
VECTOR-VALUED EISENSTEIN SERIES OF SMALL WEIGHT
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Abstract. We study the (mock) Eisenstein series Ek of weight k ∈ {1, 3/2, 2}
for the Weil representation on an even lattice, defined as the result of Bruinier

and Kuss’s coefficient formula for the Eisenstein series naively evaluated at
k. We describe the transformation law of Ek in general. Most of this note

is dedicated to collecting examples where the coefficients of Ek contain inter-

esting arithmetic information. Finally we make a few remarks about the case
k = 1/2.
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1. Introduction

In [5], Bruinier and Kuss give an expression for the Fourier coefficients of the

Eisenstein series Ek of weight k ≥ 5/2 for the Weil representation attached to

a discriminant form. These coefficients involve special values of L-functions and

zero counts of polynomials modulo prime powers, and they also make sense for

k ∈ {1, 3/2, 2}. Unfortunately, the q-series Ek obtained in this way often fail to be

modular forms. In particular, in weight k = 3/2 and k = 2, the Eisenstein series

may be a mock modular form that requires a real-analytic correction in order to

transform as a modular form. Many examples of this phenomenon of the Eisenstein

series are well-known (although perhaps less familiar in a vector-valued setting). We

will list a few examples of this:

Example 1. The Eisenstein series of weight 2 for a unimodular lattice Λ is the

quasimodular form

E2(τ) = 1− 24

∞∑
n=1

σ1(n)qn = 1− 24q − 72q2 − 96q3 − 168q4 − ...

where σ1(n) =
∑
d|n d, which transforms under the modular group by

E2

(aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6

πi
c(cτ + d).

Here and in the examples below, ρ∗ denotes a Weil representation and eγ are basis

vectors in the underlying space of ρ∗. (These are defined in section 2.)

Example 2. The Eisenstein series of weight 3/2 for the quadratic form q2(x) = x2

is essentially Zagier’s mock Eisenstein series:

E3/2(τ) =
(

1− 6q − 12q2 − 16q3 − ...
)
e0 +

(
− 4q3/4 − 12q7/4 − 12q11/4 − ...

)
e1/2,
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in which the coefficient of qn/4en/2 is −12 times the Hurwitz class number H(n).

It transforms under the modular group by

E3/2

(aτ + b

cτ + d

)
= (cτ +d)3/2ρ∗

((a b
c d

))[
E3/2(τ)− 3

π

√
i

2

∫ i∞

d/c

(τ + t)−3/2ϑ(t) dt
]
,

where ϑ is the theta series

ϑ(τ) =
∑
n∈Z

qn
2/4en/2.

Example 3. In the Eisenstein series of weight 3/2 for the quadratic form q3(x) =

6x2, the components of e1/12, e5/12, e7/12 and e11/12 are(
− 3q23/24 − 5q47/24 − 7q71/24 − 8q95/24 − 10q119/24 − 10q143/24 − ...

)
eγ

for γ ∈ {1/12, 5/12, 7/12, 11/12}. We verified by computer that the coefficient of

qn−1/24 above is (−1) times the degree of the n-th partition class polynomial con-

sidered by Bruinier and Ono [6] for 1 ≤ n ≤ 750, which is not surprising in view

of example 2 since this degree also counts equivalence classes of certain binary

quadratic forms. This Eisenstein series is not a modular form.

Example 4. The Eisenstein series of weight 3/2 for the quadratic form q4(x, y, z) =

x2 + y2 − z2 is a mock modular form that is related to the functions considered by

Bringmann and Lovejoy [1] in their work on overpartitions. More specifically, the

component of e(0,0,0) in E3/2 is

1− 2q − 4q2 − 8q3 − 10q4 − ... = 1−
∞∑
n=1

|α(n)|qn,

where α(n) is the difference between the number of even-rank and odd-rank overpar-

titions of n. Similarly, the M2-rank differences considered in [1] appear to occur in

the Eisenstein series of weight 3/2 for the quadratic form q5(x, y, z) = 2x2+2y2−z2,

whose e(0,0,0)-component is

1− 2q − 4q2 − 2q4 − 8q5 − 8q6 − 8q7 − ...

Example 5. Unlike the previous examples, the Eisenstein series of weight 3/2 for

the quadratic form q6(x, y, z) = −x2−y2−z2 is a true modular form; in fact, it is the

theta series for the cubic lattice and the Fourier coefficients of its e(0,0,0)-component

count the representations of integers as sums of three squares.

Among negative-definite lattices of small dimension there are lots of examples

where the Eisenstein series equals the theta series. (Note that we find theta se-

ries for negative-definite lattices instead of positive-definite because we consider

the dual Weil representation ρ∗.) When the lattice is even-dimensional this im-

mediately leads to formulas for representation numbers in terms of twisted divisor

sums. These formulas are of course well-known but the vector-valued derivations

of these formulas seem more natural than the usual derivation as identities among

scalar-valued forms of higher level. We give several examples of this throughout

the note.
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In the last section we make some remarks about the case k = 1/2, where the

formula of [5] no longer makes sense and so the methods of this note break down.

Acknowledgments: I thank Kathrin Bringmann for discussing the examples

involving overpartition rank differences with me.

2. Background

In this section we review some facts about the metaplectic group and vector-

valued modular forms, as well as Dirichlet L-functions, which will be useful later.

Recall that the metaplectic group Mp2(Z) is the double cover of SL2(Z)

consisting of pairs (M,φ), where M =

(
a b
c d

)
∈ SL2(Z), and φ is a branch of

√
cτ + d on the upper half-plane

H = {τ = x+ iy ∈ C : y > 0}.

We will usually omit φ. Mp2(Z) is generated by the elements

T =
((

1 1
0 1

)
, 1
)
, S =

((
0 −1
1 0

)
,
√
τ
)
,

with defining relations S8 = I and S2 = (ST )3.

Let Λ be a lattice (which we can always take as Λ = Ze for some e ∈ N) with an

even quadratic form q : Λ→ Z, and let

Λ′ = {v ∈ Λ⊗Qe : 〈v, w〉 ∈ Z for allw ∈ Λ}

be the dual lattice. We denote by eγ , γ ∈ Λ′/Λ the natural basis of the group

algebra C[Λ′/Λ]. The Weil representation of Mp2(Z) attached to Λ is the map

ρ : Mp2(Z) −→ AutC[Λ′/Λ]

defined by

ρ(T )eγ = e
(
q(γ)

)
eγ , ρ(S)eγ =

√
i
b−−b+√
|Λ′/Λ|

∑
β∈Λ′/Λ

e
(
− 〈γ, β〉

)
eβ .

In particular,

ρ(Z)eγ = ib
−−b+e−γ , where Z = (−I, i) = S2 = (ST )3.

Here we use e(x) to denote e2πix, and (b+, b−) is the signature of Λ.

We will usually consider the dual representation ρ∗ of ρ (which also occurs as the

Weil representation itself, for the lattice Λ and quadratic form −q).

A modular form of weight k for ρ∗ is a holomorphic function f : H→ C[Λ′/Λ]

with the properties:

(i) f transforms under the action of Mp2(Z) by

f(M · τ) = (cτ + d)kρ∗(M)f(τ), M =

(
a b
c d

)
∈Mp2(Z),
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where the branch of (cτ + d)k is prescribed by M as an element of Mp2(Z) if k is

half-integer;

(ii) f is holomorphic in ∞. This means that in the Fourier expansion

f(τ) =
∑

γ∈Λ′/Λ

∑
n∈Z−q(γ)

c(n, γ)qneγ ,

all coefficients c(n, γ) are zero for n < 0.

If N is the smallest natural number such that N〈γ, β〉 and Nq(γ) ∈ Z for all

β, γ ∈ Λ′/Λ, then ρ∗ factors through SL2(Z/NZ) if e = dim Λ is even, and through

a double cover of SL2(Z/NZ) if e is odd. This implies in particular that the com-

ponent functions fγ of f are scalar modular forms of level N .

When studying the weight 3/2 Eisenstein series we will consider harmonic weak

Maass forms, which have the same transformation behavior as modular forms

but for which the holomorphy assumption is weakened to real-analyticity and the

weight-k Laplace equation ∆f(τ) = 2iky ∂
∂τ f(τ), where ∆ = y2( ∂2

∂x2 + ∂2

∂y2 ) is the

hyperbolic Laplacian on H. Harmonic weak Maass forms are also required to satisfy

a growth condition of the form |f(τ)| < CeNy at ∞. We refer to [3] and [12] for

details.

The weights of modular forms are restricted due to

f(τ) = f(Z · τ) = i2kρ∗(Z)f(τ) = i2k+b+−b−
∑

γ∈Λ′/Λ

f−γ(τ)eγ .

In particular, if 2k+ b+− b− is not an even integer, then there are no nonzero mod-

ular forms. In the case 2k + b+ − b− ≡ 2 (4) (which seems to be of less interest),

the components satisfy fγ = −f−γ and in particular the e0-component of f must

be zero. We will consider only the case 2k+ b+− b− ≡ 0 (4) as we are interested in

Eisenstein series with constant term 1 · e0.

Remark 6. There is an involution∼ of the metaplectic group given on the standard

generators by

S̃ = S−1, T̃ = T−1,

which is well-defined because

(S̃T̃ )3 = S−1(ST )−3S = S−1S−2S = S̃2

and S̃8 = I. On matrices it is given by(̃
a b
c d

)
=

(
a −b
−c d

)
,

and it acts on the branches of square roots by φ̃(τ) = φ(−τ), where φ(τ)2 = cτ +d.

One can check on the generators S, T that this intertwines the Weil representation

ρ and its dual ρ∗ in the sense that

ρ(M̃) = ρ∗(M) = ρ(M), M ∈Mp2(Z).
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Remark 7. At many points in this note we will need to consider the L-function

L(s, χD) =

∞∑
n=1

χD(n)n−s

attached to the Dirichlet character mod |D|,

χD(n) =
(D
n

)
,

where D is a discriminant (i.e. D ≡ 0, 1 mod 4). In particular, we recall the

following properties of Dirichlet L-functions.

(i) Let χ be a Dirichlet character. Then L(s, χ) converges absolutely in some half-

plane Re[s] > s0 and is given by an Euler product

L(s, χ) =
∏

p prime

(1− χ(p)p−s)−1

there.

(ii) L(s, χ) has a meromorphic extension to all C and satisfies the functional equa-

tion

Γ(s) cos
(π(s− δ)

2

)
L(s, χ) =

τ(χ)

2iδ
(2π/f)sL(1− s, χ),

where f is the conductor of χ, τ(χ) =
∑f
a=1 χ(a)e2πia/f is the Gauss sum of χ, and

δ =

{
1 : χ(−1) = −1;

0 : χ(−1) = 1.

(iii) L(s, χ) is never zero at s = 1, and is holomorphic there unless χ is a trivial

character, in which case it has a simple pole.

(iv) The values L(1− n, χ), n ∈ N are rational numbers, given by

L(1− n, χ) = −Bn,χ
n

,

where Bn,χ ∈ Q is a generalized Bernoulli number.

We refer to section 4 of [15] for these and other results on Dirichlet L-functions.

3. The real-analytic Eisenstein series

Fix an even lattice Λ and let ρ∗ be the dual Weil representation on C[Λ′/Λ].

Definition 8. The real-analytic Eisenstein series of weight k is

E∗k(τ, s) =
∑

M∈Γ̃∞\Γ

(yse0)|kM =
ys

2

∑
c,d

(cτ + d)−k|cτ + d|−2sρ∗(M)−1e0.

Here, (c, d) runs through all pairs of coprime integers and M is any element(
a b
c d

)
∈ Mp2(Z) with bottom row (c, d); and the branch of (cτ + d)−k is de-

termined by M as an element of Mp2(Z) as usual.
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This series converges absolutely and locally uniformly in the half-plane Re[s] >

1 − k/2 and defines a holomorphic function in s. For fixed s, it transforms under

the metaplectic group by

E∗k

(
M · τ, s

)
= (cτ + d)kρ∗(M)E∗k(τ, s)

for any M =

(
a b
c d

)
∈ Mp2(Z). These series were considered by Bruinier and

Kühn [4] in weight k ≥ 2 who also give expressions for their Fourier expansions.

(More generally they consider the series obtained after replacing e0 with eβ for an

element β ∈ Λ′/Λ with q(β) ∈ Z. We do not do this because it seems to make the

formulas below considerably more complicated, and because for many discriminant

forms Λ′/Λ one can obtain the real-analytic Eisenstein series associated to any β

from the E∗k(τ, s) above by a simple “averaging” argument. See for example the

appendix of [16].)

The series E∗k(τ, s) can be analytically extended beyond the half-plane Re[s] >

1 − k/2. We will focus here on weights k ∈ {1, 3/2, 2}, in which the Fourier series

is enough to give an explicit analytic continuation to s = 0. First we work out an

expression for the Fourier series (in particular, our result below differs in appearance

from [4] because we use a different computation of the Euler factors). Writing

E∗k(τ, s) = e0 +
∑

γ∈Λ′/Λ

∑
n∈Z−q(γ)

c(n, γ, s, y)qneγ ,

a computation analogous to section 1.2.3 of [2] using the exact formula for the

coefficients ρ(M)0,γ of the Weil representation cited there shows that

c(n, γ, s, y) =
ys

2

∑
c 6=0

∑
d∈(Z/cZ)×

ρ(M)0,γ

∫ ∞+iy

−∞+iy

(cτ + d)−k|cτ + d|−2se(−nτ) dx

= ys
∞∑
c=1

∑
d∈(Z/cZ)×

ρ(M)0,γc
−k−2se

(nd
c

)∫ ∞+iy

−∞+iy

τ−k|τ |−2se(−nτ) dx

=

√
i
b−−b+√
|Λ′/Λ|

L̃(n, γ, k + e/2 + 2s)I(k, y, n, s),(1)

where M is any element of Mp2(Z) whose bottom row is (c, d). Here, L̃(n, γ, s) is

the L-series
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L̃(n, γ, s) =

∞∑
c=1

c−s+e/2
∑

d∈(Z/cZ)×

ρ(M)0,γe
(nd
c

)

=

∞∑
c=1

c−s
∑

v∈Λ/cΛ

d∈(Z/cZ)×

e
(aq(v)− 〈γ, v〉+ dq(γ)− nd

c

)

=

∞∑
c=1

c−s
∑
a|c

[
µ(c/a)a(c/a)e ·#

{
v ∈ Λ/aΛ : q(v − γ) + n ≡ 0 (mod a)

}]
= ζ(s− e)−1L(n, γ, s− 1),

where L(n, γ, s) is

L(n, γ, s) =

∞∑
a=1

a−sN(a) =
∏

p prime

( ∞∑
ν=0

p−νsN(pν)
)

=
∏

p prime

Lp(n, γ, s),

and N(pν) is the number of zeros v ∈ Λ/pνΛ of the quadratic polynomial q(v−γ)+n;

and I(k, y, n, s) is the integral

I(k, y, n, s) = ys
∫ ∞+iy

−∞+iy

τ−k|τ |−2se(−nτ) dx

= y1−k−se2πny

∫ ∞
−∞

(t+ i)−k(t2 + 1)−se(−nyt) dt, τ = y(t+ i).

Remark 9. Both the L-series term L̃(n, γ, s) and the integral term I(k, y, n, s)

of (1) have meromorphic continuations to all s ∈ C. First we remark that the

integral I(k, y, n, s) was considered by Gross and Zagier [10], section IV.3., where

it was shown that for n 6= 0, I(k, y, n, s) is a finite linear combination of K-Bessel

functions (we will not need the exact expression) and its value at s = 0 is given by

(2) I(k, y, n, 0) =

{
0 : n < 0;

(−2πi)knk−1 1
Γ(k) : n > 0;

if n 6= 0; and when n = 0,

(3) I(k, y, 0, s) = π(−i)k22−k−2sy1−k−sΓ(2s+ k − 1)

Γ(s)Γ(s+ k)
.

In particular, the zero value of the latter expression is

I(k, y, 0, 0) =

{
0 : k 6= 1;

−iπ : k = 1.

The Euler factors Lp(n, γ, s) =
∑∞
ν=0 p

−νsN(pν) are known to be rational func-

tions in p−s that can be calculated using the methods of [7] (see also section 6 of

[16] as well as the appendix, where the result of the case p = 2 was worked out).

For generic primes (primes p 6= 2 that do not divide |Λ′/Λ|, or the numerator or
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denominator of n if n 6= 0) the result is that

Lp(n, γ, s) =



1
1−pe−1−s

[
1−

(
D′

p

)
pe/2−s

]
: n 6= 0;

1−
(

D′
p

)
pe/2−1−s

(1−pe−1−s)

[
1−
(

D′
p

)
pe/2−s

] : n = 0;

if e is even and

Lp(n, γ, s) =


1

1−pe−1−s

[
1 +

(
D′
p

)
p(e−1)/2−s

]
: n 6= 0;

1−pe−1−2s

(1−pe−1−s)(1−pe−2s) : n = 0;

if e is odd. Here, D′ and D′ are defined by

D′ = (−1)k|Λ′/Λ| and D′ = 2nd2
γ(−1)k−1/2|Λ′/Λ|,

where dγ ∈ N is minimal such that dγγ ∈ Λ.

In particular, if we define D = D′ ·
∏

bad p p
2 and D = D′ ·

∏
bad p p

2, where the

bad primes are 2 and any prime dividing |Λ′/Λ| or n, then we get the meromorphic

continuations

L̃(n, γ, s) =


1

L(s−e/2,χD)

∏
bad p(1− pe−s)Lp(n, γ, s− 1) : n 6= 0;

L(s−1−e/2,χD)
L(s−e/2,χD)

∏
bad p(1− pe−s)Lp(s− 1) : n = 0;

if e is even and

L̃(n, γ, s) =


L(s−(e+1)/2,χD)

ζ(2s−1−e)
∏

bad p
1−pe−s

1−pe+1−2sLp(n, γ, s− 1) : n 6= 0;

ζ(2s−2−e)
ζ(2s−1−e)

∏
bad p

(1−pe−s)(1−pe+2−2s)
1−pe+1−2s Lp(s− 1) : n = 0;

if e is odd.

Remark 10. We denote by Ek the series

Ek(τ) = e0 +
∑

γ∈Λ′/Λ

∑
n>0

c(n, γ, 0, y)qneγ .

The formula (2) gives I(k, y, n, 0) = (−2πi)knk−1 1
Γ(k) independently of y, and so

Ek(τ) is holomorphic. When k > 2, this is just the zero-value Ek(τ) = E∗k(τ, 0)

and therefore Ek is a modular form. In small weights this tends to fail because the

terms

lim
s→0

L̃(n, γ, k + e/2 + 2s)I(k, y, n, s)

may have a pole of L̃ cancelling the zero of I for n ≤ 0, resulting in nonzero (and

often nonholomorphic) contributions to E∗k(τ, 0).

Remark 11. Suppose the dimension e is even; then we can apply theorem 4.8 of [5]

to get a simpler coefficient formula. (The condition k = e/2 there is only necessary
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for their computation of local L-factors, which we do not use.) It follows that the

coefficient c(n, 0) of qne0 in Ek is

c(n, 0) =
(2π)k(−1)(2k+b+−b−)/4

L(k, χD)
√
|Λ′/Λ|Γ(k)

·σk−1(n, χD)·
∏
p|D′

[
(1−pe/2−k)Lp(n, 0, k+e/2−1)

]
,

where σk−1(n, χD) is the twisted divisor sum

σk−1(n, χD) =
∑
d|n

χD(n/d)dk−1

andD′ = 4|Λ′/Λ|. For a fixed lattice Λ, the expression
∏
p|D′

[
(1−pe/2−k)Lp(n, 0, k+

e/2− 1)
]

can always be worked out exactly using the method of [7], although this

can be somewhat tedious (in particular the case p = 2, which was worked out

explicitly in the appendix of [16].) A worksheet in SAGE to compute these expres-

sions is available on the author’s university webpage, and was used to compute the

examples in the following sections. Theorem 4.8 of [5] also gives an interpretation

of the coefficients when e is odd but this is more complicated.

4. Weight 1

In weight 1, the L-series term is always holomorphic at s = 0. However, the

zero-value

I(1, y, 0, 0) = −iπ

being nonzero means that Ek still needs a correction term. Setting s = 0 in the

real-analytic Eisenstein series gives

E∗1 (τ, 0) = E1(τ)− π (−1)(2+b−−b+)/4√
|Λ′/Λ|

L(0, χD)

L(1, χD)

·
∑

γ∈Λ′/Λ
q(γ)∈Z

[ ∏
bad p

lim
s→0

(1− pe/2−1−2s)Lp(0, γ, e/2 + 2s)
]
eγ ,

where D is the discriminant D = −4|Λ′/Λ| and the bad primes are the primes

dividing D. In particular, E1 may differ from the true modular form E∗1 (τ, 0) by a

constant. (Of course, E∗1 (τ, 0) may be identically zero.)

For two-dimensional negative-definite lattices, the corrected Eisenstein series

E∗1 (τ, 0) is often a multiple of the theta series. This leads to identities relating

representation numbers of quadratic forms and divisor counts. Of course, such

identities are well-known from the theory of modular forms of higher level. The

vector-valued proofs tend to be shorter since Mk(ρ∗) is generally much smaller than

the space of modular forms of higher-level in which the individual components lie,

so there is less algebra (although computing the local factors takes some work). We

give two examples here.
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Example 12. Consider the quadratic form q(x, y) = −x2−xy−y2, with |Λ′/Λ| = 3.

The L-function values are

L(0, χ−12) =
2

3
, L(1, χ−12) =

π
√

3

6

and the local L-series are

L2(0, 0, s) =
1 + 2−s

1− 22−2s
, L3(0, 0, s) =

1

1− 31−s

with

lim
s→0

(1− 2−2s)L2(0, 0, 1 + 2s) =
3

4
, lim
s→0

(1− 3−2s)L3(0, 0, 1 + 2s) = 1,

and therefore E∗1 (τ, 0) = E1(τ) + e0. Since M1(ρ∗) is one-dimensional (which one

can compute by identifying ∆ ·M1(ρ∗) ⊆M13(ρ∗) using [16], for example, where ∆

is the discriminant), comparing constant terms shows that

E1(τ) + e0 = 2ϑ.

Using remark 11, we find that the coefficient c(n, 0) of qne0 in E1 is

c(n, 0) =
2π

L(1, χ−12) ·
√

3
· σ0(n, χ−12)

·

{
3/2 : v2(n) even;

0 : v2(n) odd;︸ ︷︷ ︸
local factor at 2

·

{
2 : n 6= (3a+ 2)3b for any a, b ∈ N0;

0 : n = (3a+ 2)3b for some a, b ∈ N0;︸ ︷︷ ︸
local factor at 3

= 12
[∑
d|n

(−12

d

)]
·

{
1 : n 6= (3a+ 2)3b;

0 : n = (3a+ 2)3b.

This implies the identity

#{(a, b) ∈ Z2 : a2 + ab+ b2 = n}

= 6ε ·
(

#{divisors d = 6`+ 1 of n} −#{divisors d = 6`− 1 of n}
)
,

valid for n ≥ 1, where ε = 1 unless n has the form (3a+ 2)3b for a, b ∈ N0, in which

case ε = 0.

Example 13. Consider the quadratic form q(x, y) = −x2 − y2, with |Λ′/Λ| = 4

and χ−16 = χ−4. The L-function values are

L(0, χ−4) =
1

2
, L(1, χ−4) =

π

4
,

and the only bad prime is 2 with L2(0, 0, s) = 1
1−21−s and therefore

lim
s→0

(1− 2e/2−1−2s)L2(0, 0, e/2 + 2s) = 1.

Therefore,

E∗1 (τ, 0) = E1(τ) + e0.

Since M1(ρ∗) is one-dimensional, comparing constant terms gives E1(τ) + e0 =

2ϑ(τ).
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By remark 11, the coefficient c(n, 0) of qne0 in E1 is

c(n, 0) =
2π

L(1, χ−4) · 2
· σ0(n, χ−4) ·

2 :
(
−4
n

)
6= −1;

0 :
(
−4
n

)
= −1;︸ ︷︷ ︸

local factor at 2

= 8
∑
d|n

(−4

d

)
,

and therefore

#
{

(a, b) ∈ Z2 : a2 + b2 = n
}

= 4
∑
d|n

(−4

d

)
= 4 ·

(
#{divisors d = 4`+ 1 of n} −#{divisors d = 4`+ 3 of n}

)
.

Remark 14. Experimentally one often finds that the weight-1 Eisenstein series

attached to a discriminant form equals a theta series even in cases where it is

impossible to associate a weight 1 theta series to the discriminant form in a mean-

ingful sense; such relations are almost certainly coincidence resulting from small

cusp spaces in weight 1. For example, the indefinite lattice with Gram matrix

S =


2 −1 −1 −1
−1 2 −1 −1
−1 −1 2 −1
−1 −1 −1 2


yields an Eisenstein series in which the component of e0 is

E∗1 (τ, 0) =
2

3
+ 4q + 4q3 + 4q4 + 8q7 + 4q9 + ...

i.e. 2
3 times the theta series of the quadratic form x2 + xy + y2. However, the

discriminant form of S has signature 2 mod 8 and is therefore not represented by

a negative-definite lattice whose theta series has weight one.

On the other hand, replacing S by

−3S =


−6 3 3 3
3 −6 3 3
3 3 −6 3
3 3 3 −6


yields an Eisenstein series in which the component of e0 is

E∗1 (τ, 0) =
34

27
− 4

9
q +

68

9
q3 − 4

9
q4 − 8

9
q7 +

68

9
q9 ± ...

with the surprising property that its coefficients have infinitely many sign changes;

in particular, this example should make clear that E∗1 (τ, 0) is not simply a theta

series for every lattice.
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5. Weight 3/2

In weight 3/2, the L-series term is

L̃(n, γ, 3/2 + e/2 + 2s)

=


L(1+2s,χD)
ζ(4s+2)

∏
bad p

1−p(e−3)/2−2s

1−p−2−4s Lp(n, γ, 1/2 + e/2 + 2s) : n 6= 0;

ζ(4s+1)
ζ(4s+2)

∏
bad p

(1−p(e−3)/2−2s)(1−p−1−4s)
1−p−2−4s Lp(n, γ, 1/2 + e/2 + 2s) : n = 0;

and it is holomorphic in s = 0 unless n = 0 or

D = −2nd2
γ |Λ′/Λ|

∏
bad p

p2

is a square. In these cases, L̃(n, γ, 3/2 + e/2 + 2s) has a simple pole with residue

3

π2

∏
bad p

lim
s→0

(1− pe/2−3/2−2s)(1− p−1)

1− p−2
Lp(n, γ, 1/2 + e/2 + 2s)

if n 6= 0, and

3

2π2

∏
bad p

lim
s→0

(1− pe/2−3/2−2s)(1− p−1)

1− p−2
Lp(n, γ, 1/2 + e/2 + 2s)

if n = 0.

This pole cancels with the zero of I(k, y, n, s) at s = 0, whose derivative there is

d

ds

∣∣∣
s=0

I(k, y, n, s) = −16π2(1+i)y−1/2β(4π|n|y), where β(x) =
1

16π

∫ ∞
1

u−3/2e−xu du,

as calculated in [11], section 2.2. This expression is also valid for n = 0, where it

reduces to

d

ds

∣∣∣
s=0

I(k, y, 0, s) = 2π(−i)3/2 d

ds

∣∣∣
s=0

2−1/2−2sy−1/2−s Γ(2s+ 1/2)

Γ(s)Γ(s+ 3/2)
= − 2π
√
y

(1+i).

Therefore, E∗3/2(τ, 0) is a harmonic weak Maass form that is not generally holo-

morphic:

E∗3/2(τ, 0)

= E3/2(τ) +
3(−1)(3+b+−b−)/4

√
2

π
√
y|Λ′/Λ|

( ∑
γ∈Λ′/Λ
q(γ)∈Z

∏
p|#(Λ′/Λ)

1− p(e−3)/2

1 + p−1
Lp(0, γ, 1/2 + e/2)eγ

)

+
48(−1)(3+b+−b−)/4

√
2√

y|Λ′/Λ|

∑
γ∈Λ′/Λ
n∈Z−q(γ)
−2n|Λ′/Λ|=�

[
β(4π|n|y)

∏
bad p

1− p(e−3)/2

1 + p−1
Lp(n, γ, 1/2 + e/2)

]
qneγ ,

where −2n|Λ′/Λ| = � means that −2n|Λ′/Λ| should be a rational square. (In

particular, the real-analytic correction involves only exponents n ≤ 0.)
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Example 15. Zagier’s Eisenstein series [11] occurs as the Eisenstein series for the

quadratic form q(x) = x2. The underlying harmonic weak Maass form is

E∗3/2(τ, 0) = E3/2(τ)− 3

π
√
y
e0 −

48
√
y

∑
γ∈Λ′/Λ

∑
n∈Z−q(γ)
−n=�

β(4π|n|y)
∏

bad p

1− p−1

1 + p−1
Lp(n, γ, 1)︸ ︷︷ ︸

=1

qneγ

= E3/2(τ)− 24
√
y

∞∑
n=−∞

β(4π(n/2)2y)q−(n/2)2en/2.

The coefficient of qn/4 in

E3/2(τ) =
(

1− 6q − 12q2 − 16q3 − ...
)
e0 +

(
− 4q3/4 − 12q7/4 − 12q11/4 − ...

)
e1/2

is −12 times the Hurwitz class number H(n). (We obtain Zagier’s Eisenstein series

in its usual form by summing the components, replacing τ by 4τ and y by 4y, and

dividing by −12.)

Remark 16. We can use essentially the same argument as Hirzebruch and Zagier

[11] to derive the transformation law of the general E3/2. Write E∗3/2(τ, 0) in the

form

E∗3/2(τ, 0) = E3/2 +
1
√
y

∑
γ∈Λ′/Λ

∑
n∈Z−q(γ)
n≤0

a(n, γ)β(−4πny)qneγ

with coefficients a(n, γ). Applying the ξ-operator ξ = y3/2 ∂
∂τ of [3] to E∗3/2(τ, 0)

and using

d

dy

[ 1
√
y
β(y)

]
=

1

16π

d

dy

[ ∫ ∞
y

v−3/2e−v dv
]

= − 1

16π
y−3/2e−y

shows that the “shadow”

ϑ(τ) =
∑
γ,n

a(n, γ)q−neγ

is a modular form of weight 1/2 for the representation ρ (not its dual!), and

E∗3/2(τ, 0)− E3/2(τ) = y−1/2
∑

γ∈Λ′/Λ

∑
n∈Z−q(γ)

a(n, γ)β(−4πny)qneγ

=
1

16π
y−1/2

∫ ∞
1

∑
γ,n

u−3/2e−4πnuyqneγ du

=
1

16π
y−1/2

∫ ∞
1

u−3/2ϑ(2iuy − τ) du

=

√
2i

16π

∫ i∞

−x+iy

(v + τ)−3/2ϑ(v) dv, v = 2iuy − τ.
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For any M =

(
a b
c d

)
∈ Mp2(Z), defining M̃ =

(
a −b
−c d

)
as in remark 6 and

substituting v = M̃ · t gives

E∗3/2(M · τ, 0)− E3/2(M · τ) =

√
2i

16π

∫ i∞

−M ·τ

(aτ + b

cτ + d
+ v
)−3/2

ϑ(v) dv

=

√
2i

16π

∫ d/c

−τ

(aτ + b

cτ + d
+

at− b
−ct+ d

)−3/2

ϑ(M̃ · t) dt

(ct− d)2

=

√
2i

16π
(cτ + d)3/2

∫ d/c

−τ
(τ + t)−3/2ρ(M̃)ϑ(t) dt

= (cτ + d)3/2ρ∗(M)
[√2i

16π

∫ d/c

−τ
(τ + t)−3/2ϑ(t) dt

]
.

Since E∗3/2(M · τ, 0) = (cτ + d)3/2ρ∗(M)E∗3/2(τ, 0), we conclude that

(4) E3/2(M · τ) = (cτ + d)3/2ρ∗(M)
[
E3/2(τ) +

√
2i

16π

∫ i∞

d/c

(τ + t)−3/2ϑ(t) dt
]
.

Remark 17. The transformation law (4) can be used to give an easier sufficient

condition for when E3/2 is actually a modular form. For example, one can show

that M1/2(ρ) = 0 for the quadratic form q(x, y, z) = −x2 − y2 − z2, which implies

that the series ϑ defined above must be identically 0 and therefore

E3/2(M · τ) = (cτ + d)3/2ρ∗(M)E3/2(τ),

so E3/2 is a true modular form. (In this case, the local L-series L2(n, γ, 2 + 2s)

at p = 2 is holomorphic at s = 0, and therefore the factor (1 − 2−2s) annihilates

the L-series term L̃(n, γ, 3/2 + e/2) in the shadow.) This must be the theta series

because M3/2(ρ∗) is one-dimensional.

It may be worth pointing out that the coefficient formulas ([5], theorem 4.8) for

this theta series and for the Zagier Eisenstein series are nearly identical, since the

squarefree parts of their discriminant and the “bad primes” are the same: the only

real difference between them is the local factor at 2. For odd integers n, the local

factor at 2 is easily computed and in both cases depends only on the remainder

of n mod 8, so the coefficients r3(n) of the theta series and H(4n) of the Zagier

Eisenstein series within these congruence classes are proportional. Specifically,

r3(n) = 12H(4n), n ≡ 1, 5 (8); r3(n) = 6H(4n), n ≡ 3 (8); r3(n) = 0, n ≡ 7 (8).

These identities are well-known and were already proved by Gauss.

Example 18. Even when M1/2(ρ) 6= 0, we can identify ϑ in M1/2(ρ) by computing

finitely many coefficients. Let q be the quadratic form q(x, y, z) = x2 + y2 − z2.

The space M1/2(ρ) is always spanned by unary theta series embedded into C[Λ′/Λ]
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(as proven by Skoruppa [14]) and in this case one can find the basis

ϑ1(τ) =
(

1 + 2q + 2q4 + ...
)

(e(0,0,0) + e(1/2,0,1/2))

+
(

2q1/4 + 2q9/4 + 2q25/4 + ...
)

(e(0,1/2,0) + e(1/2,1/2,1/2)),

ϑ2(τ) =
(

1 + 2q + 2q4 + ...
)

(e(0,0,0) + e(0,1/2,1/2))

+
(

2q1/4 + 2q9/4 + 2q25/4 + ...
)

(e(1/2,0,0) + e(1/2,1/2,1/2)).

The local L-series at the bad prime p = 2 for the constant term n = 0 are

(1− 2−2s)Lp(0, 0, 2 + 2s) =
1

1− 2−1−4s
and (1− 2−2s)Lp(0, γ, 2 + 2s) = 1

for γ ∈ {(1/2, 0, 1/2), (0, 1/2, 1/2)}, which implies that

E∗3/2(τ, 0) = E3/2(τ)− 3

2π
√
y

(4

3
e(0,0,0)+

2

3
e(1/2,0,1/2)+

2

3
e(0,1/2,1/2)

)
+
(

negative powers of q
)

and therefore the shadow in equation (6) must be

ϑ(τ) = −8
(
ϑ1(τ) + ϑ2(τ)

)
.

In particular, the e0-component E3/2(τ)0 of E3/2(τ) is a mock modular form of

level 4 that transforms under Γ(4) by

E3/2(M ·τ)0 = (cτ+d)3/2
[
E3/2(τ)0−

√
2i

π

∫ i∞

d/c

(τ+t)−3/2Θ(t) dt
]
, Θ(t) =

∑
n∈Z

e(n2t).

It was shown by Bringmann and Lovejoy [1] that the series

M(τ + 1/2) = 1−
∞∑
n=1

|α(n)|qn = 1− 2q − 4q2 − 8q3 − 10q4 − ...

of example 4, where |α(n)| counts overpartition rank differences of n, has the same

transformation behavior under the group Γ0(16), which implies that the difference

betweenM(τ + 1/2) and the e0-component of E3/2 is a true modular form of level

16. We can verify that these are the same by comparing all Fourier coefficients up

to the Sturm bound.

6. Weight 2

In weight k = 2, the L-series term is

L̃(n, γ, 2+e/2+2s) =


1

L(1+2s,χD)

∏
bad p(1− pe/2−2−2s)Lp(n, γ, 1 + e/2 + 2s) : n 6= 0;

L(1+2s,χD)
L(2+2s,χD)

∏
bad p(1− pe/2−2−2s)Lp(n, γ, 1 + e/2 + 2s) : n = 0.

Since L(1, χ) is never zero for any Dirichlet character, the only way a pole can

occur at s = 0 is if n = 0 and D = |Λ′/Λ| is square. (In particular, when |Λ′/Λ| is

not square, E2 is a modular form.)
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Assume that |Λ′/Λ| is square. Then

L(1 + 2s, χD) = ζ(1 + 2s)
∏

bad p

(1− p−1−2s),

and therefore L̃(0, γ, 2 + e/2 + 2s), has a simple pole at s = 0 with residue

Res
(
L̃(0, γ, 2 + e/2 + 2s), s = 0

)
=

1

2L(2, χD)

∏
bad p

[
(1− p−1) lim

s→0
(1− pe/2−2−2s)Lp(0, γ, 1 + e/2 + 2s)

]
=

3

π2
lim
s→0

∏
bad p

1− pe/2−2−2s

1 + p−1
Lp(0, γ, 1 + e/2 + 2s)

for any γ ∈ Λ′/Λ with q(γ) ∈ Z. This pole is canceled by the zero of I(2, y, 0, s) at

s = 0 which has derivative

d

ds

∣∣∣
s=0

I(2, y, 0, s) = −2π(2y)−1 d

ds

∣∣∣
s=0

(2y)−2s Γ(2s+ 1)

Γ(s)Γ(s+ 2)

= −π
y
,

so

(5)

E∗2 (τ, 0) = E2(τ)− 3

πy
√
|Λ′/Λ|

lim
s→0

∑
γ∈Λ′/Λ
q(γ)∈Z

∏
bad p

1− pe/2−2−2s

1 + p−1
Lp(0, γ, 1+e/2+2s)eγ .

Example 19. Let Λ be a unimodular lattice. The only bad prime is p = 2. Using

the hyperbolic plane q(x, y) = xy to define Λ, the local L-function is

L2(0, 0, s) =
1− 2−s

(1− 21−s)2

with L2(0, 0, 2) = 3, so we obtain the well-known result

E∗2 (τ, 0) = E2(τ)− 3

πy
· 1− 1/2

1 + 1/2
L2(0, 0, 2) = E2(τ)− 3

πy
.

Remark 20. We can summarize the above by saying that

E∗2 (τ, 0) = E2(τ)− 1

y

∑
γ∈Λ′/Λ
q(γ)∈Z

A(γ)eγ

is a Maass form for some constants A(γ). For M =

(
a b
c d

)
∈Mp2(Z), since

E∗2 (M · τ, 0) = (cτ + d)2ρ∗(M)E∗2 (τ, 0),

we find the transformation law

E2(M · τ) = E∗2 (M · τ, 0) +
|cτ + d|2

y

∑
γ∈Λ′/Λ
q(γ)∈Z

A(γ)eγ

= (cτ + d)2
[
ρ∗(M)E2(τ)− 2ic(cτ + d)

∑
q(γ)∈Z

A(γ)ρ∗(M)eγ

]
.
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Example 21. The weight-2 Eisenstein series for the quadratic form q(x, y) =

x2 + 3xy + y2 is a true modular form because the discriminant 5 of q is not a

square. In particular, the e0-component

1− 30q − 20q2 − 40q3 − 90q4 − 130q5 − 60q6 − 120q7 − 100q8 − 210q9 − ...

is a modular form of weight 2 for the congruence subgroup Γ1(5). Using remark 11,

we see that the coefficient c(n) of qn for n coprime to 10 is

c(n) =

−30
∑
d|n

(
5
n/d

)
d : n ≡ ±1 mod 10;

−20
∑
d|n

(
5
n/d

)
d : n ≡ ±3 mod 10;

with a more complicated expression for other n involving the local factors at 2 and

5.

Example 22. The weight-2 Eisenstein series for the quadratic form q(x, y) = 2xy

is

E2(τ) =
(

1− 8q − 40q2 − 32q3 − 104q4 − ...
)
e(0,0)

+
(
− 16q − 32q2 − 64q3 − 64q4 − 96q5 − ...

)
(e(0,1/2) + e(1/2,0))

+
(
− 8q1/2 − 32q3/2 − 48q5/2 − 64q7/2 − 104q9/2 − ...

)
e(1/2,1/2)

=
(

1− 8

∞∑
n=1

[∑
d|2n

(−1)dd
]
qn
)
e(0,0)

+
(
− 8

∞∑
n=1

[∑
d|n

(1− (−1)n/d)d
]
qn
)

(e(0,1/2) + e(1/2,0))

+
(
− 8

∞∑
n=0

σ1(2n+ 1)qn+1/2
)
e(1/2,1/2).

It is not a modular form. On the other hand, the real-analytic correction (7) only

involves the components eγ for which q(γ) ∈ Z, i.e. e(0,0), e(0,1/2), e(1/2,0), so the

components

1− 8

∞∑
n=1

[∑
d|2n

(−1)dd
]
qn,

∞∑
n=1

[∑
d|n

(1− (−1)n/d)d
]
qn

are only quasimodular forms of level 4, while
∑∞
n=0 σ1(2n+ 1)q2n+1 is a true mod-

ular form.

Example 23. Although the discriminant group of the quadratic form q(x1, x2, x3, x4) =

−x2
1 − x2

2 − x2
3 − x2

4 has square order 16, the correction term still vanishes in this

case. This is because the local L-functions for p = 2,

L2(0, γ, 3 + s) =

{
2+2−s

2−2−s : γ = 0;

1 : γ = (1/2, 1/2, 1/2, 1/2);

are both holomorphic at s = 0 and therefore annihilated by the term (1−p4/2−2−2s)

at s = 0. (Another way to see this is that
∑
γ∈Λ′/Λ
q(γ)∈Z

A(γ)eγ is invariant under ρ due
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to the transformation law of E2, but there are no nonzero invariants of ρ in this

case.) In fact, the Eisenstein series E2 for this lattice is exactly the theta series as

one can see by calculating the first few coefficients. Comparing coefficients of the

e0-component leads immediately to Jacobi’s formula:

#{(a, b, c, d) ∈ Z4 : a2 + b2 + c2 + d2 = n}

=
(2π)2

L(2, χ64) · 4
· σ1(n, χ64) · L2(n, 0, 3)

= 8 ·
[∑
d|n

( 4

n/d

)
d
]
·

{
1 : n odd;

3 · 2−v2(n) : n even;

=


8
∑
d|n

d : n odd;

24
∑
d|n
d odd

d : n even;

for all n ∈ N.

7. Weight 1/2

The Fourier expansion (1) is no longer valid in weight k = 1/2; in fact, the

L-series factor in this case is

L̃
(
n, γ,

e+ 1

2
+2s

)
=


LD(2s)
ζ(4s)

∏
bad p

1−p(e−1)/2−2s

1−p−4s Lp

(
n, γ, e−1

2 + 2s
)

: n 6= 0;

ζ(4s−1)
ζ(4s)

∏
bad p

(1−p(e−1)/2−2s)(1−p1−4s)
1−p−4s Lp

(
n, γ, e−1

2 + 2s
)

: n = 0;

which generally has a singularity at s = 0, so our approach fails in weight 1/2.

Despite this, the weight 1/2 Eisenstein series E∗1/2(τ, s) extends analytically to

s = 0 (by a result of Shimura [13], it is entire except for a possible simple pole at s =

1/2). One way to study E∗1/2(τ, s) is by applying the Bruinier-Funke operator ξ3/2 to

the weight 3/2 series E∗3/2(τ, s) for the dual representation (i.e. the same lattice with

negated quadratic form); from ξ3/2y
s = − si2 y

s+1/2 one obtains ξ3/2E
∗
3/2(τ, s) =

− si2 E
∗
1/2(τ, s + 1/2) for all large enough s. Carrying over the arguments from

the scalar-valued case (e.g. [8], section 4.10) should imply that E∗1/2(τ, s) will

satisfy some functional equation relating E∗1/2(τ, s + 1/2) to E∗1/2(τ,−s) (or more

likely some combination of E∗1/2,β(τ,−s) as β runs through elements of Λ′/Λ with

q(β) ∈ Z in general) although in the half-integer case this seems less straightforward.

Assuming this, for large enough Re[s] it follows that E∗1/2(τ,−s) should be a linear

combination of ξ3/2E
∗
3/2,β(τ, s) with coefficients depending on s but independent of

τ ; we might even expect this to hold for arbitrary s and therefore conjecture:

Conjecture 24. The zero-value E∗1/2(τ, 0) for a discriminant form (Λ′/Λ, q) is a

holomorphic modular form of weight 1/2; moreover it is a linear combination of the

shadows of mock Eisenstein series E3/2,β(τ) for (Λ′/Λ,−q).
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Unfortunately, if this is true then from the point of view of this note there is little

motivation to consider E∗1/2(τ, 0) further: modular forms of weight 1/2 are spanned

by what are essentially unary theta series and any resulting identities among coef-

ficients will be uninteresting. There may be interest in higher terms of the Taylor

expansion of E∗1/2(τ, s) in the variable s which might be used to generate mock mod-

ular forms of weight 1/2 and higher depth, but this is outside the scope of this note.

There is one class of examples where this conjecture can be verified directly. In

dimension e = 1, where the quadratic form is q(x) = −mx2 for some m ∈ N, we

can make sense of the coefficient formula because the terms 1− p1−4s are cancelled

by the numerators at s = 0, and the Fourier series then provides the analytic

continuation of E∗1/2(τ, s) to s = 0. The L-series factor in this case is

L̃(n, γ, 1 + 2s) =


L(2s,χD)
ζ(4s)

∏
bad p

Lp(n,γ,2s)
1+p−2s : n 6= 0;

ζ(4s−1)
ζ(4s)

∏
bad p

(1−p1−4s)Lp(n,γ,2s)
1+p−2s : n = 0.

Here, D is the discriminant

D = 2d2
γn|Λ′/Λ|

∏
bad p

p2 = 4mnd2
γ

∏
bad p

p2.

Suppose for simplicity that m is squarefree (and in particular, β = 0 is the

only element of Λ′/Λ with q(β) ∈ Z). The local L-factors can be calculated by

elementary means (for example, with Hensel’s lemma), and the result in this case

is that E1/2(τ) = 1 · e0 +
∑
γ∈Λ′/Λ

∑
n∈Z−q(γ) c(n, γ)qneγ with

c(n, γ) = 2 · (1/2)ε, ε = #{primes p 6= 2 dividing dγ}+

{
1 : 4|dγ
0 : otherwise.

Here, dγ is the denominator of γ; that is, the smallest number for which dγγ ∈ Λ.

The shadow of the mock Eisenstein series E3/2(τ) attached to mx2 can be com-

puted directly as well, although this is more difficult. On the other hand, one can

use the following trick: via the theta decomposition, the nonholomorphic weight

3/2 Eisenstein series E∗3/2(τ, 0) corresponds to a nonholomorphic, scalar Jacobi

Eisenstein series E∗2,m(τ, z, 0) of index m. The argument of chapter 4 of [9] still

applies to this situation and in particular E∗2,m(τ, z, 0) = 1
σ1(m)E

∗
2,1(τ, z, 0)|Vm for

the Hecke-type operator

Φ|Vm(τ, z) = m
∑
M

(cτ + d)−2e
(
− cmz2

cτ + d

)
Φ
(aτ + b

cτ + d
,
mz

cτ + d

)
,

the sum taken over cosets of determinant-m integral matrices M by SL2(Z). (Here

we must assume that m is squarefree). However, E∗2,1(τ, z, 0) arises through the

theta decomposition from the Zagier Eisenstein series and so its coefficients are

well-known. In this way one can compute

E∗3/2(τ, 0) = − 12

σ1(m)

∑
γ∈Λ′/Λ

∑
n∈Z−q(γ)

∑
a|m

aH(4mn/a2)qneγ+
1
√
y

∑
γ∈Λ′/Λ

∑
n∈Z+q(γ)

a(n, γ)q−neγ ,
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where H(n) is the Hurwitz class number (and H(n) = 0 if n is noninteger) and the

coefficients of the shadow are

a(n, γ) =


−24
√
mσ0(m)
σ1(m) : n = 0;

−48
√
mσ0(gcd(m,n))

σ1(m) : mn = �, mn 6= 0;

0 : otherwise,

and where we use the convention gcd(m,n) =
∏
vp(m),vp(n)≥0 p

min(vp(m),vp(n)) (e.g.

gcd(30, 3/4) = 3). Unraveling this, we see that E1/2(τ) differs from the shadow of

E3/2(τ) by the factor −24
√
mσ0(m)
σ1(m) .
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