. by holomorphic projection of the zero-values of
E∗2,m,β(τ, 0, s). Explicitly, if e1, ..., en are an orthonormal basis of weight-2 cusp forms then

Q∗2,m,β(τ, s) =

n∑
j=1

(
E∗2,m,β(τ, 0, s)− E∗2 (τ, s), ej(τ)

)
· ej(τ).

From the definition it is clear that for large enough Re[s], Q∗2,m,β(τ, s) is the cusp form satisfying

(f,Q∗2,m,β(τ, s)) = (f,E∗2,m,β(τ, 0, s)− E∗2 (τ, s)) = 2 · Γ(1 + s)

∞∑
λ=1

c(mλ2, λβ)

(4πmλ2)1+s

for any cusp form f(τ) =
∑
n,γ c(n, γ)qneγ .
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Remark 14. For any β ∈ Λ′/Λ and m ∈ Z− q(β), m > 0, the Poincaré series of weight 2 is defined by

P2,m,β(τ) =
∑

M∈Γ̃∞\Γ̃

(
e(mτ)eβ

)∣∣∣
2,ρ∗

M =
1

2

∑
c,d

(cτ + d)−2e
(
m(M · τ)

)
ρ∗(M)−1eβ ,

where c, d runs through all pairs of coprime integers and M ∈ Γ̃ is any element with bottom row (c, d). This
series does not converge absolutely, but as shown in [13],

lim
s→0

∑
M∈Γ̃∞\Γ̃

(
yse(mτ)eβ

)∣∣∣
2,ρ∗

M

is holomorphic in τ and therefore P2,m,β(τ) defines a cusp form. The unfolding argument characterizes
P2,m,β by

(f, P2,m,β) =
c(m,β)

4πm
for any cusp form f(τ) =

∑
n,γ

c(n, γ)qneγ

as usual.

Remark 15. WritingQ∗2,m,β(τ, s) =
∑
γ∈Λ′/Λ

∑
n∈Z−q(γ) b(n, γ, s)q

neγ , the fact thatQ∗2,m,β(τ, s)−E∗k,m,β(τ, 0, s)

is orthogonal to all Poincaré series implies that

b(n, γ, s)

4πn
=
(
Q∗2,m,β(τ, s), P2,n,γ

)
=
(
E∗2,m,β(τ, 0, s), P2,n,γ

)
=

∫ ∞
0

c(n, γ, y, s)e−4πnyys dy,

where c(n, γ, y, s) is the coefficient of qneγ in E∗2,m,β(τ, 0, s).

Definition 16. The Poincaré square series of weight 2 is the quasimodular form

Q2,m,β(τ) = E2(τ) +Q∗2,m,β(τ, 0).

It follows from the above remarks that Q2,m,β(τ) differs from the computation of [18] as follows: we can
write

Q2,m,β(τ) = E2(τ, 0) +
∑

γ∈Λ′/Λ

∑
n∈Z−q(γ)
n>0

b(n, γ)qneγ ,

with coefficients that are determined by

b(n, γ)

4πn
= lim
s→0

∫ ∞
0

c(n, γ, y, s)e−4πnyys dy

=
∑

r∈Z−〈γ,β〉

A(n, r, γ)

∫ ∞
0

e−4πnyβ(πy(r2/m− 4n))y−1/2 dy

=
1

16π

∑
r

A(n, r, γ)

∫ ∞
0

∫ ∞
1

u−3/2y−1/2e4πny(u−1)−πr2yu/m dudy

=
1

16π

∑
r

A(n, r, γ)

∫ ∞
1

u−3/2
(

(r2/m− 4n)u+ 4n
)−1/2

du

=
1

32πn
√
m

∑
r

A(n, r, γ)
(
|r| −

√
r2 − 4mn

)
,

i.e.

b(n, γ) =
1

8
√
m

∑
r∈Z−〈γ,β〉

A(n, r, γ)
(
|r| −

√
r2 − 4mn

)
.

When |Λ′/Λ| is square, it turns out that for fixed n and γ, the sum above is finite and can be calculated
directly. Otherwise, this tends to be a truly infinite series and we will need some preparation to prove that
b(n, γ) are rational and to evaluate them with a finite computation.
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7. A Pell-type equation

The condition
D = d2

βd
2
γ(r2 − 4mn)|Λ′/Λ|

∏
bad p

p2 = �

is equivalent to requiring (a, b) = dγdβ(
√
|Λ′/Λ|(r2 − 4mn), r) to occur as an integer solution of the Pell-type

equation
a2 − |Λ′/Λ|b2 = −4|Λ′/Λ|(d2

βm)(d2
γn)

satisfying the congruence b ≡ dβdγ〈γ, β〉 mod dγdβZ. We will study such equations in general.

Definition 17. A Pell-type problem is a problem of the form

find all integer solutions (a, b) of a2 −Db2 = −4CD

for some C,D ∈ N.

The behavior of solutions is quite different depending on whether or not D is square. If D is a square,
then the equation can be factored as

(a−
√
Db)(a+

√
Db) = a2 −Db2 = −4CD,

from which it follows that there are only finitely many solutions and all are bounded by |a|,
√
D|b| ≤ CD+1.

Assume from now on that D is nonsquare. In this case, the solutions of the Pell-type problem are closely
related to the solutions of the true Pell equation

a2 −Db2 = 1.

It follows from Dirichlet’s unit theorem that there are infinitely many solutions (a, b) of the Pell equation
and all have the form

a+
√
Db = ±εn0 , n ∈ Z,

where ε0 ∈ Z[
√
D] is the fundamental solution ε0 = a +

√
Db, which is the minimal solution satisfying

ε0 > 1. The problem of determining ε0 is well-studied; see for example [12] for an overview.

Lemma 18. Assume that D is squarefree and let K = Q(
√
D) with ring of integers OK . Then the solutions

(a, b) of the Pell-type equation a2 −Db2 = −4CD are in bijection with elements µ ∈ OK having norm C.

Proof. Let (a, b) be any solution of the Pell-type equation and define µ = a+
√
Db

2
√
D
. This is an algebraic integer

because its trace µ + µ = b and norm µµ = C are both integers. Conversely, given any algebraic integer
µ ∈ OK of norm C, we can define (a, b) by a+

√
Db = 2

√
Dµ. �

Lemma 19. Assume that D is squarefree. Then there are finitely many elements µ1, ..., µn ∈ OK , all
satisfying 0 ≤ TrK/Q(µi) ≤ 2

√
Cε1, such that{

µ ∈ OK : NK/Q(µ) = C
}

=

n⋃
i=1

µi · O×,1K .

Here, ε1 is the fundamental solution to NK/Q(ε1) = 1. In other words ε1 is either the fundamental unit
or its square if the fundamental unit has norm −1. Also,

O×,1K = {ε ∈ O×K : NK/Q(ε) = 1}.

Proof. Suppose µ is any solution of NK/Q(µ) = C, and choose n ∈ Z such that

| log(εn1µ)− log(
√
C)|

is minimal. Then it follows that

| log(εn1µ)− log(
√
C)| ≤ 1

2
log(ε1).

In particular, εn1µ ≤
√
Cε1 and ε−n1 µ−1 ≤

√
ε1/C. It follows that∣∣∣TrK/Q(εn1µ)
∣∣∣ =

∣∣∣εn1 + Cε−n1 µ−1
∣∣∣ ≤ 2

√
Cε1.
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By replacing µ by −µ we may assume that TrK/Q(εn1µ) ≥ 0.

In particular, µ lies in the same O×,1K -orbit as a root of one of finitely many polynomials X2 + λX + C
with 0 ≤ λ ≤ b2

√
Cε1c, which also shows that there are finitely many orbits. �

Example 20. Consider the Pell-type equation a2 − 33b2 = −528 with D = 33 and C = 4. There are three
orbits of elements µ ∈ OK = Z[(1 +

√
33)/2] with norm 4, represented by

µ = 2, µ =
7±
√

33

2
,

having traces 4 and 7. The bound in this case is 2
√
Cε1 ≈ 28. Note that elements µ that are conjugate by

Gal(K/Q) result in the same solutions to the Pell equation.

Remark 21. Let b0, n ∈ N. Reducing modulo n shows that the set of solutions (a, b) to

a2 −Db2 = −4CD, b ≡ b0 mod n

is also in bijection via (a, b) 7→ µ = a+
√
Db

2
√
D

to a union of finitely many orbits (possibly none):

n⋃
i=1

µi · 〈εµi〉,

where the “congruent fundamental solution” εµi is the minimal power of the fundamental solution ε1 such
that TrK/Q(µi(1− εµi)) ≡ 0 (mod n).

When D is not squarefree, we can pull out the largest square factor of D to reduce the equation

a2 −Db2 = −4CD

to a squarefree Pell-type equation with congruence condition.

Lemma 22. Fix γ ∈ Λ′/Λ and n ∈ Z− q(γ), n > 0. Then the value of

A(n, r, γ)×

{
1 : r2 6= 4mn;

2 : r2 = 4mn;

depends only on the orbit of dγdβ
√
|Λ′/Λ|(r +

√
r2 − 4mn) as a solution of the Pell-type equation

a2 −Db2 = −4CD, D = |Λ′/Λ|, C = d2
βd

2
γmn,

with congruence condition b ≡ dβdγ〈γ, β〉 mod dγdβZ.

Proof. Assume first that β = 0 and abbreviate D = |Λ′/Λ|. Multiplying r +
√
r2 − 4mn by the congruent

fundamental solution ε = a+ b
√
D replaces r by

r
ε+ ε−1

2
+
√
r2 − 4mn

ε− ε−1

2
= ar + b

√
D(r2 − 4mn),

and r2 − 4mn by

(r2 − 4mn) + 2Db2(r2 − 4mn) + 4mnDb2 + 2abr
√
D(r2 − 4mn),

which is congruent to r2 − 4mn modulo the largest modulus whose square divides D.

Since β = 0, it follows that E∗2,m,β(τ, z, s) arises from a weight-3/2 real-analytic Maass form (here the

Eisenstein series E∗3/2(τ, s)) for the quadratic form q̃(v, λ) = q(v) +mλ2 through the theta decomposition; in

other words, the coefficient of qnζreγ in E∗2,m,β(τ, z, s) equals the coefficient of qn−r
2/4me(γ,r/2m) in E∗3/2(τ, s).

In particular, this equality also holds for the real-analytic parts. The coefficients A(n, r, γ) in the real-analytic
part of E∗3/2(τ, 0) occur (up to a constant factor) as the coefficients of its shadow, which is a modular form

of weight 1/2 for the quadratic form −q̃. Using Skoruppa’s strengthening of the Serre-Stark basis theorem
12



([17], Satz 5.1; see also (3.5) of [8]), it is known that for any Weil representation ρ : Γ̃ → AutC[Λ′/Λ],
M1/2(ρ) is spanned by modular forms that are C[Λ′/Λ]-linear combinations of the theta series

ϑ`,b =
∑
v∈Z

v≡b (2`)

e
(v2

4`
τ
)
, b ∈ Z,

where ` runs through divisors of 4N for which N/` is squarefree (where N is the level of the discriminant
form Λ′/Λ), in which the Fourier coefficient of qn (multiplied by 1/2 if n = 0) depends only on whether `n

is square and if so on the remainder of
√

4`n modulo 2`. The previous paragraph implies this congruence
for n− r2/4m for all r +

√
r2 − 4mn in the same orbit.

For general β, we can embed the space of Jacobi forms for ρ∗β of index m as “old” Jacobi forms of index

md2
β for the trivial action of the Heisenberg group via the Hecke-type operator

UβΦ(τ, z) = Φ(τ, dβz)

and apply the argument for β = 0. �

Proposition 23. The Poincaré square series Q2,m,β(τ) has rational Fourier coefficients.

Proof. The expression for the coefficients of E2(τ, 0) in [18] consists of special values of Dirichlet L-functions
and finitely many local L-series, and these remain rational in weight k = 2. Therefore, we need to show that
the correction terms

b(n, γ) =
1

8
√
m

∑
r∈Z−〈γ,β〉

A(n, r, γ)
(
|r| −

√
r2 − 4mn

)
are rational.

This is easy to see when |Λ′/Λ| is square, since b(n, γ) is a finite sum of rational numbers. Assume that
|Λ′/Λ| is not square.

Suppose first that β = 0. By lemma 22, we can write∑
r∈Z

A(n, r, γ)
(
|r| −

√
r2 − 4mn

)
=

N∑
i=1

A(n, r, γ)
∑
r

(
|r| −

√
r2 − 4mn

)
,

where for each i, the sum over r is taken over solutions

(a, b) = dγ

(√
|Λ′/Λ|(r2 − 4mn), r

)
of the Pell equation with congruence condition coming from the orbit of an element µi of norm C and
minimal trace as in lemma 19. These solutions are given by

r +
√
r2 − 4mn = ±

2
√
|Λ′/Λ|
dγ

µiε
n
i ,

which runs through the solutions r twice if µi/µi ∈ OK and once otherwise. The minimality of TrK/Q(µi)
implies that the terms in the series are

|r| −
√
r2 − 4mn ∈ {2µ, 2µε−n, 2µε−n : n ∈ N},

and ∑
r

(
|r| −

√
r2 − 4mn

)
=
( µ

1− ε−1
+

µε−1

1− ε−1

)
×

{
1 : µ/µ ∈ OK ;

2 : otherwise

=
1

NK/Q(1− ε)

(
µ− µ+ µε− µε

)
×

{
1 : µ/µ ∈ OK ;

2 : otherwise;
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and we see that 1√
|Λ′/Λ|

∑
r

(
|r| −

√
r2 − 4mn

)
is rational. Since

A(n, r, γ) =
1√

m|Λ′/Λ|
·
(

rational number
)
,

we see that b(n, γ) is rational.

The argument for general β is essentially the same but slightly messier because r +
√
r2 − 4mn and

−r +
√
r2 − 4mn generally occur as solutions of the Pell equation with different congruence conditions. In

this case we can use the identity b(n, γ) = b(n,−γ) = b(n,γ)+b(n,−γ)
2 and consider both congruence conditions

at once. �

The formula above has been implemented in SAGE and is available on the author’s institutional webpage.

8. Example: the class number relation

In the simplest case of a unimodular lattice Λ and index m = 1, the fact that

Q2,1,0(τ) = E2(τ) = 1− 24
∞∑
n=1

σ1(n)qn = 1− 24q − 72q2 − 96q3 − ...

(since the difference Q2,1,0 − E2 is a scalar-valued cusp forms of weight 2 and level 1 so it vanishes) implies
the Kronecker-Hurwitz class number relations. We explain this here.

The real-analytic Jacobi form E∗2,1,0(τ, z, 0) arises from the real-analytic correction of Zagier’s Eisenstein
series (in the form of example 15 of [19]),

E∗3/2(τ, 0) = 1− 12

∞∑
n=1

H(n)qn/4en/2 −
24
√
y

∞∑
n=−∞

β(πyn2)q−n
2/4en/2

through the theta decomposition, where H(n) is the Hurwitz class number of n. Therefore,

E∗2,1,0(τ, z, 0) = 1− 12

∞∑
n=1

∞∑
r=−∞

H(4n− r2)qnζr +
1
√
y

∞∑
n=−∞

∑
r2−4n=�

A(n, r)β(πy(r2 − 4n))qnζr

with constants

A(n, r) =

{
−24 : r2 − 4n = 0;

−48 : r2 − 4n 6= 0.

It follows that

Q2,1,0(τ) = 1− 12

∞∑
n=1

∞∑
r=−∞

H(4n− r2)qn +
1

8

∞∑
n=1

∑
r2−4n=�

A(n, r)
(
|r| −

√
r2 − 4n

)
qn

= 1− 12

∞∑
n=1

∞∑
r=−∞

H(4n− r2)qn − 6

∞∑
n=1

∑
r2−4n=�

(
|r| −

√
r2 − 4n

)
qn + 12

∞∑
n=1

nqn
2

.

The identity Q2,1,0 = E2 implies that for all n ∈ N,

∞∑
r=−∞

H(4n− r2) = 2σ1(n)− 1

2

∑
r∈Z

r2−4n=�

(
|r| −

√
r2 − 4n

)
+

{√
n : n = �;

0 : otherwise.

Here, 1
2

(
|r| −

√
r2 − 4n

)
takes exactly the values min(d, n/d) as d runs through divisors of n (but counts

√
n twice if n is square); so this can be rearranged to

∞∑
r=−∞

H(4n− r2) = 2σ1(n)−
∑
d|n

min(d, n/d).
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Remark 24. Mertens [14] has given other proofs of this and similar class number relations using mock
modular forms. It seems likely that we can recover other class number relations (possibly some of the other
relations of [14]) by studying the higher development coefficients (as defined in chapter 3 of [10]) of the real-
analytic Jacobi Eisenstein series E∗2,1,0(τ, z, s) in the same way that we have studied its zeroth development
coefficient E∗2,1,0(τ, 0, s) in this note, but we will not pursue that here.

9. Example: overpartition rank differences

Consider the lattice Λ = Z2 with quadratic form q(x, y) = x2− y2. There are no modular forms of weight
2 for the dual Weil representation, and the e(0,0)-component of the quasimodular Eisenstein series is

E2(τ)(0,0) = 1− 16q − 24q2 − 64q3 − 72q4 − 96q5 − 96q6 − 128q7 − ...

This is a quasimodular form of level 4 and we can verify by computing a few coefficients that it is

E2(τ)(0,0) = E2(2τ)− 16
∑
n odd

σ1(n)qn = 1− 16
∑
n odd

σ1(n)qn − 24
∑
n even

σ1(n/2)qn.

The real-analytic Jacobi Eisenstein series of index (m,β) = (1, 0) corresponds to the real-analytic Eisen-

stein series for the lattice Λ̃ = Z3 with quadratic form q′(x, y, z) = x2−y2+z2 under the theta decomposition.
It was shown in example 19 of [19] that the component of e(0,0,0) in the corresponding mock Eisenstein series
is

1− 2q − 4q2 − 8q3 − ... =

∞∑
n=0

(−1)nα(n)qn,

where α(n) is the difference between the number of even-rank and odd-rank overpartitions of n. (We refer
to [4] for the definition of overpartition rank differences and their appearance in weight-3/2 mock modular
forms.) We will also need to understand the component of e(0,0,1/2) in this mock Eisenstein series. A quick
computation shows that this is the series

E3/2(τ)(0,0,1/2) = −4q3/4 − 4q7/4 − 12q11/4 − 8q15/4 − 12q19/4 − 12q23/4 − 16q27/4 − ...

Lemma 25. The coefficient of qn/4 in the series E3/2(τ)(0,0,1/2) is{
−12H(n) : n ≡ 3 mod 8;

−4H(n) : n ≡ 7 mod 8;

where H(n) is the Hurwitz class number.

We remark without proof that this series appears to have an interesting closed form:

− 4q3/4 − 4q7/4 − 12q11/4 − 8q15/4 − 12q19/4 − ...

= −12
∑

n≡3 (8)

H(n)qn/4 − 4
∑

n≡7 (8)

H(n)qn/4

= −4q−1/4
( ∞∏
n=1

1 + qn

1− qn
)( q

1 + q
− 3q4

1 + q3
+

5q9

1 + q5
− 7q16

1 + q7
+

9q25

1 + q9
− ...

)
.

Proof. We can use the exact formula for the coefficients given by Bruinier and Kuss [7], theorem 4.8: for an
odd-dimensional lattice of dimension e, the coefficient c(n, γ) of Ek(τ) is given by

(2π)knk−1(−1)b
+/2L(k − 1/2, χD)√

|Λ′/Λ|Γ(k)ζ(2k − 1)

∑
d|f

µ(d)χD(d)d1/2−kσ2−2k(f/d)
∏

p|(2|Λ′/Λ|)

[1− pe/2−k

1− p1−2k
Lp(n, γ, k+e/2−1)

]
.

(We do not need the assumption that k = e/2 because this is only used in the computations of local factors
Lp in [7]; in this note we are working with a different expression.) Here, D is a discriminant defined in

theorem 4.5 of [7], and χD(d) =
(D
d

)
is the Kronecker symbol, and f2 is the largest square dividing n that is
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coprime to 2 · |Λ′/Λ|. For the lattice Z with quadratic form q(x) = x2 (where E3/2 is Zagier’s mock Eisenstein
series), and γ = 1/2 and n ∈ Z− q(γ), it is not hard to see that the local factor at p = 2 is

L2(n, γ, s) =

{
1 : 4n ≡ 3 (mod8);

(2s + 1)/(2s − 1) : 4n ≡ 7 (mod8);

since n always has valuation −2 modulo p = 2, resulting in the values (1−2−1)L2(n, γ, 1) = 1/2 if 4n ≡ 3 (8)
resp. (1 − 2−1)L2(n, γ, 1) = 3/2 if 4n ≡ 7 (8). On the other hand, for the lattice Z3 with quadratic form
q(x, y, z) = x2 − y2 + z2, the local factor is always

L2(n, γ, s) =
2s

2s − 4

with lims→0(1 − 2−2s)L2(n, γ, 2 + 2s) = 1. Since all other terms in the formula are the same between the
two lattices (other than an extra factor of 1/2 from 1√

|Λ′/Λ|
), and the coefficient of qn/4 in Zagier’s mock

Eisenstein series is −12H(n), we get the claimed formula. �

In example 19 of [19] it was shown that the real-analytic correction of E3/2(τ) for the lattice Λ̃ is

E∗3/2(τ, 0) = E3/2(τ) +
1
√
y

∑
γ∈Λ̃′/Λ̃

∑
n∈Z−q(γ)
n≤0

a(n, γ)β(−4πny)qneγ

with shadow∑
γ,n

a(−n, γ)qneγ = −8
(

1 + 2q + 2q4 + ...
)

(2e(0,0,0) + e(1/2,1/2,0) + e(0,1/2,1/2))−

− 8
(

2q1/4 + 2q9/4 + 2q25/4 + ...
)

(2e(1/2,1/2,1/2) + e(0,0,1/2) + e(1/2,0,0)).

Therefore the constants of section 5 for square r2 − 4n are

A(n, r, 0) =

{
−16 : r2 − 4n odd or zero;

−32 : r2 − 4n even and nonzero.

The formula for the Poincaré square series of index (1, 0) implies that the coefficient of qne(0,0) in Q2,1,0 is

∞∑
r=−∞

−|α(n− r2)| − 4
∑
r odd

H(4n− r2) +
1

8

∑
r∈Z

r2−4n=�

A(n, r, 0)
(
|r| −

√
r2 − 4n

)
+

{
4 : n = �;

0 : otherwise;

if n is even and
∞∑

r=−∞
−|α(n− r2)| − 12

∑
r odd

H(4n− r2) +
1

8

∑
r∈Z

r2−4n=�

A(n, r, 0)
(
|r| −

√
r2 − 4n

)
+

{
4 : n = �;

0 : otherwise;

if n is odd. The additional 4 at the end if n is square is due to the constant term in the mock Eisenstein
series E3/2 being 1 rather than −1:

E3/2(τ)(0,0,0) = 1−
∞∑
n=1

|α(n)|qn = −
∞∑
n=0

|α(n)|+ 2,

and because we use the convention α(0) = 1. As before, |r|−
√
r2−4n
2 takes exactly the values min(d, n/d) for

divisors d of n (but counts
√
n twice if n is square); and one can show that if n is odd and r2− 4n is square,

then r2 − 4n is always even, while if n is even, then r2 − 4n is even exactly when the divisor d = |r|−
√
r2−4n
2

and n/d are both even.

Denote λ1(n) = 1
2

∑
d|n min(d, n/d) as in [14]. Comparing coefficients with the Eisenstein series E2(τ)(0,0)

gives the following formula:
16



Proposition 26. If n ∈ N is odd, then

∞∑
r=−∞

|α(n− r2)| = −16λ1(n) + 16σ1(n)− 12
∑
r odd

H(4n− r2) +

{
4 : n = �;

0 : otherwise.

If n ∈ N is even, then

∞∑
r=−∞

|α(n− r2)| = −8λ1(n)− 16λ1(n/4) + 24σ1(n/2)− 4
∑
r odd

H(4n− r2) +

{
4 : n = �;

0 : otherwise.

Here, we set λ1(n/4) = 0 if n is not divisible by 4, and α(n) = H(n) = 0 for n < 0. Note that this can
also be expressed as a relation among Hurwitz class numbers since |α(n)| itself can be written in terms of
Hurwitz class numbers, as observed in corollary 1.2 of [5].

10. Example: computing an obstruction space for Borcherds products

The interpretation of certain Borcherds products for O(2, 2) as Hilbert modular forms is well-known
and described in detail in Bruinier’s lectures [6], in particular section 3.2. For a fundamental discriminant
m ≡ 1 mod 4, the relevant obstruction space for Hilbert modular forms for the field Q(

√
m) consists of

weight-two modular forms for the dual Weil representation attached to the Gram matrix S =

(
2 1
1 −m−1

2

)
.

The smallest example where this space contains cusp forms is m = 21.

It is not very difficult to compute a basis of this space by other means but one can also use the functions
described in this note to do this. The Eisenstein series is a true modular form given by

E2(τ) = (1− 6q − 12q2 − 40q3 − ...)e0
+ q1/21(−1/2− 5q − 22q2 − 43/2q3 − ...)(e(−1/21,2/21) + e(1/21,−2/21) + e(8/21,−16/21) + e(−8/21,16/21))

+ q4/21(−3/2− 31/2q − 11q2 − 34q3 − ...)(e(−2/21,4/21) + e(2/21,−4/21) + e(−5/21,10/21) + e(5/21,−10/21))

+ q1/3(−4− 12q − 25q2 − 18q3 − ...)(e(1/3,1/3) + e(2/3,2/3))

+ q3/7(−5− 6q − 36q2 − 20q3 − ...)(e(−1/7,2/7) + e(1/7,−2/7))

+ q5/7(−12− 15q − 18q2 − 24q3 − ...)(e(2/7,3/7) + e(5/7,4/7))

+ q16/21(−11/2− 19q − 14q2 − 40q3 − ...)(e(10/21,1/21) + e(11/21,−1/21) + e(−4/21,8/21) + e(4/21,−8/21))

+ q18/21(−4− 12q − 36q2 − 41q3 − ...)(e(3/7,1/7) + e(4/7,6/7))

and the cusp space is represented by

7(Q2,16/21,(10/21,1/21) − E2)

= q1/21(1− 14q + 12q2 + 13q3 + ...)(e(8/21,−16/21) + e(−8/21,16/21) − e(−1/21,2/21) − e(1/21,−2/21))

+ q4/21(5− 5q + 14q2 + 4q3 + ...)(e(−2/21,4/21) + e(2/21,−4/21) − e(16/21,10/21) − e(5/21,11/21))

+ q16/21(11 + 6q − 28q2 + 8q3 + ...)(e(10/21,1/21) + e(11/21,−1/21) − e(−4/21,8/21) − e(4/21,−8/21)).

Following [3], there exists a vector-valued nearly-holomorphic modular form of weight k for the Weil
representation ρ with principal part

∑
γ

∑
n<0 a(n, γ)qneγ + a(0)e0 if and only if a(n, γ) = a(n,−γ) and∑

n<0 a(n, γ)b(−n, γ) = 0 for all (true) modular forms
∑
γ,n b(n, γ)qneγ of weight 2 − k for the dual rep-

resentation ρ∗. From this principle and the above computations, we find that the following principal parts
17



extend to nearly-holomorphic modular forms fi:

f1(τ) = q−1/21(e(−1/21,2/21) + e(1/21,−2/21) + e(8/21,−16/21) + e(−8/21,16/21)) + 2e(0,0) + ...

f4(τ) = q−4/21(e(−2/21,4/21) + e(2/21,−4/21) + e(−5/21,10/21) + e(5/21,−10/21)) + 6e(0,0) + ...

f7(τ) = q−7/21(e(1/3,1/3) + e(2/3,2/3)) + 8e(0,0) + ...

f9(τ) = q−9/21(e(−1/7,2/7) + e(1/7,−2/7)) + 10e(0,0) + ...

f15(τ) = q−15/21(e(2/7,−4/7) + e(−2/7,4/7)) + 24e(0,0) + ...

f16(τ) = q−16/21(e(10/21,−20/21) + e(−10/21,20/21) + e(−4/21,8/21) + e(4/21,−8/21)) + 22e(0,0) + ...

f18(τ) = q−18/21(e(3/7,1/7) + e(4/7,6/7)) + 8e(0,0) + ...

f21(τ) = q−1e(0,0) + 6e(0,0) + ...

These inputs produce holomorphic Borcherds products ψ1, ψ
(1)
3 , ψ

(2)
3 , ψ

(1)
4 , ψ

(2)
4 , ψ5, ψ11, ψ12 as Hilbert

modular forms for Q(
√

21), each ψk having weight k and only simple zeros. The principal parts above
are enough to determine the divisors and weights of these products, using theorem 13.3 of [2], and this is
enough for some applications. To calculate the products explicitly, one needs to compute the coefficients of
higher powers of q in the input functions fi(τ). One way to do this algorithmically is by identifying ∆(τ)fi(τ)
in M12(ρ) using the algorithm of [18], where ∆(τ) is the discriminant; this is a messy but straightforward
computation.
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