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Abstract. We study the algebras of modular forms on type IV symmetric domains for simple
lattices; that is, lattices for which every Heegner divisor occurs as the divisor of a Borcherds
product. For every simple lattice L of signature (n, 2) with 3 ≤ n ≤ 10, we prove that the graded
algebra of modular forms for the maximal reflection subgroup of the orthogonal group of L is freely
generated. We also show that, with five exceptions, the graded algebra of modular forms for the
maximal reflection subgroup of the discriminant kernel of L is also freely generated.
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1. Introduction and statement of results

An even integral lattice L of signature (n, 2) is called simple if the dual Weil representation
attached to L admits no cusp forms of weight 1 +n/2. In particular L is simple if and only if every
Heegner divisor on the modular variety attached to L occurs as the divisor of a Borcherds product.
There are finitely many simple lattices and they were determined by Bruinier–Ehlen–Freitag [7].
In this paper we will prove:

Theorem 1.1. Let L be a simple lattice of signature (n, 2), with 3 ≤ n ≤ 10.

(i) Let Or(L) denote the subgroup generated by all reflections in the orthogonal group of L.
Then the graded ring of modular forms M∗(Or(L)) is freely generated.

(ii) Let Õr(L) denote the subgroup generated by all reflections in the discriminant kernel of L.

With five exceptions, the graded ring of modular forms M∗(Õr(L)) is freely generated.

The main tool in the proof is the necessary and sufficient condition of [30] for the graded ring
M∗(Γ) of modular forms on a type IV symmetric domain for an arithmetic group Γ to be free. This
asserts that M∗(Γ) is freely generated by n+1 modular forms if and only if their Jacobian is a cusp
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form that vanishes precisely on all mirrors of reflections in Γ with multiplicity one, where n is the
dimension of the symmetric domain. To apply this theorem, we construct the potential Jacobians
and the generators using the additive and multiplicative lifts due to Borcherds [3]. We can restrict
our attention to reflection groups because if M∗(Γ) is a free algebra then Γ must be generated by
reflections (see [23]).

The five exceptions in part (ii) of Theorem 1.1 are 2U(2) ⊕ A1(2), U ⊕ U(2) ⊕ A1(2), and
2U ⊕ A1(m) for m = 2, 3, 4 can be understood in terms of this criterion. For the first of these

lattices, Õr is empty; for the other four, the potential Jacobians fail to be cusp forms.
Let us explain briefly why one might expect a relationship between free algebras of modular forms

and simple lattices. The necessary condition of [30] states that the Jacobian J of any generators
of a free algebra M∗(Γ) is a cusp form for the determinant character which vanishes exactly on all
mirrors of reflections in Γ with multiplicity one. Moreover, J2 (which has trivial character) factors
as the product of modular forms which each vanish precisely on a single Γ-orbit of these mirrors.
In many cases, the converse theorem for Borcherds products [5] implies that these modular forms
must be Borcherds products, and through the “obstruction principle” [4], we see that a necessary
criterion for L to admit free algebras is that all cusp forms for the dual Weil representation of L
of weight 1 + n/2 have vanishing Fourier coefficients in exponents that correspond to reflections
of L. By contrast, only in very exceptional cases can the generators themselves be represented as
Borcherds products.

As far as the authors are aware, there are no lattices where this is known to hold except for
lattices for which it is trivially true (e.g. simple lattices, or more generally lattices which become
simple after dividing out by a group of automorphisms). There are examples of lattices of the latter
type that yield free algebras of modular forms. For example, some free algebras associated to the
lattices 2U ⊕ L where L is the Bn-root lattice (i.e. Zn with the Euclidean bilinear form) appear
in [32], the case n = 2 of which is particularly well-known through the interpretation as Hermitian
modular forms for the Gaussian integers (cf. [10]). The methods of this paper can also be applied
to this case (see §9 for an example). Unfortunately it is not clear how to classify lattices of this
type.

The classification of [7] also contains two simple lattices of signature (n, 2) with n > 10, namely
II18,2 and II26,2, but their algebras of modular forms cannot be free by a theorem of Vinberg–
Shvartsman [29]. In a future paper we hope to consider the algebras of modular forms for simple
lattices of signature (2, 2); we do not carry this out here because the list of such lattices is quite
long (according to [7] there are 67 such lattices) and because the failure of Koecher’s principle in
general must be overcome with different techniques.

Many of the algebras of modular forms for the 37 lattices covered by Theorem 1.1 appear else-
where in the literature, and in this paper we simply complete the proof by cases. The literature on
algebras of modular forms is quite broad, and (thanks to exceptional isomorphisms in low dimen-
sion) many results appear in a rather different form than Theorem 1.1. We have attributed the
known results to the best of our knowledge in Tables 1 and 2, where we also indicate the lattices
studied in this paper. Not all of the cases in this paper are new. In particular the structure of

M∗(Õr(2U(2)⊕D4)) is the main result of [13], and M∗(Õr(U ⊕U(m)⊕A1)) has been determined
in [1] for m = 2, 3, 4. We chose to include these cases because they fit naturally into towers of free
algebras and because the Jacobian criterion of [30] simplifies the proofs considerably.
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Table 1. Free algebras of modular forms for the subgroup Γ generated by all re-

flections in O+(L). Õ
+

(L) denotes the discriminant kernel. Γ is labeled Or(L) if it

is neither O+(L) nor Õ
+

(L).

# L Γ Weights of generators Reference Section

1 2U ⊕A1 O+ 4, 6, 10, 12 [18]

2 2U ⊕A2 O+ 4, 6, 10, 12, 18 [9]

3 2U ⊕A3 O+ 4, 6, 8, 10, 12, 18 [19]

4 2U ⊕A4 Õ
+

4, 6, 7, 8, 9, 10, 12 [32]

5 2U ⊕A5 Õ
+

4, 6, 6, 7, 8, 9, 10, 12 [32]

6 2U ⊕A6 Õ
+

4, 5, 6, 6, 7, 8, 9, 10, 12 [32]

7 2U ⊕A7 Õ
+

4, 4, 5, 6, 6, 7, 8, 9, 10, 12 [32]

8 2U ⊕D4 O+ 4, 6, 10, 12, 16, 18, 24 [20]

9 2U ⊕D5 O+ 4, 6, 8, 10, 12, 14, 16, 18 [27]

10 2U ⊕D6 O+ 4, 6, 8, 10, 12, 12, 14, 16, 18 [28]

11 2U ⊕D7 O+ 4, 6, 8, 10, 10, 12, 12, 14, 16, 18 [28]

12 2U ⊕D8 O+ 4, 6, 8, 8, 10, 10, 12, 12, 14, 16, 18 [28]

13 2U ⊕ E6 Õ
+

4, 6, 7, 10, 12, 15, 16, 18, 24 [32]

14 2U ⊕ E7 O+ 4, 6, 10, 12, 14, 16, 18, 22, 24, 30 [32]

15 2U ⊕ E8 O+ 4, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42 [15]

16 2U ⊕A1(2) Or 4, 4, 6, 6 [10]

17 2U ⊕A1(3) Or 2, 4, 4, 6 [8]

18 2U ⊕A1(4) Or 1, 3, 4, 6 [18]

19 U ⊕ U(2)⊕A1 O+ 2, 4, 6, 8 [17] §3
20 U ⊕ U(2)⊕A2 O+ 2, 4, 6, 8, 10

21 U ⊕ U(2)⊕A3 O+ 2, 4, 6, 8, 10, 12

22 U ⊕ U(2)⊕D4 O+ 2, 6, 8, 10, 12, 16, 20

23 U(2)⊕ S8 O+ 2, 4, 6, 8 §4
24 2U(2)⊕A2 Or 4, 4, 6, 6, 6

25 2U(2)⊕A3 O+ 4, 6, 6, 8, 10, 12 [13]

26 2U(2)⊕D4 O+ 4, 6, 10, 12, 16, 18, 24 [20]

27 U ⊕ U(3)⊕A1 Or 1, 3, 4, 6 [17] §5
28 U ⊕ U(3)⊕A2 Or 1, 4, 6, 9, 12

29 U ⊕ U(4)⊕A1 Or 1, 3, 4, 6 §6
30 U ⊕ S8 O+ 2, 4, 6, 10 §7
31 2U(3)⊕A1 O+ 2, 4, 4, 6 §8
32 U ⊕ U(2)⊕A1(2) O+ 2, 4, 6, 8

33 2U(2)⊕A1 O+ 4, 4, 6, 6 §8.3
34 2U(4)⊕A1 O+ 4, 6, 10, 12

35 2U(2)⊕A1(2) O+ 4, 6, 10, 12

36 U(2)⊕ U(4)⊕A1 O+ 2, 4, 6, 8

37 2U(3)⊕A2 O+ 4, 6, 10, 12, 18
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Table 2. Free algebras of modular forms for the subgroup Γ generated by all re-

flections in the discriminant kernel Õ
+

(L). Γ is labeled Õr(L) if it is neither O+(L)

nor Õ
+

(L).

# L Γ Weights of generators Reference Section

1 2U ⊕A1 O+ 4, 6, 10, 12 [18]

2 2U ⊕A2 Õ
+

4, 6, 9, 10, 12 [9]

3 2U ⊕A3 Õ
+

4, 6, 8, 9, 10, 12 [19]

4 2U ⊕A4 Õ
+

4, 6, 7, 8, 9, 10, 12 [32]

5 2U ⊕A5 Õ
+

4, 6, 6, 7, 8, 9, 10, 12 [32]

6 2U ⊕A6 Õ
+

4, 5, 6, 6, 7, 8, 9, 10, 12 [32]

7 2U ⊕A7 Õ
+

4, 4, 5, 6, 6, 7, 8, 9, 10, 12 [32]

8 2U ⊕D4 Õ
+

4, 6, 8, 8, 10, 12, 18 [32]

9 2U ⊕D5 Õ
+

4, 6, 7, 8, 10, 12, 16, 18 [32]

10 2U ⊕D6 Õ
+

4, 6, 6, 8, 10, 12, 14, 16, 18 [32]

11 2U ⊕D7 Õ
+

4, 5, 6, 8, 10, 12, 12, 14, 16, 18 [32]

12 2U ⊕D8 Õ
+

4, 4, 6, 8, 10, 10, 12, 12, 14, 16, 18 [32]

13 2U ⊕ E6 Õ
+

4, 6, 7, 10, 12, 15, 16, 18, 24 [32]

14 2U ⊕ E7 O+ 4, 6, 10, 12, 14, 16, 18, 22, 24, 30 [32]

15 2U ⊕ E8 O+ 4, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42 [15]

16 2U(2)⊕A1 Õ
+

2, 2, 2, 2 [33]

17 2U(3)⊕A1 Õ
+

1, 1, 1, 1 [33]

18 2U(4)⊕A1 Õr 1/2, 1/2, 1/2, 1/2 [24]

19 U(2)⊕ U(4)⊕A1 Õ
+

1, 1, 1, 1 [33]

20 2U(3)⊕A2 Õ
+

1, 1, 1, 1, 1 [12]

21 U ⊕ U(2)⊕A1 Õ
+

2, 4, 4, 6 [17] §3
22 U ⊕ U(2)⊕A2 Õ

+
2, 4, 4, 5, 6

23 U ⊕ U(2)⊕A3 Õ
+

2, 4, 4, 4, 5, 6

24 U ⊕ U(2)⊕D4 Õ
+

2, 4, 4, 4, 4, 6, 10

25 U(2)⊕ S8 Õ
+

2, 2, 2, 3 §4
26 2U(2)⊕A2 Õ

+
2, 2, 2, 2, 3

27 2U(2)⊕A3 Õ
+

2, 2, 2, 2, 2, 3

28 2U(2)⊕D4 Õ
+

2, 2, 2, 2, 2, 2, 6 [13]

29 U ⊕ U(3)⊕A1 Õ
+

1, 3, 3, 4 [17] §5
30 U ⊕ U(3)⊕A2 Õ

+
1, 3, 3, 3, 4

31 U ⊕ U(4)⊕A1 Õ
+

1, 2, 2, 3 [16] §6
32 U ⊕ S8 Õ

+
2, 4, 5, 6 §7
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2. Preliminaries

2.1. Vector-valued modular forms. Let L = (L,Q) be an even integral lattice with induced
bilinear form 〈x, y〉 = Q(x+ y)−Q(x)−Q(y) and dual lattice

L′ = {x ∈ L⊗Q : 〈x, y〉 ∈ Z}.

There is an induced Q/Z-valued quadratic form on the discriminant group of L:

Q : L′/L→ Q/Z, Q(x+ L) = Q(x) + Z.

The pair A := (L′/L,Q) is the discriminant form of L.
Let Mp2(Z) be the metaplectic group, consisting of pairs M = (M,φM ) where M =

(
a b
c d

)
∈

SL2(Z) and φM is a holomorphic square root of τ 7→ cτ + d on H, with the standard generators
T = (( 1 1

0 1 ) , 1) and S = (
(

0 −1
1 0

)
,
√
τ). The Weil representation ρL is the representation of Mp2(Z)

on the group ring C[A] = span(ex : x ∈ A) defined by

ρL(T )ex = e(−Q(x))ex and ρL(S)ex =
e(sig(L)/8)√

|A|

∑
y∈A

e(〈x, y〉)ey.

We remark that ρL factors through SL2(Z) if and only if sig(L) is even, and it factors through
PSL2(Z) if and only if sig(L) ≡ 0 mod 4.

A modular form of weight k ∈ 1
2Z for the Weil representation ρL is a holomorphic function

f : H→ C[A] that satisfies

f |kM(τ) := φM (τ)−2kf(M · τ) = ρL(M)f(τ)

for all M ∈ Mp2(Z), and which is holomorphic in infinity. f is represented by a Fourier series:

f(τ) =
∑
x∈A

∑
n∈Z−Q(x)

c(n, x)qnex,

and holomorphy in infinity is equivalent to c(n, x) = 0 for all n < 0.
The central element

Z = S2 = (ST )3 =
((−1 0

0 −1

)
, i
)

acts through the Weil representation by ρL(Z)ex = e(sig(L)/4)e−x and acts trivially on H. Compar-
ing f |kZ with f shows that nonzero modular forms exist only in weights k for which κ := k+sig(L)/2
is integral, and in this case their Fourier coefficients satisfy c(n, x) = (−1)κc(n,−x).

The simplest vector-valued modular forms are Eisenstein series (cf. chapter 1 of [5]). If k ≥ 5/2
and β ∈ A with Q(β) = 0 then the form

Ek,β(τ) =
∑

M∈Γ∞\Mp2(Z)

eβ|kM

converges absolutely and locally uniformly and defines a modular form of weight k whose Fourier
expansion takes the form

Ek,β(τ) =
1

2
(eβ + (−1)κe−β) +

∑
x∈L′/L

∑
n∈Z−Q(x)

n>0

c(n, x)qnex.

Here Γ∞ = 〈T,Z〉 = {M ∈ Mp2(Z) : M · ∞ = ∞} and eβ is understood as a constant function.
The space of modular forms decomposes in the form

Mk(ρL) = Sk(ρL)⊕
⊕

β∈A/±
Q(β)=0

Ek,β
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where Sk(ρL) is the space of cusp forms. The Fourier coefficients of all Ek,β are rational numbers.
Following [34], [35], when κ is even the series

Qk,m,β(τ) =
∑

M∈Γ∞\Mp2(Z)

( ∞∑
n=1

qmn
2
emβ

)∣∣∣
k
M, β ∈ A, m ∈ Z−Q(β)

yield a spanning set of vector-valued cusp forms with easily computed rational Fourier coefficients;
and similarly when κ is odd and k ≥ 7/2, the forms

Rk,m,β(τ) =
∑

M∈Γ∞\Mp2(Z)

( ∞∑
n=1

nqmn
2
emβ

)∣∣∣
k
M, β ∈ A, m ∈ Z−Q(β)

yield a spanning set of cusp forms. The spaces of modular forms in weights k ≤ 2 can be determined
by intersecting

Mk(ρL) = E4(τ)−1Mk+4(ρL) ∩ E6(τ)−1Mk+6(ρL),

where E4, E6 are the usual (scalar) Eisenstein series.
The integral orthogonal group O(L) acts on C[A] by g · ex = eg·x, and this induces an action on

modular forms f by (g · f)(τ) = g · (f(τ)). The action is simple to describe in terms of the modular
forms of the previous paragraph:

g · Ek,β = Ek,g·β, g ·Qk,m,β = Qk,m,g·β, g ·Rk,m,β = Rk,m,g·β.

(Indeed this holds for arbitrary automorphisms of the discriminant form, not all of which are
induced by elements of O(L).) One can use this observation to determine the spaces of modular
forms with any desired behavior under symmetries of the discriminant form.

The dimensions of the spaces of modular forms can be computed effectively in weights k ≥ 2 by
the Riemann-Roch formula. We will also mention that the module of vector-valued modular forms
for any fixed lattice over the graded ring M∗(SL2(Z)) = C[E4, E6] is free and finitely-generated [22]
so the dimensions can be expressed conveniently as a Hilbert series:

Hilbρ(t) :=
∑
k∈ 1

2
Z

dimMk(ρ)tk = tε/2
Pρ(t)

(1− t4)(1− t6)
, ε := sig(L) mod 2

for some polynomial Pρ ∈ Z[t] which satisfies Pρ(1) = |A|.

2.2. Orthogonal modular forms. For background on modular forms and varieties associated to
orthogonal groups we refer to [11]. In this section suppose the lattice L has signature (n, 2) for
some n ∈ N. The Hermitian symmetric domain D(L) is either of the two connected components of

{[Z] ∈ P(L⊗ C) : 〈Z,Z〉 = 0, 〈Z,Z〉 < 0}.

Let O+(L) denote the subgroup of O(L) that preserves D(L) and let Γ ≤ O+(L) be a finite-index

subgroup. The kernel of O+(L) on C[L′/L] is called the discriminant kernel of L, denoted Õ
+

(L).
Following Baily–Borel [2], the modular variety XΓ is constructed from the quotient YΓ = Γ\D(L)
by including finitely many zero- and one-dimensional cusps, which correspond to isotropic lines and
planes of L that lie in the closure of D(L) up to equivalence.

Definition 2.1. Let k ∈ N0. A modular form of weight k for a character χ : Γ → C× is a
holomorphic function F : A(L)→ C on the affine cone

A(L) := {Z ∈ (L⊗ C)\{0} : [Z] ∈ D(L)}

that satisfies

F (tZ) = t−kF (Z) for all t ∈ C×
6



and

F (gZ) = χ(g)F (Z) for all g ∈ Γ

and which extends holomorphically to all cusps of XΓ.

Modular forms can be expanded into Fourier series on the tube domain around any cusp. We
describe this in the simpler situation that L is split by a hyperbolic plane; i.e. L = U(N)⊕K for
some N ∈ N. Write elements of L in the form w = (λ, v, µ) with v ∈ K and λ, µ ∈ Z, such that the
quadratic form on L is Q(w) = Nλµ+Q(v). In this case the tube domain about the cusp [(1, 0, 0)]
is

HK := a connected component of {z = x+ iy ∈ K ⊗ C : Q(y) > 0}.
With the correct choice of connected component, there is a biholomorphic embedding

φ : HK → A(L), φ(z) = (1, z,−Q(z)).

By abuse of notation, if F is a modular form then we also denote by F the function F (z) := F (φ(z))
on HK .

The group Γ acts on HK by

g · z = w if and only if gφ(z) = j(g; z)φ(w) for some j(g, z) ∈ C×.

Thus the automorphy equations F (tZ) = t−kF (Z) and F (gZ) = χ(g)F (Z) become the usual
functional equation

F (g · z) = χ(g)j(g; z)kF (z), g ∈ Γ.

The group O+(L) contains the maps

tb : (λ, v, µ) 7→ (λ, v + b, µ+ 〈v, b〉 −Q(b)λ), b ∈ K

which act on HK by tb · z = z + b, so the invariance of F under translations implies that it is
represented by a Fourier series:

F (z) =
∑
λ∈K1

c(λ)qλ, qλ := e2πi〈λ,z〉, where K1 = {b ∈ K ⊗Q : tb ∈ Γ ∩ ker(χ)}.

2.3. Theta lift and Borcherds products. We continue to assume that L is a signature (n, 2)
lattice that splits in the form L = U(N) ⊕ K with tube domain HK for some N ∈ N, and write
vectors of L in the form (a, v, b) with a, b ∈ Z and v ∈ K. The choice of connected component in
the definition of HK fixes a positive cone for K:

C := {im(z) : z ∈ HK} ⊆ K ⊗ R.

Definition 2.2. Let r ∈ L′ be a vector of positive norm. The rational quadratic divisor associated
to r is

Dr(L) = r⊥ ∩ D(L) = {[Z] ∈ D(L) : 〈Z, r〉 = 0}.

For any β ∈ L′/L and m ∈ Z +Q(β), m > 0, one defines the Heegner divisor of index (m,β) as
the union

H(m,β) =
⋃

r∈L+β
Q(r)=m

Dr(L).

We also denote by H(m,β) the preimage under the map φ : HK → D(L), z 7→ [1 : z : −Q(z)]. Note
that with this definition there are inclusions H(n2m,nβ) ⊆ H(m,β) for all n ∈ N.
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Theorem 2.3. Let k ∈ N, k ≥ 2 and define ` := k + 1− n/2. Let

f(τ) =
∑

x∈L′/L

∑
n∈Z−Q(x)

c(n, x)qnex ∈M !
`(ρL)

be a nearly-holomorphic vector-valued modular form of weight `. Then the theta lift

Φf (z) = −N
k−1

2k

∑
a,b∈Z/NZ

e2πiab/NBk(a/N)c(0, (b/N, 0, 0))

+
∑

λ∈K′∩C

∑
j∈Z/NZ

c(Q(λ), (j/N, λ, 0))
∞∑
n=1

e2πijn/Nnk−1qnλ

is a meromorphic orthogonal modular form of weight k without character on the discriminant kernel

Õ
+

(L). Φf has a pole of order k on every rational quadratic divisor Dr(L) with c(−Q(r), r) 6= 0
and is holomorphic elsewhere.

Here Bk is the kth Bernoulli polynomial.

Proof. Theorem 14.4 of [3] �

Remark 2.4. The additive theta lift can also be applied when k = 1 but in this case the constant
coefficient of Φf (z) must be corrected, as in [3]. The formula of [3] for the constant coefficient is
rather complicated, and in practice (at least when the input form f is holomorphic) it is easier to
determine it from the constant terms of the elliptic modular forms Φf (µτ) ∈M2(Γ0(Q(µ))), where
µ ∈ K can be any vector of positive norm. Note that cusp forms of weight 2 − n/2 can lift to
non-cusp forms of weight 1.

We will often take additive theta lifts as generators for rings of modular forms, and the following
criterion due to Bruinier for the injectivity of the theta lift is helpful:

Theorem 2.5. Suppose N = 1; i.e. L splits as L = U ⊕ K, and that K is isotropic. Then the
theta lift on holomorphic forms is injective in every weight.

Proof. This follows from Theorem 1.2, Corollary 1.3 and Theorem 4.2 of [6]. �

The spaces of additive lifts of vector-valued modular forms invariant under Γ are called the Maass
subspace, denoted Maassk(Γ).

The orthogonal Eisenstein series can be constructed through the theta lift:

Definition 2.6. The Eisenstein series Ek of weight k ≥ (n + 3)/2, k ∈ 2Z is the theta lift of the
vector-valued Eisenstein series Ek+1−n/2,0(τ).

Note that our definition does not agree exactly with the definition of the Eisenstein series by
averaging a constant function over a parabolic subgroup, i.e. the value at s = 0 in

Ek(z, s) =
∑

g∈Γ∞\O+(L)

j(g; z)−k|j(g; z)|−2sQ(y)s, z = x+ iy

where Γ∞ = {g ∈ O+(L) : j(g; z) = 1}. Instead, Ek(z, s) is essentially the lift of the sum of all
vector-valued Eisenstein series associated to the isotropic cosets in L′/L:

Ek(z, s) =
πs(2πi)k

Γ(s+ k)ζ(2s+ k)
Φf (z), f =

∑
β∈L′/L
Q(β)=0

Ek+1−n/2,β(τ, s), Re[s]� 0.
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In either definition the constant term of the Eisenstein series is

(2πi)k

Γ(k)ζ(k)
= − 2k

Bk

by convention, where Bk is the kth Bernoulli number.
Finally we review Borcherds products. The Borcherds lift is a multiplicative map that takes

nearly-holomorphic vector-valued modular forms to orthogonal modular forms, all of whose zeros
and poles lie on rational quadratic divisors, and which are represented locally by infinite products.
It is closely related to the case k = 0 of the (additive) theta lift.

Theorem 2.7. Let f(τ) =
∑

x∈L′/L

∑
n∈Z−Q(x) c(n, x)qnex ∈M !

1−n/2(ρL) be a nearly holomorphic

modular form of weight 1 − n/2 for which c(n, x) is an integer for all n ≤ 0. There is a function
Ψf (z) on HK with the following properties:

(1) Ψf is a meromorphic modular form of weight c(0, 0)/2.
(2) The divisor of Ψf on HK is

div Ψf =
∑

β∈L′/L

∑
m∈Z+Q(β)

m>0

c(−m,β)H(m,β).

(3) On any connected component W of HK\
⋃
c(−m,β) 6=0H(m,β) (i.e. a Weyl chamber), Ψf

has the product representation

Ψf (z) = C · qρ
∏
λ∈K′

〈λ,W 〉<0

∏
j∈Z/NZ

(
1− e2πij/Nqλ

)c(−Q(λ),(j/N,λ,0))

for some vector ρ ∈ K ⊗ Q (called the Weyl vector of Ψf on W ) and some constant C of
absolute value N .

Here, 〈λ,W 〉 < 0 means that 〈λ,w〉 < 0 for every w ∈ W . When L is a lattice of the form
U(N1) ⊕ U(N2) ⊕ L0 with N1, N2 ∈ N and L0 positive-definite, one can compute the Weyl vector
using Theorem 10.4 of [3]. This applies to all but two of the lattices considered in this paper. In
the remaining cases, we compute the Weyl vectors recursively using the method of quasi-pullbacks
(briefly described in the next paragraphs).

In general, any isometric embedding φ : L1 → L2 of lattices of signature (`1, 2) and (`2, 2) induces
a map on symmetric spaces

φ : D(L1)→ D(L2), [Z] 7→ [φ(Z)]

and also on affine cones. The pullback along φ,

φ∗ : F 7→ F ◦ φ
sends modular forms on L2 to modular forms on L1 of the same weight.

Suppose L1 and L2 are of the form L1 = U(N) ⊕ K1 and L2 = U(N) ⊕ K2 and that φ arises
from an embedding K1 → K2 by acting trivially on the U(N) component. Then the pullbacks of
a theta lift F on L2 can be computed as theta lifts on L1, and therefore do not require the form F
to be computed at all. By applying this idea carefully, it is sometimes possible to reduce questions
about generators and relations for modular forms on L2 to modular forms on L1.

In the simplest case, suppose φ(K1) is an orthogonal direct summand in K2, i.e. K2 = φ(K1)⊕M
where M is necessarily positive-definite. The basic vector-valued modular forms for the Weil
representation for K2 are tensors of the form f(τ) ⊗ g(τ) where f ∈ M∗(ρφ(K1)) ∼= M∗(ρK1) and
g ∈M∗(ρM ). In this case one can show that the pullback of the lift of f ⊗ g is given by

φ∗Φf⊗g = Φf ·〈g,ΘM 〉,
9



where 〈g,ΘM 〉 is the scalar-valued modular form

〈g,ΘM 〉 =
∑

x∈M ′/M

gx(τ)θM,x(τ) =
∑
x∈M ′

gx+M (τ)qQ(x) ∈M∗(SL2(Z))

if g(τ) =
∑

x∈M ′/M gx(τ)ex and if M has theta function

ΘM (τ) =
∑
x∈M ′

qQ(x)ex =
∑

x∈M ′/M

θM,x(τ)ex.

In the general case, one can always pass from K2 to a finite-index sublattice in which φ(K1) does
split as a direct summand by using the down- and up-arrow operators of [5]. Then the result is
that φ∗Φf is the additive lift of the theta-contraction of f along φ. A similar statement holds for
Borcherds products and the quasi-pullback. We refer to [21] for details.

2.4. The modular Jacobian. The modular Jacobian is the main tool in our approach to free
algebras of modular forms. This was introduced in [1] for lattices of signature (3, 2). We continue
to assume that L is of signature (n, 2) and splits as U(N)⊕K, and we fix coordinates z1, ..., zn on the
tube domain HK . For a modular form F : HK → C let ∇F denote the gradient (∂z1F, ..., ∂znF )T .

We first recall the definition of reflections. The reflection fixing the rational quadratic divisor
Dr(L) is defined as

σr(x) = x− 2〈r, x〉
〈r, r〉

r, x ∈ L.

The hyperplane Dr(M) is called the mirror of σr. For a non-zero vector r ∈ L′ we denote its order
in L′/L by ord(r). For any primitive vector r ∈ L′ of positive norm, σr ∈ O+(L) if and only if
there exists a positive integer d such that 〈r, r〉 = 2

d and ord(r) = d or d
2 . We remark that for any

primitive vector r ∈ L the reflection σr belongs to Õ
+

(L) if and only if 〈r, r〉 = 2.

Theorem 2.8. Let F1, ..., Fn+1 be orthogonal modular forms of weights k1, ..., kn+1 for a finite-index
subgroup Γ < O+(L) and define

J := J(F1, ..., Fn+1) = det

(
k1F1 ... kn+1Fn+1

∇F1 ... ∇Fn+1

)
.

Then:

(1) J is a cusp form of weight n+
∑n+1

i=1 ki for Γ with the determinant character det.
(2) J 6= 0 if and only if F1, ..., Fn+1 are algebraically independent.
(3) Let r ∈ L′ and suppose Γ contains the reflection σr. Then J vanishes on the rational

quadratic divisor Dr(L).

Now suppose M∗(Γ) is a free algebra and F1, ..., Fn+1 are generators. Then J satisfies the following
additional properties:

(4) The divisor of J consists exactly of simple zeros on the mirrors of reflections in Γ. In
particular, J is a reflective cusp form.

(5) If {Γπ1, ...,Γπs} denote the Γ-equivalence classes of mirrors of reflections in Γ, then for
each 1 ≤ i ≤ s there exists a modular form Ji for Γ with trivial character and with divisor
div(Ji) = 2Γπi, and the irreducible factorization of J2 in M∗(Γ) is

J2 =
s∏
i=1

Ji.

Proof. This is proved in Theorem 2.5 and Theorem 3.5 of [30]. �

The following converse to Theorem 2.8 provides a sufficient criterion for a graded ring of modular
forms to be free:

10



Theorem 2.9. Let Γ < O+(L) be a finite-index subgroup and suppose there are modular forms
F1, ..., Fn+1 with trivial character on Γ whose Jacobian

J = J(F1, ..., Fn+1)

vanishes exactly on the mirrors of reflections in Γ with multiplicity one. Then M∗(Γ) is freely
generated by F1, ..., Fn+1, and Γ is generated by reflections whose mirrors lie in the divisor of J .

Proof. This is proved in Theorem 5.1 of [30]. �

3. The U ⊕ U(2)⊕R tower

In this section we will compute the algebras of modular forms for the lattices U ⊕ U(2) ⊕ R,
where R belongs to the tower of root lattices

A1 ⊆ A2 ⊆ A3 ⊆ D4.

We compute the algebra of modular forms for U ⊕U(2)⊕A1 by showing that the Jacobian of a set
of potential generators is a Borcherds product with the appropriate divisor, and we compute the
algebras of modular forms for U ⊕ U(2) ⊕ R for the larger-rank root lattices R using the method
of pullbacks.

3.1. Modular forms on U ⊕U(2)⊕A1. The dimensions of spaces of modular forms for the Weil
representation ρ associated to the lattice L = U ⊕ U(2)⊕A1 have the generating function

∞∑
k=0

dimMk+3/2(ρ)tk =
(1 + t2)3

(1− t4)(1− t6)
.

In particular dimM3/2(ρ) = 1; and dimM7/2(ρ) = 3; and dimM11/2(ρ) = 4. Since L splits a
unimodular plane over Z, the additive lift is injective and the spaces of additive lifts of weights 2,
4 and 6 have dimension 1, 3 and 4 respectively. We fix a nonzero additive lift of weight 2 denoted
m2,A1 . The lattice L admits Borcherds products whose input forms’ principal parts with respect
to the Gram matrix (

0 0 0 0 1
0 0 0 2 0
0 0 2 0 0
0 2 0 0 0
1 0 0 0 0

)
are given in Table 3 below.

Table 3. Some Borcherds products for U ⊕ U(2)⊕A1

Name Weight Principal part

b1,A1 2 4e0 + q−1/4e(0,0,1/2,1/2,0)

b2,A1 2 4e0 + q−1/4e(0,1/2,1/2,0,0)

b3,A1 3 6e0 + q−1/4e(0,0,1/2,0,0)

b4,A1 4 8e0 + q−1/2e(0,1/2,0,1/2,0)

Φ19,A1 19 38e0 + q−1e0

In the rest of this subsection we will abbreviate bj,A1 by bj .

Following the notations in the introduction, Õr(L) is the subgroup of O+(U⊕U(2)⊕A1) generated
by the reflections associated to the divisor of Φ19,A1 (i.e. all reflections in the discriminant kernel).

Each of b1, b2, b3 has a character of order two under Õr(L), since they have only simple zeros along
a divisor that is preserved under those reflections.

Lemma 3.1. The Jacobian J = J(m2, b
2
1, b

2
2, b

2
3) equals Φ19,A1 up to a nonzero constant multiple.
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Proof. By Theorem 2.8 (3), the function J/Φ19,A1 defines a holomorphic modular form of weight
zero and thus it is a constant. A direct calculation shows that the constant is nonzero. �

Theorem 3.2.

(i) Õr(L) coincides with the discriminant kernel Õ
+

(L).
(ii) The algebra of modular forms for the discriminant kernel is freely generated:

M∗(Õ
+

(L)) = C[m2, b
2
1, b

2
2, b

2
3].

Proof. Applying the Jacobian criterion shows that

M∗(Õr(L)) = C[m2, b
2
1, b

2
2, b

2
3].

Since the additive lifts of weight 4 and 6 are contained in M∗(Õr(L)), comparing dimensions shows

that Mk(Õr(L)) = Maassk(Õr(L)) for k ∈ {4, 6}. In particular, b21, b
2
2, b

2
3 are additive lifts and are

therefore modular under the entire discriminant kernel without character. �

Remark 3.3. The product b4 is modular without character on the discriminant kernel. By com-
paring Fourier expansions one finds b4 = b21 − b22 = (b1 − b2)(b1 + b2). Despite this decomposition,
the divisor of b4 is irreducible (because b1 and b2 do not have the same character, so their sum and
difference are not modular forms on the discriminant kernel for any character).

Remark 3.4. Using Theorem 3.2 and comparing the first coefficients in Fourier series, one can show
that up to multiples the (unique) cuspidal lift of weight 6 is b23; in particular this is simultaneously
an additive and a multiplicative lift.

The ring of modular forms for O+(L) can be computed by a similar argument. All reflections in
O+(L) are associated to the divisor of b4Φ19, so this is the prospective Jacobian of the generators.

Theorem 3.5.

(i) O+(L) = Or(L) is generated by reflections.
(ii) The algebra of modular forms for O+(L) is freely generated:

M∗(O
+(L)) = C[m2, E4, E6, E8],

where Ek is the Eisenstein series of weight k. The Jacobian of the generators equals b4Φ19

up to a constant multiple.

Proof. By construction the Eisenstein series Ek are modular without character on O+(L). The form
m2 is the additive theta lift of the weight 3/2 modular form

f(τ) = (1 + 6q + 12q2 + 8q3 + ...)(e0 − e(0,0,0,1/2,0) − e(0,1/2,0,0,0))

+ (8q3/4 + 24q11/4 + ...)(e(0,0,1/2,0,0) − e(0,0,1/2,1/2,0) − e(0,1/2,1/2,0,0))

+ (−12q1/2 − 24q3/2 − 24q5/2 − ...)e(0,1/2,0,1/2,0)

+ (−6q1/4 − 24q5/4 − 30q9/4 − ...)e(0,1/2,1/2,1/2,0),

which is invariant under all automorphisms of (L′/L,Q), so m2 is also modular without character
on O+(L). (Another way to see this is as follows. Since f has rational Fourier coefficients and
dimM3/2(ρ) = 1, it is invariant under O(L′/L) up to a character of order at most two. This
character must be trivial because the e0 component of f is nonzero.) By expressing these generators
in terms of those of Theorem 3.2 (or by computing their Jacobian directly) one sees that they are
algebraically independent. Their Jacobian J is nonzero and divisible by J0 := b4Φ19 by Theorem
2.8 and both J and J0 have weight 23, so they are equal up to a nonzero constant multiple. �
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Remark 3.6. One can also prove Theorem 3.5 more indirectly using the following argument. Since
dimM3/2(ρ) is one-dimensional, m2 is modular on O+(L) with a character of some (finite) order
a. If m2 had a nontrivial character on the reflection group Or(L) then it would have a zero on a
mirror of some reflection and be divisible by one of the products in Table 3, violating Koecher’s
principle. Then the Jacobian criterion implies

M∗(Or(L)) = C[m2, E4, E6, E8],

and therefore

M∗(O
+(L)) = C[ma

2, E4, E6, E8].

But if M∗(O
+(L)) is free, then O+(L) = Or(L) must be generated by reflections (and in particular

a = 1). We will use a similar argument in some other cases.

3.2. Modular forms on U ⊕ U(2)⊕A2. We will compute the graded rings of modular forms for
the discriminant kernel and for the full integral orthogonal group of the lattice L = U ⊕U(2)⊕A2.

The Hilbert series of dimensions for the Weil representation ρ associated to this lattice is

∞∑
k=0

dimMk+1(ρ)tk =
1 + 3t2 + t3 + 3t4 + t5 + t6 + 2t7

(1− t4)(1− t6)
.

In particular, dimMk(ρ) = 0, 1, 0, 3, 1, 4, 1 for k = 0, 1, 2, 3, 4, 5, 6. For any k ≥ 3 the spaces of cusp
forms satisfy

dimSk(ρ) =

{
dimMk(ρ)− 3 : k odd;

Mk(ρ) : k even;

as one can see by counting the number of Eisenstein series. In particular there are unique cusp
forms of weights 4 and 5. We denote by m2,A2 the additive lift of the weight 1 modular form and
we let m5,A2 and m6,A2 denote the lifts of the weight 4 and 5 cusp forms.

We will use Borcherds products whose input forms’ principal parts with respect to the Gram
matrix  0 0 0 0 0 1

0 0 0 0 2 0
0 0 2 −1 0 0
0 0 −1 2 0 0
0 2 0 0 0 0
1 0 0 0 0 0


are given in Table 4 below:

Table 4. Some Borcherds products for U ⊕ U(2)⊕A2

Name Weight Principal part

b1,A2 4 8e0 + q−1/2e(0,1/2,0,0,1/2,0)

b2,A2 4 8e0 + q−1/3e(0,1/2,2/3,1/3,0,0) + q−1/3e(0,1/2,1/3,2/3,0,0)

b3,A2 4 8e0 + q−1/3e(0,0,1/3,2/3,1/2,0) + q−1/3e(0,0,2/3,1/3,1/2,0)

b4,A2 5 10e0 + q−1/3e(0,0,1/3,2/3,0,0) + q−1/3e(0,0,2/3,1/3,0,0)

Φ25,A2 25 50e0 + q−1e0

As before, we often abbreviate mj,A2 and bj,A2 simply by mj , bj .

Lemma 3.7. The forms m2, b1, b2, b4,m6 are algebraically independent.

Proof. The modular variety attached to U⊕U(2)⊕A1 embeds as the divisor of b4,A2 . In particular,
the pullback

P : M∗(Õr(L)) −→M∗(Õr(U ⊕ U(2)⊕A1))
13



is injective in weights at most 4. The pullback is also injective in weight 6 because Õr(U⊕U(2)⊕A1)

admits no modular forms of weight 1, and therefore (by injectivity) Õr(L) admits no modular forms
of weight 1; and therefore no modular forms of weight 6 that are multiples of b4,A2 . It follows that
P (m2,A2) is nonzero; that P (b1,A2) and P (b2,A2) span C[b21,A1

, b22,A1
] and that P (m6,A2) is linearly

independent from m3
2,A1

,m2,A1b
2
1,A1

,m2,A1b
2
2,A1

; and therefore that P (m2,A2), P (b1,A2), P (b2,A2)

and P (m6,A2) are algebraically independent. Since P (b4,A2) = 0 we conclude that m2, b1, b2, b4,m6

are algebraically independent. �

Remark 3.8. With a little more effort one can determine exact expressions for the pullbacks: we
find P (m2,A2) = m2,A1 , P (b1,A2) = b4,A1 , P (b2,A2) = b22,A1

, P (b4,A2) = 0, P (m6,A2) = b23,A1
.

Theorem 3.9. The graded ring of modular forms for the discriminant kernel of U ⊕U(2)⊕A2 is
freely generated in weights 2, 4, 4, 5, 6:

M∗(Õ
+

(L)) = C[m2, b1, b2, b4,m6].

Proof. The Jacobian J = J(m2, b1, b2, b4,m6) is nonzero (by the previous lemma), has weight 25,
and vanishes on all mirrors associated to Φ25,A2 by Theorem 2.8. In particular it equals Φ25,A2 up
to a nonzero constant multiple. By Theorem 2.9 we find

M∗(Õr(U ⊕ U(2)⊕A2)) = C[m2, b1, b2, b4,m6].

Comparing dimensions shows that all modular forms for Õr(U ⊕ U(2)⊕ A2) of weights at most 6
are additive lifts, and are therefore modular under the full discriminant kernel; so we conclude that

Õr(U ⊕ U(2)⊕A2) = Õ
+

(U ⊕ U(2)⊕A2). �

Remark 3.10. From the structure theorem it follows that there is a linear relation among the
weight four products. It also follows that the additive lift m5 of weight 5 equals the Borcherds
product b4 (up to a multiple).

Remark 3.11. The discriminant form L′/L contains three isotropic vectors which we label 0, v1, v2.
These yield three distinct vector-valued Eisenstein series E0, Ev1 , Ev2 of weight three, which can
be lifted to orthogonal Eisenstein series e0, ev1 , ev2 respectively. By computing the first Fourier
coefficients one can show that (appropriately ordered and normalized) the weight four Borcherds
products are

b1 = ev1 − ev2 , b2 = ev1 , b3 = ev2 ,

and moreover that m2
2 is a constant multiple of 5e0 + ev1 + ev2 .

The action of O+(L) on the Borcherds products can be computed using their descriptions in
terms of Eisenstein series. In particular, b2 + b3 and b22 + b23 are modular with trivial character
under O+(L). Moreover, the forms m2, b4 and m6 are additive lifts of the unique modular or cusp
form of the appropriate weight with rational coefficients, and are therefore modular under the larger
O+(L) with a character of order at most two. Thus b24 is modular under O+(L) without character.
Besides, the e0 components of the inputs of m2 and m6 are nonzero. It follows that m2 and m6 are
also modular on O+(L) without character.

Theorem 3.12. The graded ring of modular forms for the integral orthogonal group of U⊕U(2)⊕A2

is freely generated in weights 2, 4, 6, 8, 10:

M∗(O
+(L)) = C[m2, b2 + b3,m6, b

2
2 + b23, b

2
4].

The Jacobian of the generators is a nonzero constant multiple of b1b4Φ25.
14



Proof. It is clear from Theorem 3.9 that these generators are also algebraically independent. Their
Jacobian has weight 30. Since J0 := b1b4Φ25 also has weight 30, and its divisor consists of a simple
zero on every mirror of a reflection in O+(L), we conclude from Theorems 2.8 and 2.9 that the
Jacobian equals J0, that O+(L) is generated by reflections corresponding to the divisor of J0, and
that M∗(O

+(L)) has the claimed structure. �

Remark 3.13. The above generators of weight greater than 2 can be replaced by Eisenstein series:

M∗(O
+(L)) = C[m2, E4, E6, E8, E10].

3.3. Modular forms on U ⊕U(2)⊕A3. The dimensions of modular forms for the Weil represen-
tation ρ attached to L := U ⊕ U(2)⊕A3 have the Hilbert series

∞∑
k=0

dimMk+1/2(ρ)tk =
1 + 4t2 + t3 + 4t4 + t5 + 3t6 + 2t7

(1− t4)(1− t6)
.

In particular there is a unique normalized modular form of weight 1/2. We label its image under
the additive lift m2,A3 . For any k ≥ 2, counting Eisenstein series yields

dimSk+1/2(ρ) =

{
dimMk+1/2(ρ)− 4 : k even;

dimMk+1/2(ρ) : k odd;

and therefore there are unique (up to normalization) cusp forms of weights 7/2 and 9/2. We label
their images under the additive lift m5,A3 and m6,A3 respectively.

We will also use the following Borcherds products. The principal parts are given with respect to

the Gram matrix


0 0 0 0 0 0 1
0 0 0 0 0 2 0
0 0 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 0 0
0 2 0 0 0 0 0
1 0 0 0 0 0 0

.

Table 5. Some Borcherds products for U ⊕ U(2)⊕A3

Name Weight Principal part

b1,A3 4 8e0 + q−1/2e(0,0,1/2,0,1/2,1/2,0)

b2,A3 4 8e0 + q−1/2e(0,1/2,1/2,0,1/2,0,0)

b3,A3 4 8e0 + q−1/2e(0,1/2,0,0,0,1/2,0)

b4,A3 4 8e0 + q−3/8e(0,0,3/4,1/2,1/4,0,0) + q−3/8e(0,0,1/4,1/2,3/4,0,0)

b5,A3 4 8e0 + q−3/8e(0,0,3/4,1/2,1/4,1/2,0) + q−3/8e(0,0,1/4,1/2,3/4,1/2,0)

b6,A3 4 8e0 + q−3/8e(0,1/2,3/4,1/2,1/4,0,0) + q−3/8e(0,1/2,1/4,1/2,3/4,0,0)

b7,A3 5 10e0 + q−1/2e(0,0,1/2,0,1/2,0,0)

Φ30,A3 30 60e0 + q−1e0

There is a natural embedding A2 → A3 given by x 7→ (x, 0) if we view A2 and A3 as Z2,Z3

with Gram matrices
(

2 −1
−1 2

)
and

( 2 −1 0
−1 2 −1
0 −1 2

)
. This induces an embedding of the modular variety

associated to U⊕U(2)⊕A2 into that of L whose image is exactly the divisor of b4,A3 . The pullbacks
of the Borcherds products bj,A3 along this embedding are

P (b1,A3) = P (b5,A3) = b3,A2 , P (b2,A3) = P (b6,A3) = b2,A2 ,

P (b3,A3) = b1,A2 , P (b4,A3) = 0, P (b7,A3) = b4,A2 .

Similarly the pullbacks of the additive lifts are

P (m2,A3) = m2,A2 , P (m5,A3) = m5,A2 , P (m6,A3) = m6,A2 .
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Using this we can prove:

Theorem 3.14. The graded ring of modular forms for the discriminant kernel on U ⊕ U(2)⊕A3

is freely generated in weights 2, 4, 4, 4, 5, 6:

M∗(Õ
+

(L)) = C[m2, b1, b2, b4, b7,m6].

The Jacobian of the generators equals the Borcherds product Φ30 up to a nonzero constant multiple.

Proof. All of the products bj are modular without character on the subgroup Õr(L) generated by
reflections whose mirrors lie in the divisor of Φ30,A3 . Since the images of m2, b1, b2, b7,m6 under
the pullback to U ⊕U(2)⊕A2 are generators and b4 vanishes with a simple zero there, these forms
are algebraically independent. By Theorem 2.8 their Jacobian is J = Φ30,A3 , and by Theorem 2.9

M∗(Õr(L)) = C[m2, b1, b2, b4, b7,m6].

Comparing dimensions with modular forms for the Weil representation shows that all of these
generators are additive lifts, so they are modular without character under the full discriminant

kernel Õ
+

(L). As before, we conclude that Õr(L) is actually the discriminant kernel. �

Remark 3.15. It follows that the weight four products bj , 1 ≤ j ≤ 6 span a three-dimensional
space. By computing Fourier expansions one can see that (appropriately normalized) these products
satisfy the relations

b1 = b4 − b5, b2 = b5 − b6, b3 = b6 − b4.

Moreover, if v1, v2, v3 denote the isotropic vectors

v1 = (0, 1/2, 1/2, 0, 1/2, 1/2, 0), v2 = (0, 1/2, 0, 0, 0, 0, 0), v3 = (0, 0, 0, 0, 0, 1/2, 0) ∈ L′/L

then a short computation shows that all of these products are Eisenstein series:

b1 = ev1 − ev2 , b2 = ev2 − ev3 , b3 = ev3 − ev1 , b4 = ev1 , b5 = ev2 , b6 = ev3 ,

and moreover the square of the weight two lift m2
2 equals 5e0 + ev1 + ev2 + ev3 up to a constant

multiple.

Theorem 3.16. The graded ring of modular forms for the integral orthogonal group on U⊕U(2)⊕
A3 is freely generated in weights 2, 4, 6, 8, 10, 12:

M∗(O
+(L)) = C[m2, b4 + b5 + b6,m6, b

2
4 + b25 + b26, b

2
7, b4b5b6].

The Jacobian of the generators is b1b2b3b7Φ30.

Proof. Theorem 3.14 shows that the claimed generators are algebraically independent. Using the
action of O+(L) on Eisenstein series and on the input form into m6 and b7 = m5 under the additive
lift, one can see that these generators are modular under O+(L) without character. Their Jacobian
J has weight 47, which equals the weight of the product J0 = b1b2b3b7Φ30 which has a simple zero
on all mirrors of reflections in O+(L). As in the previous sections, Theorems 2.8 and 2.9 imply that
M∗(O

+(L)) is freely generated by the forms in the claim. �

Remark 3.17. All of the generators other than m2 can be replaced by the standard Eisenstein
series:

M∗(O
+(L)) = C[m2, E4, E6, E8, E10, E12].

This can be proved by computing the expressions of Ek in terms of the generators in Theorem 3.16.
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3.4. Modular forms on U ⊕U(2)⊕D4. The dimensions of spaces of modular forms for the Weil
representation attached to L = U ⊕ U(2)⊕D4 are given by the formula

∞∑
k=0

dimMk(ρ)tk =
1 + 5t2 + 5t4 + 5t6

(1− t4)(1− t6)
.

In particular there is a unique Weil invariant up to scalar multiple. We label its image under the
additive lift m2,D4 .

Moreover we denote by m6,D4 the additive lift of the modular form f(τ) ∈M4(ρ) whose Fourier

expansion with respect to the Gram matrix


0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 0
0 0 2 −1 0 0 0 0
0 0 −1 2 −1 −1 0 0
0 0 0 −1 2 0 0 0
0 0 0 −1 0 2 0 0
0 2 0 0 0 0 0 0
1 0 0 0 0 0 0 0

 begins

f(τ) = (1− 16q + ...)(e(0,1/2,0,0,1/2,1/2,1/2,0) + e(0,1/2,1/2,0,0,1/2,1/2,0))

+ (128q + ...)(e(0,0,0,0,0,0,1/2,0) + e(0,1/2,0,0,0,0,0,0) + e(0,1/2,1/2,0,1/2,0,1/2,0) − e0)

+ (16q1/2 + ...)(e(0,0,1/2,0,1/2,0,0,0) − e(0,0,1/2,0,1/2,0,1/2,0)

− e(0,1/2,0,0,0,0,1/2,0) − e(0,1/2,1/2,0,1/2,0,0,0)).

We will also use the Borcherds products in Table 6. Their principal parts are also given with
respect to the Gram matrix above.

Table 6. Some Borcherds products for U ⊕ U(2)⊕D4

Name Weight Principal part

b1,D4 4 8e0 + q−1/2e(0,0,0,0,1/2,1/2,0,0)

b2,D4 4 8e0 + q−1/2e(0,0,0,0,1/2,1/2,1/2,0)

b3,D4 4 8e0 + q−1/2e(0,0,1/2,0,0,1/2,0,0)

b4,D4 4 8e0 + q−1/2e(0,0,1/2,0,0,1/2,1/2,0)

b5,D4 4 8e0 + q−1/2e(0,0,1/2,0,1/2,0,0,0)

b6,D4 4 8e0 + q−1/2e(0,0,1/2,0,1/2,0,1/2,0)

b7,D4 4 8e0 + q−1/2e(0,1/2,0,0,0,0,1/2,0)

b8,D4 4 8e0 + q−1/2e(0,1/2,0,0,1/2,1/2,0,0)

b9,D4 4 8e0 + q−1/2e(0,1/2,1/2,0,0,1/2,0)

b10,D4 4 8e0 + q−1/2e(0,1/2,1/2,0,1/2,0,0,0)

Φ40,D4 40 80e0 + q−1e0

The root lattice A3 naturally embeds in D4 by x 7→ (x, 0) with respect to the Gram matrices(
2 −1 0
−1 2 −1
0 −1 2

)
and

( 2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

)
. Under this map the modular variety attached to U ⊕ U(2)⊕ A3

embeds as the divisor of b5. The pullbacks of the products bj along this embedding are as follows:

P (b1,D4) = P (b3,D4) = b4,A3 , P (b2,D4) = P (b4,D4) = b5,A3 , P (b5,D4) = 0,

P (b6,D4) = b1,A3 , P (b7,D4) = b3,A3 , P (b10,D4) = b2,A3 , P (b8,D4) = P (b9,D4) = b6,A3 .

The additive lift of weight two has weight less than 4, so by the Koecher principle its pullback is
nonzero and therefore a multiple of m2,A3 . One can compute that the theta-contraction of the form
f(τ) ∈M4(ρ) is a nonzero cusp form of weight 9/2, so the pullback of m6,D4 is a nonzero cuspidal
lift and therefore equals m6,A3 up to a nonzero multiple.
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Finally, let ψ−2(τ) ∈M !
−2(ρ) be the input form into the product b5,D4 . By considering its image

under the Serre derivative we obtain an input form into Borcherds’ singular additive theta lift
ϑψ−2 whose image is a meromorphic form h2 of weight 2 with only a double pole along the modular
variety U ⊕ U(2)⊕A3. The leading term in the Taylor expansion of b5,D4 about U ⊕ U(2)⊕A3 is
a nonzero modular form of weight five and therefore equals m5,A3 (up to a nonzero multiple). The
leading term in the Laurent expansion of h2 about U ⊕U(2)⊕A3 is a nonzero constant. It follows
that h10 := b25,D4

h2 is a holomorphic modular form of weight 10 whose pullback is P (h10) = m2
5,A3

.

Theorem 3.18. The graded ring of modular forms for the discriminant kernel of U ⊕ U(2)⊕D4

is freely generated in weights 2, 4, 4, 4, 4, 6, 10:

M∗(Õ
+

(L)) = C[m2, b1, b2, b5, b7,m6, h10].

The Jacobian of the generators equals the Borcherds product Φ40 up to a constant multiple.

Proof. From the results on U ⊕ U(2) ⊕ A3 we see that the pullbacks of m2, b1, b2, b7,m6, h10 to
U⊕U(2)⊕A3, and therefore the forms themselves, are algebraically independent. Since b5 vanishes
with a simple zero on U ⊕U(2)⊕A3 it follows that the forms above are algebraically independent.
Their Jacobian J has weight 40 and vanishes on the divisor of Φ40 by Theorem 2.8, so by the

Koecher principle J/Φ40 is constant. Letting Õr be the group generated by reflections associated
to Φ40, the Jacobian criterion implies

M∗(Õr(L)) = C[m2, b1, b2, b5, b7,m6, h10].

Since M2(ρ) is 5-dimensional, the injectivity of the additive theta lift implies that all of m2
2, b1,

b2, b5, b7 are additive theta lifts, and in particular the Borcherds products have trivial character
on the discriminant kernel. By construction of h10 this also implies that h10 has trivial character

on the discriminant kernel. We conclude that Õ
+

(L) is generated by reflections and that

M∗(Õ
+

(L)) = C[m2, b1, b2, b5, b7,m6, h10]. �

Remark 3.19. The discriminant form L′/L contains six isotropic vectors. With respect to the
Gram matrix fixed above, these are 0 and

v1 = (0, 1/2, 1/2, 0, 1/2, 0, 1/2, 0), v2 = (0, 0, 0, 0, 0, 1/2, 0), v3 = (0, 1/2, 0, 0, 0, 0, 0, 0, 0),

v4 = (0, 1/2, 0, 0, 1/2, 1/2, 1/2, 0), v5 = (0, 1/2, 1/2, 0, 0, 1/2, 1/2, 0).

The associated weight two vector-valued Eisenstein series E0 +Evi , i = 1, ..., 5 are holomorphic and
span M2(ρ). Denote by ei the theta lift of E0 + Evi . The ten weight four Borcherds products are
precisely the ten differences of the orthogonal Eisenstein series ei; using the labels above (up to an
ambiguous ±1 factor),

b1 = e1 − e5, b2 = e3 − e4, b3 = e1 − e4, b4 = e3 − e5, b5 = e4 − e5,

b6 = e1 − e3, b7 = e2 − e3, b8 = e2 − e4, b9 = e2 − e5, b10 = e1 − e2.

The action of O+(L) permutes the forms ei transitively. The square m2
2 is invariant under the

action of O+(L) and therefore must be (possibly after rescaling) the sum of all ei:

m2
2 = e1 + e2 + e3 + e4 + e5.

Theorem 3.20. The graded ring of modular forms for the full integral orthogonal group of U ⊕
U(2)⊕D4 is freely generated in weights 2, 6, 8, 10, 12, 16, 20 :

M∗(O
+(L)) = C[m2, E6, p2, E10, p3, p4, p5],

where
pk = ek1 + ek2 + ek3 + ek4 + ek5 for k ∈ {2, 3, 4, 5}.

The Jacobian of the generators is a constant multiple of Φ40
∏10
i=1 bi.
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Proof. In [25] Scheithauer constructed a lifting from scalar modular forms on congruence subgroups
to vector-valued modular forms. Since L has squarefree level 2, Scheithauer’s lift sends modular
forms in Mk(Γ0(2)) to modular forms in Mk(ρ) which are invariant under all automorphisms of
L′/L. The unique Weil invariant can be constructed as Scheithauer’s lift of the constant 1, which
shows that m2 is modular on O+(L) without character. The modularity of the other generators in
the claim under O+(L) follows from Remark 3.19.

The algebraic independence of these forms can be shown by expressing them in terms of the
generators of Theorem 3.18 (and only E10 requires significant computation). Therefore the Jacobian

J is nonzero of weight 80. Since the product J0 = Φ40
∏10
i=1 bi whose divisor consists of a simple

zero on all mirrors of reflections in O+(L) also has weight 80, it follows from Theorem 2.8 that
J = J0 up to a constant multiple. The claim follows from Theorem 2.9. �

Remark 3.21. All of the generators of weight greater than two can be replaced by the standard
Eisenstein series:

M∗(O
+(L)) = C[m2, E6, E8, E10, E12, E16, E20].

This can be proved computationally, by expressing Ek in terms of the generators in Theorem 3.20.

4. The 2U(2)⊕R tower

In this section we will compute the algebras of modular forms associated to the discriminant
kernels of the tower of lattices

U(2)⊕ S8 ⊆ 2U(2)⊕A2 ⊆ 2U(2)⊕A3 ⊆ 2U(2)⊕D4.

Here S8 is the signature (2, 1) lattice Z3 with Gram matrix
(−2 1 1

1 2 1
1 1 2

)
and genus symbol 8+1

3 (cf. the

appendix of the extended version of [7], where a different basis is used). Note that S8 is isotropic
but is not split by any U(N); nevertheless it fits conveniently into the 2U(2)⊕R tower, as it embeds
into 2U(2)⊕A2.

4.1. Modular forms for U(2) ⊕ S8. We will show that the algebra of modular forms for the

discriminant kernel of U(2) ⊕ S8, i.e. the lattice Z5 with Gram matrix

(
0 0 0 0 2
0 −2 1 1 0
0 1 2 1 0
0 1 1 2 0
2 0 0 0 0

)
, is freely

generated by modular forms of weights 2, 2, 2, 3. First we compute some Borcherds products:

Table 7. Some Borcherds products for U(2)⊕ S8

Name Weight Principal part

b1,S8 2 4e0 + q−1/4e(0,1/4,1/4,1/4,1/2) + q−1/4e(0,3/4,3/4,3/4,1/2)

b2,S8 2 4e0 + q−1/4e(1/2,1/4,1/4,1/4,0) + q−1/4e(1/2,3/4,3/4,3/4,0)

b3,S8 2 4e0 + q−1/2e(1/2,0,0,0,1/2)

b4,S8 2 4e0 + q−1/2e(1/2,1/2,1/2,1/2,1/2)

b5,S8 2 4e0 + q−5/16e(0,7/8,3/8,3/8,0) + q−5/16e(0,1/8,5/8,5/8,0)

b6,S8 2 4e0 + q−5/16e(0,7/8,3/8,3/8,1/2) + q−5/16e(0,1/8,5/8,5/8,1/2)

b7,S8 2 4e0 + q−5/16e(1/2,7/8,3/8,3/8,0) + q−5/16e(1/2,1/8,5/8,5/8,0)

b8,S8 2 4e0 + q−5/16e(1/2,5/8,1/8,1/8,1/2) + q−5/16e(1/2,3/8,7/8,7/8,1/2)

ψS8 3 6e0 + q−1/4e(0,1/4,1/4,1/4,0) + q−1/4e(0,3/4,3/4,3/4,0)

Φ12,S8 12 24e0 + q−1e0

We omit S8 from the index as long as there is no risk of confusion.
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Theorem 4.1. The eight Borcherds products b1, ..., b8 of weight two span a three-dimensional space
and they satisfy the three-term relations

b1 = b2 + b3 = b4 − b2 = b5 − b6 = b7 − b8 and b2 = b5 − b7.

All of the products b1, ..., b8 and ψ can be realized as additive lifts and are therefore modular without
character on the discriminant kernel of U(2) ⊕ S8. Any three linearly independent weight two
products (e.g. b1, b2, b5) are algebraically independent and together with ψ they freely generate the
algebra of modular forms:

M∗(Õ
+

(L)) = C[b1, b2, b5, ψ].

The Jacobian of the generators is a nonzero multiple of the Borcherds product Φ12.

Proof. All of the weight two products transform without character on Õr(L), the group generated
by reflections associated to Φ12. (This can be read off of their divisors.) By computing the first
Fourier coefficients we find that the Jacobian J = J(b1, b2, b5, ψ) is not identically zero, and it also
has weight 12. As in the previous sections, Theorems 2.8 and 2.9 imply that J equals Φ12 up to

a constant multiple, and that b1, b2, b5, ψ freely generate the algebra of modular forms for Õr(L).
Computing dimensions of the spaces of additive lifts (taking into account that the additive lift is not
injective) shows that all of the generators arise as additive lifts, from which we conclude that the

generators are modular under the discriminant kernel Õ
+

(L) and finally that Õ
+

(L) is generated
by reflections. �

Remark 4.2. The space of modular forms of weight 3/2 for the Weil representation attached to L
is spanned by Eisenstein series. There are six isotropic vectors in the discriminant form L′/L. In
addition to 0, with respect to the Gram matrix fixed above, they are represented by

v1 = (0, 1/2, 1/2, 1/2, 0), v2 = (0, 0, 0, 0, 1/2), v3 = (0, 1/2, 1/2, 1/2, 1/2),

v4 = (1/2, 0, 0, 0, 0), v5 = (1/2, 1/2, 1/2, 1/2, 0).

Attached to any of these cosets one can associate a mock Eisenstein series E0, Evi . Computing
their shadows shows that the space of holomorphic forms of weight 3/2 is spanned by the linear
combinations

E0 − Ev1 , E0 − Ev2 − Ev5 , E0 − Ev3 − Ev4 , E0 − Ev3 − Ev5 .
The additive theta lift to orthogonal modular forms of weight two has a kernel:

ker
(
M3/2(ρ) −→ Maass2(Õ

+
(L))

)
= span

(
3E0 − Ev1 − Ev2 − Ev3 − Ev4 − Ev5

)
.

By computing Fourier expansions one can show that (up to a sign ambiguity) the weight two
Borcherds products are the following explicit additive lifts:

b1 = Lift(Ev4 − Ev5), b2 = Lift(Ev2 − Ev3),

b3 = Lift(Ev3 + Ev4 − Ev2 − Ev5), b4 = Lift(Ev2 + Ev4 − Ev3 − Ev5),

b5 = Lift(Ev1 − Ev3 − Ev5), b6 = Lift(Ev1 − Ev3 − Ev4),

b7 = Lift(Ev1 − Ev2 − Ev5), b8 = Lift(Ev1 − Ev2 − Ev4).

(Note that the input form in each of the above lifts is holomorphic.)
The action of O+(L) maps Borcherds products to other products with rational quadratic divisors

of the same norm. In particular it permutes the products b5, b6, b7, b8. On the other hand, any
g ∈ O+(L) sends the lift of the Eisenstein series Ev to the lift of Eg·v. Considering the expressions
for b5, ..., b8 as additive lifts shows that O+(L) permutes b5, ..., b8 without multiplication by any
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roots of unity and that the coset v1 ∈ L′/L is invariant under O+(L). (This can also be shown
directly.) In particular,

Lift(−3E0 + 3Ev1) = Lift(2Ev1 − Ev2 − Ev3 − Ev4 − Ev5) = b5 + b8 = b6 + b7

is modular under the entire group O+(L).

Theorem 4.3. The graded ring of modular forms for the full integral orthogonal group of U(2)⊕S8

is freely generated in weights 2, 4, 6, 8:

M∗(O
+(L)) = C[p1, p2, ψ

2, p4], where pk = bk5 + bk6 + bk7 + bk8.

The Jacobian of the generators is a constant multiple of b1b2b3b4ψΦ12.

Note that we must omit the third power sum
∑8

i=5 b
3
i from the generators due to the relation( 8∑

i=5

bi

)3
− 6
( 8∑
i=5

bi

)( 8∑
i=5

b2i

)
+ 8

8∑
i=5

b3i = 0.

(This follows from the relation b5 + b8 = b6 + b7.)

Proof. Using b5 + b8 = b6 + b7 and the fact that b5, b6, b7, ψ are algebraically independent, it is
straightforward to show that the generators in the claim are also algebraically independent. The
previous remark implies that all of the power sums are modular under O+(L). We obtain the
transformation of ψ2 under O+(L) using the action of O+(L) on the input form into ψ in the
additive lift. �

Remark 4.4. If we define E2 as the lift of the holomorphic invariant Eisenstein series E0 − Ev1
then we can also generate the algebra of modular forms with only Eisenstein series:

M∗(O
+(L)) = C[E2, E4, E6, E8].

4.2. Modular forms for 2U(2)⊕ A2. In this section we will compute the ring of modular forms
for the discriminant kernel of the lattice L = 2U(2)⊕A2 using a pullback map to U(2)⊕S8. Using

the Gram matrices
(−2 1 1

1 2 1
1 1 2

)
for S8 and

(
0 0 0 2
0 2 −1 0
0 −1 2 0
2 0 0 0

)
for U(2)⊕A2 one can check that

(x, y, z) ∈ S8 7→ (−x+ y + z, x− y, z − x, 2x) ∈ U(2)⊕A2

is an isometric embedding. By acting trivially on the extra copy of U(2) this extends to an
embedding of the modular varieties.

This lattice admits 15 holomorphic Borcherds products of weight 2. Six have principal parts of
the form

4e0 + q−1/2ev, ord(v) = 2

and the remaining nine have principal parts of the form

4e0 + q−1/3ev + q−1/3e−v, ord(v) = 6.

Under the embedding above, the variety associated to U(2) ⊕ S8 embeds as the divisor of the
Borcherds product whose principal part is

4e0 + q−1/3e(0,1/2,1/3,2/3,0,0) + q−1/3e(0,1/2,2/3,1/3,0,0).

In addition there is a Borcherds product ψ of weight 3 with principal part

6e0 + q−1/3e(0,0,1/3,2/3,0,0) + q−1/3e(0,0,2/3,1/3,0,0)

and a product Φ15 of weight 15 whose principal part is 30e0 + q−1e0.

Theorem 4.5.
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(1) The 15 Borcherds products of weight 2 span a four-dimensional space. All of the products
of weight 2 and 3 can also be constructed as additive lifts.

(2) The discriminant kernel Õ
+

(L) is generated by reflections.
(3) If b1, b2, b3, b4 are any linearly independent products of weight 2, then they are algebraically

independent and together with the weight 3 product ψ they freely generate the ring of modular
forms for the discriminant kernel:

M∗(Õ
+

(L)) = C[b1, b2, b3, b4, ψ].

Proof. By computing the theta-contraction of the inputs into the 14 Borcherds products of weight
2 that do not vanish along U(2) ⊕ S8, we find all 8 of the weight two products on U(2) ⊕ S8;
and similarly the weight three product on 2U(2) ⊕ A2 pulls back to the weight three product on
U(2)⊕S8. Any products that pull back to generators of the algebra of modular forms of U(2)⊕S8

are algebraically independent; and if we add the product with a simple zero along U(2) ⊕ S8

then the set remains algebraically independent. The Jacobian J of this set of products of weights
2, 2, 2, 2, 3 (which we label b1, b2, b3, b4, ψ) has weight 15, matching the product Φ15 whose divisor
consists exactly of simple zeros of mirrors of reflections in the discriminant kernel. Using Theorems

2.8 and 2.9 we obtain J = Φ15 up to a multiple and M∗(Õr(L)) = C[b1, b2, b3, b4, ψ]. The Weil
representation attached to L admits a five-dimensional space of modular forms of weight 1 which
map to a four-dimensional space of forms under the additive theta lift; and comparing dimensions
shows that all of the products of weight two are additive lifts and are therefore modular under the
full discriminant kernel without character. Similarly, there is a vector-valued cusp form of weight
two whose additive theta lift is nonzero, and therefore equals ψ (up to a multiple). �

Remark 4.6. The weight two cusp form for ρL whose theta lift is ψ takes the form

η(τ)4
∑

v∈L′/L
Q(v)=−1/6+Z

ε(v)ev

with certain coefficients ε(v) ∈ {−1, 1}, where η(τ) = q1/24
∏∞
n=1(1− qn).

We will now consider the algebra associated to the maximal reflection group Or(L), generated
by all reflections in O+(L). (It will turn out that O+(L) is not generated by reflections: the map
that swaps the two copies of U(2) is not contained in Or(L).) Clearly the Eisenstein series E4, E6

of weights 4 and 6 are contained in this ring. The Weil representation attached to L admits a
one-dimensional space of cusp forms of weight three, spanned by the form

f(τ) =
(
η(τ/3)3η(τ)3 + 3η(τ)3η(3τ)3

) ∑
v∈L′/L

Q(v)=−1/6+Z

ε(v)ev + η(τ)3η(3τ)3
∑

v∈L′/L
Q(v)=−1/2+Z

ε(v)ev

for some coefficients ε(v) ∈ {±1}. This form is preserved by the action of Or(L) on C[L′/L]. (It
is not preserved under swapping the two copies of U(2), which instead sends f to −f !) By taking
the Serre derivative of f , we obtain a cusp form of weight 5,

ϑf(τ) =
1

2πi
f ′(τ)− 1

4
f(τ)E2(τ), E2(τ) = 1− 24

∞∑
n=1

σ1(n)qn,

which is also invariant under Or(L) (and which transforms under O+(L) with the same quadratic
character). We let p4 ∈ S4(Or(L)) and p6 ∈ S6(Or(L)) be the theta lifts of f and ϑf .

Theorem 4.7. The algebra of modular forms for Or(L) is freely generated in weights 4, 4, 6, 6, 6:

M∗(Or(L)) = C[E4, p4, E6, p6, ψ
2].
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The Jacobian of the generators is a constant multiple of b1b2b3b4b5b6ψΦ15, where b1, ..., b6 are the
weight two Borcherds products with principal parts of the form 4e0 + q−1/2ev, ord(v) = 2.

Corollary 4.8. The ring of modular forms for the full integral orthogonal group of L is generated
by ψ2 and by the Eisenstein series of weights 4, 6, 8, 10, 12 with a single relation in weight 20:

M∗(O
+(L)) = C[E4, E6, E8, E10, E12, ψ

2]/R20.

Proof. Since p4 and p6 transform under O+(L) with the same quadratic character, we find

M∗(O
+(L)) = C[E4, E6, ψ

2, p2
4, p4p6, p

2
6]/R20

with the relation p2
4 · p2

6 = (p4p6)2 in weight 20. By computing the expressions for the Eisenstein
series in terms of the generators for M∗(Or(L)), we find that E4, E6, ψ

2, E8, E10, E12 also generate
the algebra M∗(O

+(L)). �

4.3. Modular forms for 2U(2)⊕A3. The lattice L = 2U(2)⊕A3 admits 25 Borcherds products
of weight two. 15 of them have principal parts of the form

4e0 + q−1/2ev, ord(v) = 2,

and the remaining 10 have principal parts of the form

4e0 + q−3/8ev + q−3/8e−v, ord(v) = 4.

There is a natural embedding 2U(2)⊕A2 → 2U(2)⊕A3. If we use the Gram matrices
(

2 −1
−1 2

)
and

( 2 −1 0
−1 2 −1
0 −1 2

)
for the root lattices then this is induced by the map x 7→ (x, 0). With respect to

these Gram matrices and this embedding, the modular variety attached to 2U(2)⊕ A2 embeds as
the divisor of the Borcherds product with principal part

4e0 + q−3/8e(0,0,3/4,1/2,1/4,0,0) + q−3/8e(0,0,1/4,1/2,3/4,0,0).

There is again a unique Borcherds product ψ of weight 3, this time with principal part

6e0 + q−1/2e(0,0,1/2,0,1/2,0,0).

Finally, there is a Borcherds product Φ18 of weight 18 with divisor 36e0 + q−1e0.

Theorem 4.9. The 25 Borcherds products of weight 2 span a five-dimensional space. All of the
products of weight 2 and 3 are also additive lifts. If b1, b2, b3, b4, b5 are any linearly independent
products of weight 2, then they are algebraically independent and together with the weight 3 product
ψ they generate the algebra of modular forms for the discriminant kernel:

M∗(Õ
+

(L)) = C[b1, b2, b3, b4, b5, ψ].

Proof. Computing the theta-contraction of the inputs into the 24 products of weight two that do
not vanish along 2U(2) ⊕ A2 shows that all of the 15 weight two products on that lattice arise as
pullbacks. Similarly the weight three products on 2U(2)⊕A3 pulls back to the weight three product
on 2U(2)⊕A2. By essentially the same argument as the pullback from 2U(2)⊕A2 to U(2)⊕S8, we
obtain the algebraic independence of any linearly independent set of weight two products and the
fact that, together with the weight three product, these generate the ring of modular forms for the

group Õr generated by reflections whose mirrors lie in the divisor of Φ18 (and that their Jacobian
equals Φ18 up to a nonzero multiple). There is a six-dimensional space of modular forms of weight
1/2 for the Weil representation attached to 2U(2) ⊕ A3, which lift to five linearly independent
forms under the additive theta lift, and therefore all of the products of weight 2 are additive lifts
(and therefore modular without character on the discriminant kernel); similarly, the weight three
product is the additive lift of the unique (up to multiple) vector-valued cusp form of weight 3/2 for
the Weil representation attached to L. �
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Remark 4.10. The cusp form of weight 3/2 for the Weil representation ρL is obtained by “averaging
out” the form η(τ)3: it takes the form

f(τ) = η(τ)3
∑

v∈L′/L
Q(v)=−1/8+Z

ε(v)ev,

where ε(v) ∈ {±1}. In particular f and therefore ψ3 transforms with a quadratic character under
O+(L).

Finally, we determine the graded ring of modular forms for O+(L).

Theorem 4.11. The group O+(L) is generated by reflections. The algebra of modular forms for
O+(L) is freely generated in weights 4, 6, 6, 8, 10, 12:

M∗(O
+(L)) = C[E4, E6, E8, E10, E12, ψ

2].

The Jacobian of the generators is a constant multiple of Φ18ψ·
∏15
i=1 bi, where bi are the 15 Borcherds

products of weight two with principal part 4e0 + q−1/2ev, ord(v) = 2.

Remark 4.12. Theorem 4.11 has been proved by Freitag–Salvati Manni in [13, Corollary 4.7].
Moreover, the modular group in [13, Theorem 4.6] is exactly the reflection subgroup O1(L) gen-
erated by the discriminant kernel and the reflections associated to the divisor of ψ. It is easy to
derive that

M∗(O1(L)) = C[b1, b2, b3, b4, b5, ψ
2],

which recovers [13, Theorem 4.6].

4.4. Modular forms for 2U(2)⊕D4. The lattice L = 2U(2)⊕D4 admits 36 Borcherds products
of singular weight 2, all with principal parts of the form

4e0 + q−1/2ev, ord(v) = 2.

Using the Gram matrices
(

2 −1 0
−1 2 −1
0 −1 2

)
and

( 2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

)
for the root lattices A3 and D4, there

is a natural embedding x 7→ (x, 0) of A3 in D4 that induces an embedding of the modular variety
attached to 2U(2)⊕A3 into that for 2U(2)⊕D4. The image is exactly the divisor of the Borcherds
product with principal part

4e0 + q−1/2e(0,0,1/2,0,1/2,0,0,0).

Finally, there is a Borcherds product Φ24 of weight 24 with principal part 48e0 + q−1e0.
The dimensions of modular forms for the Weil representation attached to 2U(2) ⊕ D4 have

generating series
∞∑
k=0

dimMk(ρ)tk =
7 + 21t2 + 21t4 + 15t6

(1− t4)(1− t6)
.

In particular there is a seven-dimensional space of Weil invariants.
Unlike the lower-rank cases in this tower, there are no modular forms of weight three (or indeed

any odd weight) so the weight three product ψ on 2U(2) ⊕ A3 is not contained in the image of
the pullback. However we can construct a preimage of ψ2 as follows. Let f(τ) ∈ M !

−2(ρ) be the
input form that yields the Borcherds product h1 with a simple zero on 2U(2)⊕A3. Then the Serre
derivative of f maps under the singular additive theta lift to a meromorphic modular form h2 of
weight 2 with only a double pole on 2U(2) ⊕ A3. The leading term in the Taylor expansion of
h1 about 2U(2) ⊕ A3 is a nonzero modular form of weight three and therefore equals ψ (up to a
nonzero multiple). The leading term in the Laurent expansion of h2 about 2U(2)⊕A3 is a nonzero
constant. Thus h := h2

1h2 is a holomorphic modular form of weight 6 whose pullback to 2U(2)⊕A3

equals ψ2 up to a constant multiple.
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Theorem 4.13. The 36 Borcherds products of weight 2 span a six-dimensional space. If b1, ..., b6
are any linearly independent products of weight 2, then they are algebraically independent and
together with the weight six form h they generate the algebra of modular forms for the discriminant
kernel:

M∗(Õ
+

(L)) = C[b1, b2, b3, b4, b5, b6, h].

The Jacobian J = J(b1, b2, b3, b4, b5, b6, h) is a nonzero constant multiple of the product Φ24.

Proof. Choose any five products b1, ..., b5 which restrict to a spanning set of M2(Õ
+

(2U(2)⊕A3))
and let b6 be the product that vanishes along 2U(2) ⊕ A3. Then the restrictions of b1, ..., b5 and
h are algebraically independent; so b1, ..., b5, b6, h are algebraically independent. Therefore their
Jacobian J = J(b1, ..., b6, h) is nonzero of weight 24. Applying Theorems 2.8, 2.9 as in the previous
sections, we conclude that J = Φ24 up to a constant multiple and that

M∗(Õr(L)) = C[b1, ..., b6, h]

where Õr(L) is generated by reflections whose mirrors lie in the divisor of Φ24. The Weil invariants
lift to a six-dimensional space of additive lifts of forms of weight two, so comparing dimensions
shows that all of the weight two Borcherds products are also additive lifts, and are therefore
modular without character under the full discriminant kernel. By construction of h this implies
that h is also modular without character under the discriminant kernel. As before, we conclude

that Õ
+

(L) is generated by its reflections. �

Remark 4.14. This result was first proved by Freitag–Salvati Manni [13] using a geometric ap-
proach. They also showed in [11] that the 36 singular weight Borcherds products vanish at a
distinguished point simultaneously.

Since D4 has level two, passing from L to 2L′ preserves the full orthogonal group i.e.

O+(2U(2)⊕D4) = O+(2U ⊕D4),

so M∗(O
+(2U(2)⊕D4)) ∼= M∗(O

+(2U ⊕D4)).

5. The U ⊕ U(3)⊕R tower

5.1. The U ⊕ U(3) ⊕ A1 lattice. Let L = U ⊕ U(3) ⊕ A1. We will compute two free algebras of
orthogonal modular forms attached to L. Note that the discriminant kernel of L can be interpreted
as a level three subgroup of Sp4(Z), and that these algebras were found by Aoki–Ibukiyama [1].
We include our argument as it is somewhat simpler.

Since L splits a unimodular plane over Z, the additive theta lift is injective, and the dimensions
of the Maass subspaces equal the dimensions of modular forms for the Weil representation:

∞∑
k=0

dim Maassk+1(Õ
+

(L))tk =

∞∑
k=0

dimMk+1/2(ρ)tk =
(1 + t+ t3)(1 + t2 + t3)

(1− t2)(1− t6)
.

Moreover, counting Eisenstein series shows that for k ≥ 2

dimSk+1/2(ρ) =

{
dimMk+1/2(ρ)− 3 : k odd;

dimMk+1/2(ρ)− 2 : k even.

In particular, there is a lift m1 of weight one, two linearly independent lifts m
(1)
3 ,m

(2)
3 of weight

three, and a cuspidal lift m4 of weight 4.

With respect to the Gram matrix

(
0 0 0 0 1
0 0 0 3 0
0 0 2 0 0
0 3 0 0 0
1 0 0 0 0

)
, this lattice admits Borcherds products with prin-

cipal parts as in Table 8.
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Table 8. Some Borcherds products for U ⊕ U(3)⊕A1

Name Weight Principal part

b1,A1 2 4e0 + q−1/4e(0,0,1/2,0,0)

b2,A1 3 6e0 + q−1/4e(0,0,1/2,1/3,0) + q−1/4e(0,0,1/2,2/3,0)

b3,A1 3 6e0 + q−1/4e(0,1/3,1/2,0,0) + q−1/4e(0,2,/31/2,0,0)

ψA1 3 6e0 + q−1/3e(0,1/3,0,1/3,0) + q−1/3e(0,2/3,0,2/3,0)

Φ14,A1 14 28e0 + q−1e0

Lemma 5.1. The Jacobian J(m1,m
(1)
3 ,m

(2)
3 ,m4) is not identically zero.

Proof. This can be checked by computing the Fourier expansions of m1,m
(1)
3 ,m

(2)
3 ,m4 to precision

O(q, s)5. �

Theorem 5.2. The graded ring of modular forms for the discriminant kernel of U ⊕U(3)⊕A1 is
a free algebra:

M∗(Õ
+

(L)) = C[m1,m
(1)
3 ,m

(2)
3 ,m4].

The Jacobian of the generators equals Φ14 up to a constant multiple.

Proof. Since the Jacobian J = J(m1,m
(1)
3 ,m

(2)
3 ,m4) is nonzero of weight 14, Theorem 2.8 im-

plies that J/Φ14 is a nonzero constant. From Theorem 2.9 we conclude that M∗(Õr(L)) =

C[m1,m
(1)
3 ,m

(2)
3 ,m4]. Since all of the generators are additive lifts, they are modular under the

discriminant kernel, and therefore Õr(L) = Õ
+

(L). �

Remark 5.3. From its divisor it is clear that b1 is not a square; in particular, it is not a multiple

of m2
1. In fact, it has a quadratic character on Õ

+
(L). By contrast all of the products b2, b3, ψ are

additive lifts.

The subgroup Or(L) generated by all reflections in O+(L) corresponds to the divisor of ψΦ14.
(Note that Φ14 is already a multiple of b1.) From its input form one can see that m1 is already
modular under Or(L). We can produce the unique (up to scalar) modular form m3 of weight three
for Or(L) by writing m1 = Φf as a theta lift of some f ∈M1/2(ρL), and defining m3 := Φϑf as the
lift of the Serre derivative

ϑf(τ) =
1

2πi
f ′(τ)− 1

24
f(τ)E2(τ).

Theorem 5.4. The graded ring of modular forms for the maximal reflection group Or(L) is freely
generated in weights 1, 3, 4, 6:

M∗(Or(L)) = C[m1,m3,m4, ψ
2].

The Jacobian of the generators equals ψΦ14 up to a constant multiple.

Proof. The form m4 is modular without character on O+(L) because it is the theta lift of a weight
7/2 vector-valued cusp form f(τ) =

∑
x∈L′/L fx(τ)ex whose component fx depends only on the norm

of x. From Theorem 5.2 it follows immediately that the Jacobian of the generators is a nonzero
multiple of ψΦ14, and from Theorem 2.9 we conclude that M∗(Or(L)) = C[m1,m3,m4, ψ

2]. �

Corollary 5.5. The graded ring of modular forms for O+(L) is generated in weights 2, 4, 4, 6, 6
with a single relation in weight 8:

M∗(O
+(L)) = C[m2

1, E4,m4, E6, ψ
2]/R8,

where Ek is the Eisenstein series of weight k.
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Proof. Since m1 and m3 transform with the same quadratic character under O+(L), it follows that

M∗(O
+(L)) = C[m2

1,m1m3,m4,m
2
3, ψ

2]/R8

where the relation is (m2
1) · (m2

3) = (m1m3)2. Using Fourier expansions one can show that the
Eisenstein series E4, E6 can be taken as generators instead of m1m3 and m2

3 (i.e. neither of E4, E6 is
a multiple of m1). �

5.2. The U ⊕ U(3) ⊕ A2 lattice. We will compute modular forms for the discriminant kernel of

the lattice L = U ⊕ U(3)⊕A2 with Gram matrix

 0 0 0 0 0 1
0 0 0 0 3 0
0 0 2 −1 0 0
0 0 −1 2 0 0
0 3 0 0 0 0
1 0 0 0 0 0

 using the pullback to reduce to

U ⊕ U(3)⊕ A1. With respect to this Gram matrix, L admits Borcherds products whose principal
parts are given in Table 9.

Table 9. Some Borcherds products for U ⊕ U(3)⊕A2

Name Weight Principal part

b1 3 6e0 + q−1/3e(0,0,1/3,2/3,0,0) + q−1/3e(0,0,2/3,1/3,0,0)

b2 3 6e0 + q−1/3e(0,0,1/3,2/3,2/3,0) + q−1/3e(0,0,2/3,1/3,1/3,0)

b3 3 6e0 + q−1/3e(0,0,1/3,2/3,1/3,0) + q−1/3e(0,0,2/3,1/3,2/3,0)

b4 3 6e0 + q−1/3e(0,1/3,0,0,1/3,0) + q−1/3e(0,2/3,0,0,2/3,0)

b5 3 6e0 + q−1/3e(0,1/3,2/3,1/3,0,0) + q−1/3e(0,2/3,1/3,2/3,0,0)

b6 3 6e0 + q−1/3e(0,1/3,1/3,2/3,0,0) + q−1/3e(0,2/3,2/3,1/3,0,0)

Φ18 18 36e0 + q−1e0

There is a natural embedding of A1 in A2 given by x 7→ (x, 0) with respect to the Gram matrices(
2
)

and
(

2 −1
−1 2

)
, and this induces an embedding of the modular variety associated to U⊕U(3)⊕A1

in that of U ⊕ U(3)⊕A2 whose image is exactly the divisor of b1.
Finally we will want to consider additive lifts. The dimensions of modular forms for the Weil

representation attached to L have generating function
∞∑
k=0

dimMk(ρ)tk =
1 + t+ 3t2 + 5t3 + 3t4 + 6t5 + 3t6 + 2t7 + 3t8

(1− t4)(1− t6)
.

In particular, the dimensions of spaces of additive lifts of the smallest weights are

dim Maass1(L) = dim Maass2(L) = 1, dim Maass3(L) = 3, dim Maass4(L) = 5.

We denote the additive lift of weight 1 by m1, and we let m4 be any additive lift of weight 4 that
is not contained in Maass1(L) ·Maass3(L).

Theorem 5.6. The six Borcherds products of weight 3 span a three-dimensional space, and they
satisfy the three-term relations

b1 + b6 = b5, b4 + b6 = b2, b4 + b5 = b3.

All of the weight three products are additive lifts. If m
(1)
3 ,m

(2)
3 ,m

(3)
3 are any linearly independent

Maass lifts of weight three then the graded ring of modular forms for the discriminant kernel of L

is freely generated by m1,m
(1)
3 ,m

(2)
3 ,m

(3)
3 ,m4:

M∗(Õ
+

(L)) = C[m1,m
(1)
3 ,m

(2)
3 ,m

(3)
3 ,m4],

and the Jacobian J(m1,m
(1)
3 ,m

(2)
3 ,m

(3)
3 ,m4) is a constant multiple of the product Φ18.
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Proof. Let Õr(L) denote the subgroup generated by reflections in Õ
+

(L), i.e. the reflections as-
sociated to the divisor of Φ18. Then all of the products of weight three have trivial character on

Õr(L). The pullback map in weight three

M3(Õr(L)) −→M3(Õr(U ⊕ U(3)⊕A1))

has kernel spanned by the product b1, so we obtain

dimM3(Õr(L)) ≤ 1 + dimM3(Õr(U ⊕ U(3)⊕A1)) = 4.

By examining the Fourier expansions of m3
1, the six products of weight three, and the additive lifts

we see that the dimension is exactly four, that the pullback in weight three is surjective, and that
the Borcherds products span the three-dimensional space of additive lifts.

Since m4 is not divisible by any of the weight three Maass lifts, its pullback to U ⊕U(3)⊕A1 is
also not divisible by any of the weight three lifts; and since m1 is not a multiple of b1, its pullback

to U ⊕ U(3) ⊕ A1 is nonzero. In particular, the linear span of m1,m
(1)
3 ,m

(2)
3 ,m

(3)
3 ,m4 contains

four forms whose pullback to U ⊕U(3)⊕A1 generate the graded ring of modular forms there, and

one form with a simple zero along that divisor. Therefore the forms m1,m
(1)
3 ,m

(2)
3 ,m

(3)
3 ,m4 are

algebraically independent. Using Theorems 2.8 and 2.9 we find that their Jacobian J equals Φ18

up to a constant multiple, that Õ
+

(L) is generated by reflections, and that m1,m
(1)
3 ,m

(2)
3 ,m

(3)
3 ,m4

generate the graded ring of modular forms. �

Finally we compute the graded ring of modular forms for the maximal reflection group. In this
case the prospective Jacobian with simple zeros on all mirrors of reflections in O+(L) is the product
b1b2b3b4b5b6Φ18 of weight 36. The lift m1 constructed earlier is the theta lift of the Weil invariant

f(τ) = ev1 − e−v1 + e−v2 − ev2 + ev3 − e−v3 + ev4 − e−v4
where, with respect to the Gram matrix above, we can take

v1 = (0, 0, 0, 0, 1/3, 0), v2 = (0, 2/3, 0, 0, 0, 0),

v3 = (0, 2/3, 2/3, 1/3, 1/3, 0), v4 = (0, 2/3, 1/3, 2/3, 1/3, 0).

The reflections associated to cosets in the divisors of b1, ..., b6 each swap one pair of cosets in
(v1 + L, ..., v4 + L) and preserve the remaining two, so f is invariant under Or(L) and therefore
m1 is modular under Or(L). We produce a further modular form m9 of weight 9 for Or(M) as the
theta lift of E8(τ)f(τ) ∈M8(ρ), where E8(τ) = 1+480

∑∞
n=1 σ7(n)qn is the usual Eisenstein series.

Theorem 5.7. The graded ring of modular forms for Or(L) is freely generated by forms of weights
1, 4, 6, 9, 12:

M∗(Or(L)) = C[m1, E4, E6,m9, E12],

where Ek is the Eisenstein series of weight k. The Jacobian of the generators is a constant multiple
of J0 := b1b2b3b4b5b6Φ18.

Proof. To prove that these forms are algebraically independent, one can express them in terms of
the generators of Theorem 5.6 or compute their Jacobian (in this case, showing that the Jacobian
is not identically zero requires computing the forms involved to precision at least O(q, s)14). Their
Jacobian J has weight 36. By Theorems 2.8 and 2.9 we conclude that J = J0 up to a constant
multiple and that these forms generate M∗(Or(L)). �

Corollary 5.8. The graded ring of modular forms for O+(L) is generated in weights 2, 4, 6, 10, 12, 18
with a single relation in weight 20:

M∗(O
+(L)) = C[m2

1, E4, E6,m1m9, E12,m
2
9]/R20,

where R20 is the relation m2
1 ·m2

9 = (m1m9)2.
28



Proof. This is because m1,m9 transform under O+(L) with the same quadratic character by con-
struction, and because the Eisenstein series are modular forms for O+(L) with trivial character. �

6. The U ⊕ U(4)⊕A1 lattice

Let L = U ⊕ U(4) ⊕ A1. We will determine the algebras of modular forms for the maximal

reflection groups in O+(L) and Õ
+

(L). These modular forms are essentially the same as modular
forms for a level four subgroup of Sp4(Z), and similar results have appeared in the work of Aoki–
Ibukiyama [1].

We first compute some relevant Borcherds products.

Table 10. Some Borcherds products for U ⊕ U(4)⊕A1

Name Weight Principal part

θ 1/2 1e0 + q−1/4e(0,1/2,1/2,1/2,0)

b1 2 4e0 + q−1/4e(0,0,1/2,1/4,0) + q−1/4e(0,0,1/2,3/4,0)

b2 2 4e0 + q−1/4e(0,1/4,1/2,0,0) + q−1/4e(0,3/4,1/2,0,0)

b3 2 4e0 + q−1/4e(0,1/4,0,1/4,0) + q−1/4e(0,3/4,0,3/4,0)

Φ11 11 22e0 + q−1e0

The space of vector-valued modular forms of weight 1/2 for the Weil representation ρ attached
to L is one-dimensional, spanned by the unary theta series

f(τ) = (1 + 2q + 2q4 + 2q9 + ...)(ev1 − e−v1 + ev2 − e−v2 + ev3 − ev3)

+ (2q1/4 + 2q9/4 + 2q25/4 + ...)(ew1 − e−w1 + ew2 − e−w2 + ew3 − e−w3)

where vi, wi are the cosets

v1 = (0, 0, 0, 1/4, 0) w1 = (0, 3/4, 0, 1/4, 0)

v2 = (0, 3/4, 0, 0, 0) w2 = (0, 1/2, 1/2, 1/4)

v3 = (0, 3/4, 1/2, 1/4, 0) w3 = (0, 3/4, 1/2, 1/2, 0).

We let m1 = Φf be the lift of f .
The vector-valued modular forms for the Weil representation attached to ρ have the Hilbert

series
∞∑
k=0

dimMk+1/2(ρ)tk =
1 + 3t+ 2t2 + 4t3 + 2t4 + 3t5 + t6

(1− t2)(1− t6)
,

and by injectivity these correspond to the dimensions of the Maass subspaces. The first few
dimensions are

dim Maass1(Γ) = 1, dim Maass2(Γ) = dim Maass3(Γ) = 3.

In particular, we can find two linearly independent lifts m
(1)
2 ,m

(2)
2 which are independent of m2

1

(which turns out also to be a lift). Finally we let m3 := Φϑf be the theta lift of the Serre derivative
of f :

ϑf(τ) =
1

2πi
f ′(τ)− 1

24
E2(τ)f(τ).

Lemma 6.1. The Jacobian J = J(m1,m
(1)
2 ,m

(2)
2 ,m3) is not identically zero.

Proof. Whether the Jacobian is nonzero is independent of the choices of m
(1)
2 ,m

(2)
2 ,m3 above, and

it requires computing their Fourier expansions only to precision O(q, s)5. �
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Theorem 6.2. The discriminant kernel of L is generated by reflections. Its graded ring of modular
forms is a free algebra generated in weights 1, 2, 2, 3:

M∗(Õ
+

(L)) = C[m1,m
(1)
2 ,m

(2)
2 ,m3].

The Jacobian J of the generators is a nonzero multiple of Φ11.

Proof. Theorem 2.8 implies that J = Φ11 (up to a multiple), and Theorem 2.9 implies that the ring

of modular forms for the reflection group Õr(L) is

M∗(Õr(L)) = C[m1,m
(1)
2 ,m

(2)
2 ,m3].

Since all generators are theta lifts, they are modular under the a priori larger group Õ
+

(L), and

we obtain Õr(L) = Õ
+

(L). �

Remark 6.3. (i) Since Õ
+

(L) is generated by reflections, the singular-weight product θ transforms

with a multiplier system of order two, and therefore θ2 ∈M1(Õ
+

(L)). From the structure theorem
we obtain θ2 = m1.

(ii) The weight two products b1, b2, b3 transform without character on Õ
+

(L), so together with θ4

they span the three-dimensional space M2(Õ
+

(L)).

The ring of modular forms for the maximal reflection group Or(L) can be determined by con-
structing the generators exactly as for the lattice U ⊕ U(3) ⊕ A1. To obtain Or(L) we have to

add to Õ
+

(L) the reflections whose mirrors lie in the divisor of b1b2b3. One can check that the
theta function f(τ) that lifts to m1 is invariant under all of these reflections, so m1 is modular on
Or(L) without character. By construction the weight 3 lift m3 is also modular on Or(L) without
character.

Theorem 6.4. The graded ring of modular forms for Or(L) is freely generated in weights 1, 3, 4, 6:

M∗(Or(L)) = C[m1,m3, E4, E6],

where E4, E6 are the Eisenstein series. The Jacobian of the generators is a constant multiple of
b1b2b3Φ11.

Proof. By computing Fourier expansions to at least precision O(q, s)8 one can see that the Jacobian
J = J(m1,m3, E4, E6) is nonzero. J has weight 17 and by Theorem 2.8 vanishes on all rational
quadratic divisors that appear in the divisor of J0 := b1b2b3Φ11. By Koecher’s principle J = J0 up
to a nonzero multiple, and Theorem 2.9 implies that m1,m3, E4, E6 generate M∗(Or(L)). �

Corollary 6.5. The ring of modular forms for O+(L) is generated in weights 2, 4, 4, 6, 6 with a
relation in weight 8:

M∗(O
+(L)) = C[m2

1,m1m3, E4,m
2
3, E6]/R8

where R8 is the relation m2
1 ·m2

3 = (m1m3)2.

7. The U ⊕ S8 lattice

As before, we let S8 denote the lattice Z3 with Gram matrix
(−2 1 1

1 2 1
1 1 2

)
and genus symbol 8+1

3 .

Let L = U ⊕ S8. In this section we will show that the graded ring of modular forms for Õ
+

(L) is
freely generated by additive lifts of weights 2, 4, 5, 6. Computing the coefficients of a dual Eisenstein
series yields Borcherds products with the following principal parts:
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Table 11. Some Borcherds products for U ⊕ S8

Name Weight Principal part

ψ 5 10e0 + q−1/4e(0,1/4,1/4,1/4,0) + q−1/4e(0,3/4,3/4,3/4,0)

Φ20 20 40e0 + q−1e0

The dimensions of modular forms for the Weil representation attached to L have the generating
function

∞∑
k=0

dimMk+3/2(ρ)tk =
1 + 2t2 + t3 + 2t4 + t5 + t7

(1− t4)(1− t6)
.

Since the additive lift is injective, we obtain the dimensions

dim Maass2(Γ) = 1, dim Maass4(Γ) = 2, dim Maass5(Γ) = 1, dim Maass6(Γ) = 3.

In particular there is a unique normalized lift m2 of weight two, and there are lifts of weights 4 and 6
that are not multiples of m2. (Computing Fourier expansions shows that on can take the Eisenstein
series E4 and E6 of weights 4 and 6.) Finally we obtain a one-dimensional space of additive lifts of
weight 5, which is spanned by the product ψ.

Theorem 7.1. The modular groups Õ
+

(L) and O+(L) are generated by reflections and their graded
rings of modular forms are free algebras:

M∗(Õ
+

(L)) = C[m2, E4, ψ, E6],

M∗(O
+(L)) = C[m2, E4, E6, ψ

2].

Proof. (i) The Jacobian J = J(m2, E4, ψ, E6) has weight 20 and by computing Fourier expansions
we see that it is not identically zero. Since all of the generators are additive lifts, Theorems 2.8, 2.9

and the argument in the previous sections shows that Õ
+

(L) is generated by reflections and that

M∗(Õ
+

(L)) is generated by m2, E4, ψ, E6.
(ii) By (i), the Jacobian of the generators is a nonzero multiple of ψΦ20. The input form whose

additive lift is m2 is invariant under O+(L), so m2 itself is modular under O+(L). Since ψ has
at worst a quadratic character, it follows that all of the claimed generators are modular forms
for O+(L). Applying Theorems 2.8, 2.9 we see that O+(L) is generated by reflections and that
M∗(O

+(L)) is generated by m2, E4, E6, ψ
2. �

8. The 2U(3)⊕A1 and U ⊕ U(2)⊕A1(2) lattices

In this section we discuss the algebras of modular forms for the lattices L = 2U(3) ⊕ A1 and

L = U ⊕U(2)⊕A1(2). It was proved in [33] that for the first lattice M∗(Õ
+

(L)) is freely generated

by four forms of weight 1. As mentioned in the introduction, M∗(Õr(L)) is not free for the second
lattice. However, there is a free algebra of modular forms in weights 1, 1, 1, 2 for a reflection group

slightly larger than Õr(L) (see [33]). It remains to determine the maximal reflection subgroups
Or(L) in O+(L) and to determine the graded rings of modular forms for these groups.

8.1. The 2U(3) ⊕ A1 lattice. Let L = 2U(3) ⊕ A1. From Section 7 of [33] recall that L admits
29 holomorphic Borcherds products of weight 1, of which one distinguished product denoted ∆1

has prinicipal part 2e0 + q−1/4ev where v has order two in L′/L, and that the ring of orthogonal

modular forms for the discriminant kernel M∗(Õ
+

(L)) is the polynomial algebra on any four linearly
independent Borcherds products of weight 1 other than ∆1. The form ∆1 turns out to play a
special role in the structure of the algebra M∗(O

+(L)). Recall that there are also twelve reflective
Borcherds products of weight 1 for this lattice, denoted b1, ..., b12, each with a principal part of the
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form 2e0 +q−1/3ev+q−1/3e−v where v has order 3 in L′/L, and that there is a product Φ7 of weight
7 whose principal part is 14e0 + q−1e0.

There is a two-dimensional space of vector-valued cusp forms of weight 3/2 for the Weil repre-
sentation attached to L, spanned by two forms f1, f2 of the form

f(τ) =
η(2τ)5

η(4τ)2

∑
x∈L′/L

Q(x)=−1/12+Z

ε(x)ex + 2
η(τ)2η(4τ)2

η(2τ)

∑
x∈L′/L

Q(x)=−1/3+Z

ε(x)ex

where ε(x) ∈ {−1, 0, 1}. Under the theta lift these are mapped to a one-dimensional space, spanned
by the square ∆2

1. In particular, ∆2
1 transforms without character on the maximal reflection group

Or(L) (as it is a square) and with at worst a quadratic character on the full group O+(L) (since
this is true for all of the weight 3/2 vector-valued cusp forms).

A direct calculation shows that the kernel of the additive lift contains no forms with rational
Fourier coefficients; it is spanned by the form g = f1 + e2πi/3f2. For each fi, there exists ci ∈ C
such that ci∆

2
1 = Φf . For any σ ∈ O+(L), we have σ(c∆2

1) = Φσ(f), which implies that σ(f) ± f
has rational coefficients and lifts to zero, so σ(f) ± f = 0. Therefore, each of f1, f2 are modular
under O+(L) with the same quadratic character χ, and the kernel form g is also modular under
O+(L) with the character χ.

On the other hand, the Serre derivatives ϑf1, ϑf2 lift to a two-dimensional space of cusp forms of
weight 4 under the theta lift. Any form contained in this space transforms with the same character
as ∆2

1 under O+(L), since the Serre derivative commutes on input forms with the action of O+(L).
We let m4 denote the additive theta lift of the Serre derivative of either f1 or f2 (the choice will
not matter).

Theorem 8.1. The group O+(L) is generated by reflections. The graded algebra M∗(O
+(L)) is

freely generated in weights 2, 4, 4, 6:

M∗(O
+(L)) = C[∆2

1, E4,m4, E6],

where Ek is the Eisenstein series of weight k.

Proof. By computing its Fourier series we find that the Jacobian J of the claimed generators is
not identically zero, and has weight 19. (Note that J being nonzero is independent of the choice

of m4.) Since J0 := Φ7 ·
∏12
i=1 bi has simple zeros exactly on the mirrors of reflections in O+(L),

Theorem 2.8 and the Koecher principle imply that J is a nonzero multiple of J0. From Theorem
2.9 we conclude that M∗(Or(L)) is freely generated by ∆2

1, E4, m4 and E6.
To see that ∆2

1 (and therefore m4) has trivial character on O+(L), one can argue as follows. ∆4
1

is itself a theta lift; namely, up to constant multiples, ∆4
1 = Φϑg where g is the theta kernel and ϑg

is the Serre derivative. (Proving this rigorously involves computing only two Fourier coefficients,
due to the structure theorem for M∗(Or(L)). Then ϑg transforms in the same way as g under the
action of O+(L). It follows that ∆4

1 transforms under O+(L) with the same character as ∆2
1 and

therefore that the character is trivial. �

8.2. The U ⊕ U(2) ⊕ A1(2) lattice. Let L = U ⊕ U(2) ⊕ A1(2), with Gram matrix

(
0 0 0 0 1
0 0 0 2 0
0 0 4 0 0
0 2 0 0 0
1 0 0 0 0

)
.

The lattice L admits Borcherds products with principal parts as in Table 12 below.
Note that the quotient Ψ4 := Ψ7

b1b2b3
is holomorphic even though some of the coefficients of the

principal part of its input form are negative.
It was shown in [33] that the graded ring of modular forms for the subgroup O1(L) ≤ O+(L)

generated by reflections associated to the divisor of Φ4Ψ4 is freely generated by b1, b2, b3 and an
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Table 12. Some Borcherds products for U ⊕ U(2)⊕A1(2)

Name Weight Principal part

b1 1 2e0 + q−1/8e(0,0,1/4,0,0) + q−1/8e(0,0,3/4,0,0)

b2 1 2e0 + q−1/8e(0,0,1/4,1/2,0) + q−1/8e(0,0,3/4,1/2,0)

b3 1 2e0 + q−1/8e(0,1/2,1/4,0,0) + q−1/8e(0,1/2,3/4,0,0)

f1 4 8e0 + q−1/2e(0,0,1/2,1/2,0)

f2 4 8e0 + q−1/2e(0,1/2,1/2,0,0)

f3 4 8e0 + q−1/2e(0,1/2,0,1/2,0)

Φ4 4 8e0 + q−1e0

Ψ7 7 14e0 + q−1/2e(0,0,1/2,0,0)

additive lift m2 of weight two. (Note that the ring of modular forms for maximal reflection group

in Õ
+

(L) cannot be freely generated, since the prospective Jacobian Φ4 is not a cusp form.)

Theorem 8.2. The group O+(L) is generated by reflections. The graded ring of modular forms
for O+(L) is the free algebra on generators of weights 2, 4, 6, 8:

M∗(O
+(L)) = C[m2, E4, E6, E8].

The Jacobian of the generators is a constant multiple of f1f2f3Φ4Ψ7 = b1b2b3f1f2f3Φ4Ψ4.

Proof. The Eisenstein series E4, E6, E8 are clearly modular forms without character on O+(L).
The input function to m2 in the theta lift can be constructed as a linear combination of (non-
holomorphic) Eisenstein series of weight 3/2:

E3/2,0 −
∑

x∈L′/L
Q(x)=0, x 6=0

E3/2,x,

which is easily seen to be invariant under all automorphisms of the discriminant form, such that
m2 is also modular without character on O+(L). By computing Fourier expansions we find that
the Jacobian is not identically zero and is of weight 23. Since J0 := f1f2f3Φ4Ψ7 has weight 23
and a simple zero on all mirrors of reflections in O+(L), Theorem 2.8 and the Koecher principle
imply that J = J0 up to a nonzero constant, and Theorem 2.9 implies that O+(L) is generated by
reflections and that m2, E4, E6, E8 generate M∗(O

+(L)). �

8.3. The remaining cases. To complete the proof of Theorem 1.1, we have to prove the last five
cases in Table 1. For any even lattice L and any positive integer a we have

O+(L(a)) = O+(L) = O+(L′) = O+(L′(a)).

Using this trick, we have the following isomorphisms:

O+(2U(2)⊕A1(2)) = O+(2U ⊕A1) = O+(2U(4)⊕A1),

O+(U(4)⊕ U(2)⊕A1) = O+(U ⊕ U(2)⊕A1),

O+(2U(3)⊕A2) = O+(2U ⊕A2).

From [14, Lemma 6.1], we deduce that

O+(2U(2)⊕A1) = O+(2U ⊕A1(2)).

This reduces these algebras to four cases which are already known.
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9. The U ⊕ U(2)⊕ 2A1 lattice

The lattice L = U ⊕U(2)⊕ 2A1 with Gram matrix

 0 0 0 0 0 1
0 0 0 0 2 0
0 0 2 0 0 0
0 0 0 2 0 0
0 2 0 0 0 0
1 0 0 0 0 0

 is not simple, as the dual Weil

representation attached to L admits a two-dimensional space of cusp forms of weight 3, spanned
by the forms

f1(τ) = η(τ)6(e(0,0,1/2,0,1/2,0) + e(0,1/2,0,1/2,0,0) − e(0,0,0,1/2,1/2,0) − e(0,1/2,1/2,0,0,0))

and

f2(τ) = η(τ)6(e(0,0,1/2,0,0,0) + e(0,1/2,1/2,0,0,0) − e(0,0,0,1/2,0,0) − e(0,1/2,0,1/2,0,0)).

Nevertheless, it behaves similarly to simple lattices in many ways, since the obstruction principle
[4] implies that every Heegner divisor which is invariant under swapping the two A1 components
occurs as the divisor of a Borcherds product. By computing the Fourier coefficients of the Eisenstein
series one can obtain the Borcherds products in Table 13.

Table 13. Some Borcherds products for U ⊕ U(2)⊕ 2A1

Name Weight Principal part

b1 4 8e0 + q−1/2e(0,0,1/2,1/2,1/2,0)

b2 4 8e0 + q−1/2e(0,1/2,1/2,1/2,0,0)

b3 4 8e0 + q−1/2e(0,1/2,0,0,1/2,0)

ψ 6 12e0 + q−1/2e(0,0,1/2,1/2,0,0)

Φ18 18 36e0 + q−1e0

The involution ε(x1, x2, x3, x4, x5, x6) = (x1, x2, x4, x3, x5, x6) on L induces an involution (also
labelled ε) of C[L′/L] and splits the spaces of vector-valued modular forms for ρL naturally into
eigenspaces:

Mk(ρ) = Mk,+(ρ)⊕Mk,−(ρ) where Mk,±(ρ) = {f ∈Mk(ρ) : ε ◦ f = ±f}.

Note that any element of Mk,−(ρ) is necessarily a cusp form because all isotropic cosets of L′/L
are invariant under ε. Let Sk,±(ρ) = Sk(ρ) ∩Mk,±(ρ) denote the spaces of cusp forms. Using the
Riemann–Roch formula one can compute

dimM1(ρ) = dimM1,+(ρ) = 1;

dimM3(ρ) = dimM3,+(ρ) = 4;

dimM5(ρ) = 6, dimS5,+(ρ) = dimS5,−(ρ) = 1.

In fact, M1(ρ) is spanned by the vector-valued Eisenstein series E1(τ) of weight one, which lifts to
the Eisenstein series E2 of weight two. It will turn out that (E2)2 is an additive theta lift of weight
four. Choose any three theta lifts m4,1,m4,2,m4,3 of weight four such that {E2

2 ,m4,1,m4,2,m4,3} is
linearly independent, and let m6 be the theta lift of the normalized form in S5,+(ρ).

Theorem 9.1. Let Γ = 〈Õ
+

(L), ε〉 be the group generated by the discriminant kernel Õ
+

(L) and
the involution ε that swaps the two A1 components in L. Then Γ is generated by reflections and
M∗(Γ) is a free algebra generated by forms of weights 2, 4, 4, 4, 6:

M∗(Γ) = C[E2,m4,1,m4,2,m4,3,m6].
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Proof. The divisor of ψΦ18 consists exactly of mirrors of reflections contained in Γ. Since all of
the generators are additive lifts of forms invariant under ε, they are modular forms for Γ without
character. By Theorem 2.8 the Jacobian J = J(E2,m4,1,m4,2,m4,3,m6) is divisible by ψΦ18; since
J and ψΦ18 each have weight 24, it follows that J/(ψΦ18) is a constant. Computing J with at least
the first seven Fourier–Jacobi coefficients of these generators shows that the constant is nonzero.
The structure of M∗(Γ) and the fact that Γ is generated by reflections associated to the divisor of
ψΦ18 then follow from Theorem 2.9. �

Remark 9.2. The Borcherds products of weight 4 are additive lifts and transform under Γ without
character. However, they cannot be used as generators in place of the additive lifts m4,i because
they are linearly dependent.

Remark 9.3. Any modular form that transforms with eigenvalue −1 under ε has a forced zero on
the divisor of ψ. Moreover, ψ itself satisfies ε(ψ) = −ψ because it has odd order on the mirror corre-

sponding to ε. It follows that the graded ring M∗(Õ
+

(L)) is generated by E2,m4,1,m4,2,m4,3,m6, ψ
modulo a single relation in weight 12 of the form ψ2 = P (E2,m4,1,m4,2,m4,3,m6). In particular,

M∗(Õ
+

(L)) is not a free algebra.

We also obtain the ring of modular forms for O+(L) with this argument.

Theorem 9.4. The group O+(L) is generated by reflections. The graded ring M∗(O
+(L)) is freely

generated by the Eisenstein series of weights 2, 4, 6, 8, 12:

M∗(O
+(L)) = C[E2, E4, E6, E8, E12].

Proof. By construction the Eisenstein series are modular forms for the full group O+(L). The Ja-
cobian J = J(E2, E4, E6, E8, E12) vanishes on the mirrors of all reflections in O+(L) and in particular
is divisible by J0 := b1b2b3ψΦ18. Since J and J0 both have weight 36, it follows that J/J0 is a
constant. Computing the Fourier–Jacobi expansions of the Eisenstein series to precision at least 9
shows that J is not identically zero. It follows that

M∗(O
+(L)) = C[E2, E4, E6, E8, E12]

and O+(L) is generated by reflections corresponding to J . �

Remark 9.5. There are some other free algebras of modular forms associated to non-simple lattices.
For the convenience of the reader, we list all known such algebras for maximal reflection groups
contained in the full orthogonal groups in Table 14.

Table 14. Free algebras of modular forms on Or(L) for non-simple lattices.

# L Weights of generators Proof

1 2U ⊕ 2A1 4, 6, 8, 10, 12 [32]

2 2U ⊕ 3A1 4, 6, 6, 8, 10, 12

3 2U ⊕ 4A1 4, 4, 6, 6, 8, 10, 12

4 2U ⊕ 2A1(2) 2, 4, 4, 6, 6 [31]

5 2U ⊕A2(2) 4, 4, 6, 6, 6

6 2U ⊕A2(3) 2, 2, 4, 4, 6

7 2U ⊕A3(2) 2, 4, 4, 6, 6, 6

8 2U ⊕D4(2) 4, 4, 4, 6, 6, 6, 6

9 U ⊕ U(2)⊕ 2A1 2, 4, 6, 8, 12 Theorem 9.4
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It was proved in [33] that the graded algebra of modular forms for the group generated by

Õr(2U(2) ⊕ 2A1) and the swapping of two A1 components is freely generated by five forms of
weight 2. However, we do not obtain a new free algebra for Or(2U(2) ⊕ 2A1) because by [14,
Lemma 6.1] we have

O+(2U(2)⊕ 2A1) = O+(2U ⊕ 2A1).

Remark 9.6. Similarly to our previous work [31, 33], there are free algebras of modular forms for

some reflection groups smaller than Õr and for some reflection groups between Õr and Or, which
can be computed using the argument of this paper. We leave this task to the reader.

Conjecture 5.2 in [30] states that if M∗(Γ) is a free algebra for a finite index subgroup Γ of
O+(L) then M∗(Γ1) is also free for any other reflection subgroup Γ1 satisfying Γ < Γ1 < O+(L).
All examples in the current paper and in our previous work support this conjecture.
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