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Abstract. This note rederives a formula for r-color partitions, 1 ≤ r ≤ 24, including Rademacher’s cele-
brated result for ordinary partitions, from the duality between modular forms of weights −r/2 and 2+ r/2.

1. Introduction

Let η(τ) = q1/24
∏∞
n=1(1 − qn), where q = e2πiτ and τ ∈ H = {x + iy : y > 0}, denote the Dedekind

eta-function, a highly familiar cusp form of weight 1/2. To be more precise, let Γ = SL2(Z) be the full
modular group, which is generated by S =

[
1
0

1
1

]
and T =

[
0
1
−1
0

]
. Then η transforms by

η(Mτ) = vη(M)
√
cτ + d η(τ),

for all M =
[∗
c
∗
d

]
∈ Γ, where the eta multiplier vη : Γ

onto−−→ {the 24th roots of unity} is determined by

vη(S) = eπi/12 and vη(T ) = e−πi/4. Here and below, M acts upon H as usual and the roots are extracted
according to the convention that −π ≤ arg z < π, for z ∈ C×. Note that v2η is a character on Γ and vη itself
corresponds to a character on the metaplectic group Mp2(Z). Two different closed formulas are known for
vη (see, for example, [2, Section 6] and [9, Chapter 4]).

Euler observed that the Fourier coefficients of η−1 are very interesting:

η(τ)−1 = q−1/24
∞∑
n=0

p(n)qn,

where the partition function p(n) counts the number of ways to write n > 0 as an unordered sum of
positive integers and p(0) = 1 by convention. More generally,

η(τ)−r = q−r/24
∞∑
n=0

pr(n)qn,

where pr(n) enumerates the number of r-color partitions of n > 0, which permit parts to appear in r
different ‘colors’ (with their order disregarded), and pr(0) = 1. The modularity of η is a powerful tool in the
study of partitions. For example, Poisson summation shows that the series q1/24

∑
n∈Z(−1)nqn(3n−1)/2 is a

cusp form of the same weight and multiplier on Γ, so Euler’s Pentagonal Number Theorem

η(τ) = q1/24
∑
n∈Z

(−1)nqn(3n−1)/2

follows after comparing only the coefficients of q1/24 on both sides. In turn this identity implies Euler’s
recursive formula for p(n). A much newer result of Bruinier and Ono [5] finds an intriguing finite algebraic
formula for p(n) in terms of traces of singular moduli of a distinguished weak Maass form of level 6. For
purposes of computation, however, the most remarkable result is the following one due to Rademacher.

Theorem 1. If n ∈ N, then

p(n) =
1

π
√

2

∞∑
c=1

Ac(n)
√
c
d

dn

[
sinh(µ

√
n− 1/24/c)√

n− 1/24

]
,

where µ = π
√

2/3 and Ac(n) = eπi/4A(−1/24, n− 1/24; c), with A(·, ·; c) defined in Lemma 2.
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This infinite series converges rapidly and is the basis of modern algorithms for calculating p(n) (see, for
instance, [7, Section 56.13]). Using a closed formula for vη(M), one can express the finite sum Ac(n) in terms
of Dedekind sums (see, for example, [13, Equations 3, 4]). There is also a simpler (and more illuminating)
formula for Ac(n) due to Selberg [19, Equation 18], whose work is fleshed out in [18, Lectures 22–23].

Rademacher’s original derivation [16] and subsequent refinement [17] (also in [18, Lectures 16–19]), which
involves integrating over arcs of Ford circles, are based upon the iconic circle method of Hardy and Ramanu-
jan [6]. A more recent approach uses the observation of Hejhal [8, Appendix D], rooted in the work of Niebur
[10], that negative-weight modular forms can be studied using real-analytic Poincaré series (see also [4, Sec-
tion 6.3]). There are other “real-analytic proofs”: [13] writes η−1 as a special value of a pseudo-Poincaré
series of weight −1/2, while [1] constructs a weight 5/2 mock modular form with η−1 as its shadow.

In this note we give a short “holomorphic proof” of Rademacher’s formula for p(n) (as well as for pr(n),
2 ≤ r ≤ 24) that uses only the Fourier expansion of Poincaré series and the fact that any weight 2 modular
form has constant term 0. This derivation was carried out by the first author in the early 2000s and by the
second one relatively recently. The former was inspired by the work of Siegel [20]; the latter was guided by
that of Zagier [21], who credits Kaneko with an easier proof. Our paper presents a collaborative exposition.

2. Review of Poincaré series and weight two modular forms

The Fourier expansion of Petersson’s Poincaré series [11, Equations 10, 11] extends the pioneering work
of Poincaré [12, Section 6]. We begin this section by recalling the computation pertinent to our study.

Let Γ∞ be the stabilizer of i∞ in Γ, that is, the subgroup generated by S and T 2 = −I. For any function f
on H, define the Petersson slash operator by (f |k,vM)(τ) = v(M)−1(cτ +d)−kf(Mτ), where M =

[∗
c
∗
d

]
∈ Γ

and v is a multiplier system in weight k for Γ. Now fix k ∈ 1
2Z, k ≥ 5/2, and suppose that m ∈ 1

24Z satisfies

k − 12m ∈ 2Z. Then qm = e2πimτ is invariant under |k,v24mη
S and |k,v24mη

(−I); hence the Poincaré series

of weight k and index m,

Pk,m(τ) =
∑
M

qm
∣∣∣
k,v24mη

M,

where M ranges over a set of coset representatives for Γ∞\Γ, is well-defined. This series converges absolutely-
uniformly on compacta of H, and Pk,m is a modular form of weight k and multiplier system v24mη on Γ. It

transforms under S by Pk,m(τ + 1) = e2πimPk,m(τ) and thus has a “Fourier expansion” of the type

Pk,m(τ) =
∑

n∈Z+m
cnq

n, where cn =

∫ 1

0

Pk,m(τ)e−2πinτ dx,

τ = x + iy, with y > 0 fixed. Let us compute these Fourier coefficients. Using the bijection between
Γ∞\Γ and the set {(0, 1)} ∪ {(c, d) ∈ N × Z : (c, d) = 1} to choose the coset representatives M =

[
a
c
∗
d

]
,

interchanging the sum and integral, and then splitting the summation over d into residue classes, we see that

cn = δm,n +

∞∑
c=1

∑
d∈Z

(c,d)=1

vη(M)−24m
∫ 1

0

(cτ + d)−ke2πi(mMτ−nτ) dx

= δm,n +

∞∑
c=1

c−1∑
h=0

(c,h)=1

vη(Mc,h)−24m
∑
j∈Z

∫ j+1

j

(cτ + h)−ke2πi(mMc,hτ−nτ) dx

= δm,n +

∞∑
c=1

c−1∑
h=0

(c,h)=1

vη(Mc,h)−24me2πi
ma+nh

c

∫ ∞
−∞

(cτ + h)−ke2πi[m(Mc,hτ− ac )−n(τ+
h
c )] dx

= δm,n +

∞∑
c=1

c−kA(m,n; c)

∫ ∞+iy

−∞+iy

τ−ke−2πi(nτ+m/c
2τ) dτ,

2



where the finite sum A(m,n; c) is defined in Lemma 2. Here δm,n is the Kronecker delta function and
Mc,h =

[
a
c
∗
h

]
∈ Γ, where we let d = h + cj, with 0 ≤ h ≤ c − 1, (c, h) = 1, and j ∈ Z. Note that

M = Mc,h ·
[
1
0
j
1

]
and so vη(M)−24m = e−2πimj vη(Mc,h)−24m. Along the way we replaced x by x − j,

invoked the identity Mc,hτ = a
c −

1
c(cτ+h) , and then replaced τ by τ − h

c . It remains for us to scrutinize the

integral, say I, which is independent of y > 0.

If n ≤ 0, then we push the horizontal path of integration upwards to reveal that I = 0. If n > 0, then
we let w = −2πinτ , replace y by y

2πn , expand the (appropriate) exponential as a power series, and integrate
term by term to find that

I = (2πn)k−1i−k−1
∫ y+i∞

y−i∞
w−kew−4π

2mn/c2w dw

= (2πn)k−1i−k−1
∞∑
p=0

(−4π2mn/c2)p

p!

∫ y+i∞

y−i∞

ew

wp+k
dw

= 2πi−k(2πn)k−1
∞∑
p=0

(−4π2mn/c2)p

p! Γ(p+ k)

=

 2πi−k(c2n/m)
k−1
2 Jk−1(4π

√
mn/c) if m 6= 0,

(−1)k/2(2π)knk−1/(k − 1)! if m = 0,

where we resurrected Laplace’s integral formula for the reciprocal of the gamma function (see [14] or compute
the special value of the inverse Laplace transform de novo) and then used the infinite series representation
of the ordinary Bessel function Jk−1(for the case m 6= 0). Finally, since the modified Bessel function Ik−1
satisfies Ik−1(z) = i1−kJk−1(iz), we recover the following trichotomy of Fourier expansion formulas.

Lemma 2. Let k ∈ 1
2Z, k ≥ 5/2, and suppose that m ∈ 1

24Z satisfies k − 12m ∈ 2Z.

(i) If m > 0, then Pk,m(τ) =
∑

n∈(Z+m)>0

cnq
n, where

cn = δm,n + 2πi−k(n/m)
k−1
2

∞∑
c=1

A(m,n; c)

c
Jk−1(4π

√
mn/c).

(ii) If m < 0, then Pk,m(τ) = qm +
∑

n∈(Z+m)>0

cnq
n, where

cn = 2πi−k(n/|m|)
k−1
2

∞∑
c=1

A(m,n; c)

c
Ik−1(4π

√
|m|n/c).

(iii) If m = 0, then Pk,0(τ) = 1 +

∞∑
n=1

cnq
n, where

cn =
(−1)k/2(2π)knk−1

(k − 1)!

∞∑
c=1

A(0, n; c)

ck
=

(−1)k/2(2π)k

(k − 1)! ζ(k)
σk−1(n) = − 2k

Bk
σk−1(n).

Here A(m,n; c) denotes the generalized Kloosterman sum

A(m,n; c) =
∑

d(mod c)
(c,d)=1

vη(M)−24me2πi
ma+nd

c , M =
[
a
c
∗
d

]
∈ Γ;

σk−1(n) =
∑
d|n, d> 0 d

k−1 is the divisor function; ζ symbolizes the Riemann zeta-function; and Bk is the kth

Bernoulli number. (Note that Pk,0 is the normalized Eisenstein series of weight k, usually denoted by Ek,
for which we have appended two familiar formulas based upon core knowledge associated with the Ramanujan
sum A(0, n; c) and ζ(k).)
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We conclude this section by reproducing the following key fact (and its proof) from [15, Section 3].

Lemma 3. Let F be an unrestricted modular form of weight 2 and trivial multiplier on Γ. By this we
mean that F is holomorphic in H and satisfies the modular relation F (Mτ) = (cτ + d)2F (τ), τ ∈ H, for all
M =

[∗
c
∗
d

]
∈ Γ. So F must have the expansion

F (τ) =
∑
n∈Z

anq
n,

where q = e2πiτ and τ ∈ H. Then the constant term of F , given by a0, is 0.

Proof. Rudimentary complex analysis reveals that

a0 =

∫ ρ+1

ρ

F (τ) dτ =

∫ ρ+1

ρ

F (−1/τ)

τ2
dτ =

∫ ρ

ρ+1

F (ζ) dζ = −a0,

where ρ = e2πi/3 and the path is along the unit circle; so a0 = 0. �

Alternatively, Lemma 3 (for a modular form with a finite principal part) follows from the valence formula
(plus some basic knowledge) or from the residue theorem on the compact Riemann surface Γ\(H∪Q∪{i∞})
applied to the Γ-invariant differential F dτ . The use of the latter can be interpreted as a special case of the
Serre duality pairing (see [3, Section 3]).

3. Proof of Rademacher’s formula

Theorem 4. Let 1 ≤ r ≤ 24. Then the number of r-color partitions of n ∈ N is

pr(n) = −cr/24,

where cr/24 is the coefficient of qr/24 in the expansion for the Poincaré series P2+r/2,−n+r/24 that is provided
in Lemma 2.

Proof. Observe that the modular form

P2+r/2,−n+r/24(τ) · η(τ)−r =
(
q−n+r/24 + cr/24q

r/24 + · · ·
)( ∞∑

`=0

pr(`)q
`−r/24

)
is of weight 2 and trivial multiplier on Γ, so its constant term pr(n) + cr/24 is 0 by Lemma 3. �

The traditional form of Rademacher’s formula as in Theorem 1 follows after applying the well-known iden-

tity I3/2(z) =
√

2z
π

d
dz (sinh(z)/z) and the relation i−1/2A(−n + 1/24, 1/24; c) = i1/2A(−1/24, n − 1/24; c).

Actually, one can avoid altogether the use of I3/2 by rewriting the second sum over p specialized to k = 5/2—
see the above computation of I—in terms of sinh. (For this easy and standard calculation, consult [13,
Equation 21].) Amazingly, the formula for p24(n) follows already from the aforementioned work of Poincaré
[12] coupled with Lemma 3. Tangentially, we note the bilateral nature of the equality in Theorem 4. To wit,
any known formula for pr(n) provides us with one for cr/24 and, in combination with Lemma 2, this can
produce some curious identities. A simple illustration of this stems from the obvious fact that pr(1) = r.
Amusingly, the particular case p24(1) = 24 leads instantly to the value of ζ(14) (as well as that of B14).
Some additional familiar identities (connected with expansions of 0) can be recovered by considering the
product of η−r, 1 ≤ r ≤ 24, with the cuspidal Poincaré series P2+r/2,n+r/24, that is, where n ∈ Z≥0.

We remark that the same method of this paper can be used to reestablish the Rademacher and Zuckerman
expressions for the Fourier coefficients of any modular form having negative real weight and multiplier system
on Γ. (This includes a formula for pr(n), where r, n ∈ N with n ≥ r/24, that depends upon the principal
part of the Fourier expansion of η−r.) More broadly, an enhanced version of the method can be employed to
capture explicit formulas for the Fourier coefficients of an arbitrary Niebur modular integral (more recently
also known as a mock modular form) of negative real weight and multiplier system on Γ. This work has
been carried out by the first author, who plans to present it in a forthcoming article.
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