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0. Foreword

These are notes for a course (Spezialvorlesung) on quadratic forms held at Heidelberg
University in the summer semester of 2025.

The main reference throughout these notes is the book Quadratische Formen (in
German!) by Martin Kneser, in the second edition edited in collaboration with Win-
fried Scharlau, which I loosely followed.

I also drew material from the Introduction to Quadratic Forms over Fields by T.Y.
Lam, from Symmetric bilinear forms by Milnor and Husemoller, from Arithmetic of
Quadratic Forms by Y. Kitaoka, and from Sphere packings, lattices and groups by
Conway, Sloane and other authors. Other references are indicated by footnotes.
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1. Basics

1.1. Bilinear forms

We begin not by studying quadratic forms but the closely related bilinear forms. This
section is mostly meant to fix definitions and notation.

Let R be an integral domain with 1. From now on, this is always assumed when
we say R is a ring. Our R-modules will almost always be finitely generated projective
R-modules. Recall that a (finitely generated) R-module M is projective if any of the
following equivalent definitions is true:

(1) There is another R-module N such that the direct sum F =M ⊕N is (finitely
generated and) free;

(2) For any surjective homomorphism π : X ↠ Y of R-modules, any homomorphism
g : M → Y can be pulled back to a homomorphism f : M → X for which π ◦ f = g.
In pictures, we have the commutative diagram

X Y

M

π

g
f

(3) For any system of generators e1, ..., en, there are linear functionals e
∗
1, ..., e

∗
n :M → R

such that each x ∈M can be written as the linear combination

x =
n∑

i=1

e∗i (x)ei.

(The e∗i might not be unique!) This setup is usually called a dual basis even though
e1, ..., en is not necessarily a basis of M at all.

(4) All localizations of M are (finitely generated) free modules. (This is ultimately
the reason for working with projective modules.)
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Definition 1.1. A bilinear form on M is a function

β :M ×M −→ R

that satisfies
β(ax1 + bx2, yi) = aβ(x1, yi) + bβ(x2, yi);

β(xi, ay1 + by2) = aβ(xi, y1) + bβ(xi, y2);

for any x1, x2, y1, y2 ∈M and a, b ∈ R.

As long as there is no risk of confusion, we will often use the notation

x · y = β(x, y).

The space of bilinear forms on M is itself an R-module with the natural notion of
addition and multiplication by R. We denote it by Bil(M).

A bilinear form induces a homomorphism of R-modules

b :M −→M∗ := HomR(M,R),

b(x)(y) := β(x, y) (x, y ∈M).
(1.1)

from M into its dual. Conversely, any such homomorphism corresponds to a bilinear
form β.

We call β non-degenerate if b is injective and regular if b is bijective and M is
finitely generated projective. (These definitions are mainly used when β is symmetric
or skew-symmetric; see below.) These notions are equivalent over fields but not over
general rings.

Given β ∈ Bil(M), define the bilinear form

β∗(x, y) := β(y, x).

Definition 1.2. (i) β is symmetric if β = β∗.
(ii) β is skew-symmetric if β = −β∗.
(iii) β is alternating if β(x, x) = 0 for every x ∈M .

An alternating bilinear form is skew-symmetric due to the calculation

0 = (x+ y) · (x+ y)− x · x− y · y = y · x+ x · y.

In the other direction, setting x = y in x · y = −y · x implies

2 · β(x, x) = 0,

which if char(R) ̸= 2 (!) implies that β is alternating. When char(R) = 2, alternating
is a stronger condition than skew-symmetric.
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Usually our bilinear forms will be symmetric.

Now consider the case of the free moduleM , and let β be a symmetric bilinear form.
With respect to any basis e1, ..., en, the form β is represented by the matrix

B = (ei · ej)ni,j=1

in the sense that if x =
∑

i xiei and y =
∑

i yiei ∈ M are identified with the column
vectors (xi)i, (yi)i ∈ Rn, then

x · y = xTBy.

This shows that β is nondegenerate if and only if B is injective as a matrix map
(equivalently, if det(B) ̸= 0) and that β is regular if and only if det(B) ∈ R×. Note
however that different bases yield different matrix determinants. In a different basis

e′j =
n∑

i=1

aijei

with the matrix A = (aij)
n
i,j=1 ∈ GLn(R), the form β is represented by the matrix

B′ = ATBA.

Therefore
det(B′) = det(B) · det(A)2 ∈ det(B) · (R×)2.

So the following notion is well-defined:

Definition 1.3. Let (M,β) be a free R-module of finite rank with symmetric
bilinear form. The discriminant of β is the coset

disc(β) = det(B) · (R×)2 ∈ R/(R×)2

modulo squares of units, where B is any representation matrix for β.

Example 1.4. Let R = Z. Then (Z×)2 = {1} and Z/(Z×)2 = Z, so the discriminant
of a symmetric bilinear form is just an integer.
The hyperbolic plane H is the Z-module Z2 with bilinear form

β
((

a
b

)
,

(
c
d

))
= ad+ bc.

Its discriminant is −1.

In order to connect symmetric bilinear forms and quadratic forms (which we will do
later), we need the following definition.

Definition 1.5. A bilinear form β is called even if there is a bilinear form γ
such that

β = γ + γ∗.
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The bilinear form γ is unique modulo adding skew-symmetric forms. (γ is generally
a bilinear form that is not symmetric!) This leads to an isomorphism of R-modules:

Bileven(M) ∼= Bil(M)/Bilskew(M), β 7→ [γ].

Whether a bilinear form β is even can be read off of the values β(x, x):

Lemma 1.6. Let (M,β) be a finitely generated projective R-module together with
a symmetric bilinear form. The following are equivalent:
(i) β is even;
(ii) β(x, x) ∈ 2R for every x ∈M .

Proof. (i) ⇒ (ii) β = γ + γ∗ implies

β(x, x) = 2 · γ(x, x) ∈ 2R.

(ii) ⇒ (i) M appears as a direct summand in a free R-module: F = M ⊕ N . The
bilinear form β can be trivially extended to all of F by defining β(x, y) = 0 for x ∈ F
and y ∈ N , and if that extension is even then it follows immediately that β itself is
even. So we can assume without loss of generality that the module M is free.

Suppose e1, ..., en is a basis of M and define

γ(ei, ej) :=


β(ei, ej) : i < j;

xi : i = j;

0 : i > j;

where xi ∈ R is an arbitrary (but fixed) element such that 2xi = β(ei, ei). Then γ
extends in a unique way to a bilinear form defined on all of M and γ + γ∗ = β holds as
one can check on any basis elements.

Now we return to the general case. Let M be a finitely generated projective R-
module with a symmetric bilinear form β.

Definition 1.7. Two vectors x, y ∈ M are orthogonal or perpindicular if
x · y = 0. In this case we write x ⊥ y.
Submodules U, V ⊆M are called orthogonal, written U ⊥ V , if x ⊥ y for every
x ∈ U and y ∈ V .
The orthogonal complement of a submodule U ⊆M is

U⊥ = {x ∈M : x · y = 0 for every y ∈ U}.

The radical of β is the orthogonal complement of the entire module M :

rad(β) =M⊥ = {x ∈M : x · y = 0 for all y ∈M} = ker(b).
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In particular, β is nondegenerate if and only if its radical is zero.
Given two symmetric bilinear forms (U, βU) and (V, βV ), the (external) orthogonal

direct sum U ⊥ V is (U ⊕ V, β), where for (xU , xV ), (yU , yV ) ∈ U ⊕ V we define

β((xU , xV ), (yU , yV )) = βU(xU , yU) + βV (xV , yV ).

The (external) orthogonal direct sum ⊥n
i=1 Ui of a family (Ui, βi) is defined similarly.

However, we also writeM = U ⊥ V ifM is the (internal) direct sum of two submodules
U, V that are perpindicular to one another.

If U ⊆M is a submodule then we write β|U for the restricted bilinear form

β|U : U × U −→ R, β|U(x, y) := β(x, y).

(Note that submodules need not be projective in general. An integral domain for which
all submodules of projectives remain projective is usually called a Dedekind ring. But
direct summands in projectives are certainly always projective.)

Definition 1.8. Let (M,β) be an R-module (finitely generated, projective) with
a symmetric bilinear form.
(i) x ∈M is isotropic if x ̸= 0 and x ⊥ x.
(ii) A submodule U ⊆M is isotropic if it contains an isotropic vector.
(iii) A submodule U ⊆ M is totally isotropic if all of its elements (other than
0) are isotropic.

A degenerate module is always isotropic because any vector x ∈ rad(β) is orthog-
onal to itself. The converse is far from being true. For example, the hyperbolic plane
(Example 1.4) is nondegenerate, even regular, but it contains the isotropic vectors (a, 0)
and (0, b) for any a, b ∈ Z\{0}.

Let b : M → M∗ be the module homomorphism b(x)(y) = x · y. For a submodule
U ⊆M , define

bU :M −→ U∗, bU(x)(y) := x · y.

Lemma 1.9. Let U ⊆M be a submodule. The following are equivalent:
(i) M = U ⊥ U⊥;
(ii) U is non-degenerate and bU(M) = bU(U).

Proof. (ii) is another way of saying that for every x ∈M there is a unique y ∈ U such
that bU(x) = bU(y). The latter condition is equivalent to

x · u = y · u

for all u ∈ U , i.e. x− y ∈ U⊥.
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Corollary 1.10. Any regular submodule U ⊆M splits off as a direct summand: more
precisely,

M = U ⊥ U⊥.

Corollary 1.11. Let (M,β) be an R-module (finitely generated, projective) with a
symmetric bilinear form. For u ∈ R×, let ⟨u⟩ be R itself as an R-module together with
the symmetric bilinear form βu(x, y) = uxy. Then M has an orthogonal decomposition

M = ⟨u1⟩ ⊥ ... ⊥ ⟨ur⟩ ⊥ N,

where u1, ..., ur ∈ R× are units and β(x, x) /∈ R× for every x ∈ N .

Proof. We use induction on the rank of M . If M has rank 0 then M = {0}.

Suppose rank(M) > 0. If β(x, x) is already a nonunit for every x ∈M then we have
N = M . Otherwise, there exists x1 ∈ M with β(x1, x1) = u1 ∈ R×. The submodule
⟨u1⟩ spanned by R · x1 is then regular and by Corollary 1.10 it splits off as a direct
summand:

M = ⟨u1⟩ ⊥ ⟨u1⟩⊥.

Since ⟨u1⟩⊥ has rank rank(M)− 1, it decomposes by the induction assumption.

On the other hand, submodules U ⊆ M can split off as direct summands without
M being of the form U ⊥ U⊥. We borrow some terminology from Kneser:

Definition 1.12. (i) A submodule U ⊆ M is called primitive if M = U ⊕ V
for some other submodule V .
(ii) U ⊆ M is called sharply primitive (scharf primitiv) if it is primitive and
the map

bU :M −→ U∗, bU(x)(y) = x · y

is surjective.

We do not ask for a primitive submodule to split off as an orthogonal direct sum-
mand.

Note that a regular submodule is automatically sharply primitive, since in this case
bU is already surjective from U onto U∗.

We have the following important construction of regular modules:
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Definition 1.13. Let M be a finitely generated projective R-module. The hy-
perbolic module H(M) is

H(M) :=M ⊕M∗

equipped with the bilinear form β defined by

β(x, φ) = φ(x), x ∈M, φ ∈M∗

and by β(x, y) = β(φ, ψ) = 0 for x, y ∈M and φ, ψ ∈M∗.

To see that H(M) is regular, note that we can find another R-module N such that
F =M ⊕N is finitely generated and free, and that

H(F ) = H(M) ⊥ H(N).

The fact that H(F ) is regular is equivalent to the canonical map F → (F ∗)∗ being an
isomorphism. As a direct summand in a regular module, H(M) is also regular.

If we view M as a totally isotropic module (i.e. endowed with the bilinear form
which is identically zero), then M ⊆ H(M) is a sharply primitive, but clearly not
regular, submodule. The orthogonal complement of M in H(M) is exactly M itself.

1.2. Quadratic forms

Let R be an integral domain.

By definition, an n-ary quadratic form is just a polynomial that is homogeneous of
degree two:

Q =
n∑

1≤i≤j≤n

aijXiXj ∈ R[X1, ..., Xn]. (1.2)

For example,
Q(X, Y, Z) = X2 + Y 2 + Z2

is a ternary quadratic form.

It is often more natural to consider the function on Rn induced by Q, namely

fQ : Rn −→ R, fQ(x1, ..., xn) :=
∑
i≤j

aijxixj.

This function can be thought of as attaching a “length” to vectors in Rn; for instance,
if R = R and Q is the ternary quadratic form above then fQ(x) is the square of the
usual Euclidean length ∥x∥. In general, the function fQ has the following properties:
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Lemma 1.14. (i) fQ(ax) = a2fQ(x) for all x ∈ Rn and a ∈ R;
(ii) The function

β : Rn ×Rn −→ R, β(x, y) := fQ(x+ y)− fQ(x)− fQ(y)

is a symmetric bilinear form.

The bilinear form β is called the polar or polarization of Q.
Both properties are easy to check. If e1, ..., en is the natural basis of Rn then the co-
efficients of 1.2 are recovered as fQ(ei) = aii and β(ei, ej) = aij. Hence fQ uniquely
determines the (polynomial) quadratic form Q regardless of the ground field. We usu-
ally abuse notation and just write Q = fQ.

Conditions (i),(ii) of Lemma 1.14 extend naturally to modules. For an R-module
M , we define a quadratic form Q :M → R as a function satisfying

Q(ax) = a2Q(x), x ∈M, a ∈ R

for which β(x, y) = Q(x+ y)−Q(x)−Q(y) defines a bilinear form. (This is called the
polar bilinear form attached to Q.)

Definition 1.15. (i) A quadratic R-module is a pair (M,Q) where M is a
finitely generated projective R-module and Q : M → R is a function satisfying
Lemma 1.14.
(ii) (M,Q) is called a quadratic space if the polarization β is nondegenerate.

Note that the form β is always even, because

β(x, x) = Q(2x)− 2Q(x) = 2 ·Q(x) ∈ 2R.

Conversely, an even symmetric bilinear form β uniquely determines a quadratic form
as long as the characteristic of R is not two. In this case we have Q(x) = 1

2
β(x, x).

If char(R) = 2 then this is no longer true:

Example 1.16. Let R be a ring of characteristic 2. The binary quadratic form

H(X, Y ) := XY

induces the bilinear form

β
((

a
b

)
,

(
c
d

))
= ad+ bc.

The quadratic form
E(X, Y ) := X2 +XY + Y 2

induces the same bilinear form β.
This is because the bilinear form attached to the quadratic form X2 is identically

zero (by the “freshman’s dream” identity x2 + y2 = (x+ y)2).
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The simple observation above turns out to cause a great deal of difficulty.

However, since β is even, by Lemma 1.6 there is a bilinear form γ, unique up to
addition by skew-symmetric forms, such that β = γ + γ∗. The form γ can be chosen
such that Q(x) = γ(x, x); under this condition, γ is unique up to addition by alternating
forms. Hence we have isomorphisms

{even symmetric bilinear forms} ∼= Bil(M)/Bilskew(M);

{quadratic forms} ∼= Bil(M)/Bilalt(M).

Finally, the matrix B of a quadratic form Q on Rn is the matrix of its polar form
with respect to the standard basis. Equivalently, this is the Hessian (or Gram) matrix
of Q. In terms of the coefficients aij of Q, the entries of B are

Bij =


2aii : i = j;

aij : i < j;

aji : j < i.

The matrix B uniquely determines the polar form β; if char(R) ̸= 2, it also uniquely
determines Q. The discriminant of Q is defined as

disc(Q) = disc(β) = det(B) · (R×)2.

Example 1.17. The quadratic form Q = X2 −XY + Y 2 has matrix B =

(
2 −1
−1 2

)
.

As a quadratic form over Z its discriminant is 3.

To summarize the situation:

Proposition 1.18. Let M = Rn. The following data are equivalent:
(i) A quadratic form Q viewed as a homogeneous polynomial of degree two;
(ii) A quadratic form viewed as a function Q : Rn → R satisfying the constraints
of Lemma 1.14;
(iii) The class [γ] of a bilinear form modulo alternating forms with γ(x, x) = Q(x).

If char(R) ̸= 2, these are also equivalent to any of the following:
(iv) An even symmetric bilinear form β, the polarization of Q;
(v) A symmetric matrix B ∈ Rn×n whose diagonal entries belong to 2R;
(vi) The class [γ] of a bilinear form modulo skew-symmetric forms with
γ(x, x) = Q(x).

Usually we define properties or invariants of quadratic forms as the corresponding
property or invariant of its polarization β, but there are a few exceptions (relevant in
characteristic 2). For example, the radical of the quadratic form Q :M → R is

rad(Q) = {x ∈M : Q(x) = 0 and x · y = 0 for every y ∈M}
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and it may be a proper submodule of rad(β). This is the case for the quadratic form
Q(X) = X2 over F2, where rad(Q) = {0} but rad(β) = F2.

Hence a quadratic form Q is called nondegenerate if its polarization β is nondegen-
erate, and regular if β is regular. These definitions have the disadvantage that they
never apply to forms of odd rank in characteristic two. For free modules this is because
if n is odd and B ∈ Rn×n is a symmetric matrix whose diagonal entries belong to 2R
then det(B) ∈ 2R. Indeed, when we apply the Leibniz formula to

det(B) = det


2a1 b12 ... b1n
b12 2a2 ... b2n
... ... ... ...
b1n b2n ... 2an

 , ai =
bii
2
,

most of the n! summands occur twice (each term appearing along with its reflection
across the diagonal), and because n is odd, any monomial that stays unchanged upon
reflecting across the diagonal must be a product that contains at least one factor 2ai
from the diagonal. This proves that we can write

det


2a1 b12 ... b1n
b12 2a2 ... b2n
... ... ... ...
b1n b2n ... 2an

 = 2 · P (Q),

where P is a polynomial with integral coefficients in the variables ai, bij (which are
coefficients of the quadratic form Q; hence P depends only on Q and the choice of a
basis!) This polynomial makes sense over any ring and leads to the following definition:

Definition 1.19. A quadratic form Q in n variables (n odd) is called semireg-
ular if P (Q) ∈ R× is a unit.

Changing bases multiplies P (Q) by the square of a unit in R, so this notion is
well-defined.

Example 1.20. The quadratic form Q(X) = aX2 in one variable is semiregular if and
only if a ∈ R×.

1.3. Isometries

Let (M1, Q1) and (M2, Q2) be quadratic modules over an integral domain R.
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Definition 1.21. An isometric embedding

φ : (M1, Q1) −→ (M2, Q2)

is an injective R-linear map φ :M1 →M2 that satisfies

Q2

(
φ(x)

)
= Q1(x) for every x ∈M1.

φ is called an isometry if it is bijective.

Sometimes the condition that φ is injective is omitted from the definition of an
isometry. (We do not do this.) If (M1, Q1) is nondegenerate then any linear map
φ :M1 →M2 that satisfies Q2 ◦ φ = Q1 is automatically injective anyway.

If φ is an isometry then its inverse φ−1 is also an isometry;. The composition
of isometries also remains an isometry. Therefore the notion of isometric quadratic
modules (i.e. quadratic modules that admit an isometry) is an equivalence relation;
isometric quadratic forms are also called equivalent.

Definition 1.22. Let M = (M,Q) be a quadratic space. The orthogonal
group

O(M) = O(Q) = O(M,Q)

is the group of self-isometries φ : (M,Q) → (M,Q).

If the characteristic of the base ring is not two, then O(M) can also be defined as
the group of linear maps that preserve the bilinear form β:

φ ∈ O(M) ⇔ β(φx, φy) = β(x, y) for all x, y ∈M.

Preserving β is a strictly weaker condition in general. For example if Q is the quadratic
form Q(X, Y ) = X2 + Y 2 over F2 then the bilinear form is trivial, hence preserved by

all of GL2(F2), but

(
1 1
0 1

)
∈ GL2(F2) does not preserve Q.

The most important transformations in O(M) are reflections.

Definition 1.23. Let (M,Q) be a quadratic space with an orthogonal decompo-
sition

M = U ⊥ V.

The reflection in M with respect to the splitting (U, V ) is the map

σU,V : U ⊥ V −→ U ⊥ V, σU,V (u+ v) = u− v.

σU,V preserves the quadratic form and it is bijective (in fact it is its own inverse).
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If 2 ∈ R× then any vector r ∈ M whose length Q(r) ∈ R× is invertible spans a
regular submodule of M . By Corollary 1.10 it induces an orthogonal splitting

M = r⊥ ⊥ (R · r).

The reflection associated to this decomposition is simply denoted σr. So σr(r) = −r
and σr(x) = x for x ∈ r⊥; the general formula is

σr(x) = x− x · r
Q(r)

r, x ∈M.

This formula makes sense even when 2 is not invertible and yields a transformation
σr ∈ O(M), which we still call the reflection along r (but not all authors do, and they
are justified in this). Indeed, by the polarization formula,

Q(σrx) = Q(x)− (x · r)
Q(r)

(x · r) + (x · r)2

Q(r)2
Q(r) = Q(x).

In characteristic two, the maps σr behave differently, sometimes in ways that contradict
geometric intuition: they are often instead called transvections. We will return to this
later.
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2. Quadratic forms over a local ring

Let R be a local ring with the unique maximal ideal m and residue field k = R/m. So
m consists of exactly the non-units in R. An important special case is when R = k is
already a field: the unique maximal ideal is m = {0}.

The basic structure theorems for quadratic spaces are due to Witt in the case R = k
is a field of characteristic other than two. The structure theory over fields of character-
istic two is due to Arf. Ultimately Witt’s theory was extended to local rings by Kneser.

By applying Nakayama’s lemma one can show that a finitely generated projective
module over a local ring is free. (In fact this is also true for projective modules that
are not finitely generated, by a theorem of Kaplansky, but we do not need this.) So we
can and often do work with bases.

Remark 2.1. Suppose R is a local ring and Q :M → R is a quadratic form. From M
one can construct a k-vector space M = M/(m ·M), and {x1, ..., xn} is an R-basis for
M if and only if {x1 + m ·M, ..., xn + m ·M} is a k-basis for M . (This again follows
from Nakayama’s lemma.) We write

x = x+m ·M ∈M

for x ∈M . The quadratic form Q induces a quadratic form

Q :M −→ k, Q(x) := Q(x) +m.

This is well-defined because if x, y ∈M and a ∈ m then

Q(x+ ay) = Q(x) + a(x · y) + a2Q(y) ∈ Q(x) +m.

2.1. Diagonalization

For elements a1, ..., an ∈ R, the diagonal quadratic form is

⟨a1, ..., an⟩ := ⟨a1⟩ ⊥ ... ⊥ ⟨an⟩ =
n∑

i=1

aiX
2
i .

Definition 2.2. A quadratic space (M,Q) is diagonalizable if there is an isom-
etry from Q to a diagonal quadratic form.
Equivalently, (M,Q) is diagonalizable if it admits an orthogonal basis, in other
words a basis e1, ..., en where β(ei, ej) = 0 if i ̸= j.
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The diagonalization problem depends a lot on whether 2 has an inverse in R. If it
does then we immediately have:

Proposition 2.3. Suppose 2 ∈ R×. Then every regular quadratic space is diag-
onalizable.

Proof. Let (M,Q) be a regular quadratic space. Recall that by Corollary 1.11,M splits
as an orthogonal direct sum

M = ⟨u1, ..., ur⟩ ⊥ N,

where ui ∈ R× and where N is a submodule satisfying

x · x /∈ R× for any x ∈ N.

We will show N = {0} which immediately implies the claim.

Suppose there were an x ∈ N , x ̸= 0. Since M (and therefore N) is regular, there
exists y ∈ N with x · y = 1. (Where x · y refers to the polar bilinear form of Q.) Then

2 = 2(x · y) = (x+ y) · (x+ y)− x · x− y · y.

But x, y, x+ y ∈ N so neither x · x nor y · y nor (x+ y) · (x+ y) is a unit. Since R is a
local ring, its nonunits are closed under addition and therefore 2 /∈ R×.

If 2 does not have an inverse in R then there are regular quadratic forms that cannot
be diagonalized.

Example 2.4. The hyperbolic plane, R2 with quadratic form H(X, Y ) = XY , cannot
be diagonalized over any local ring in which 2 /∈ R×. One way to see this is that
for a diagonalizable quadratic form Q : M → R, (WLOG a diagonal quadratic form
Q = ⟨a1, ..., an⟩), the polar bilinear form β satisfies β(x, y) ∈ 2R for any x, y ∈M . But
the bilinear form attached to H takes on every value of R because, for any a ∈ R, we
have a = (1, 0) · (0, a).

So regular quadratic forms can fail to be diagonalizable. However it turns out that,
at least over local rings, they can be decomposed into blocks of size at most 2×2. This
is sometimes called Jordan decomposition.
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Proposition 2.5. Let R be a local ring and let (M,Q) be a quadratic R-module.
Then M has an orthogonal direct sum decomposition

M = ⟨u1, .., ur⟩ ⊥
s

⊥
i=1

Ei ⊥ F

where ui ∈ R×, where Ei are regular indecomposable submodules of rank two, and
where F is a submodule that satisfies

β(x, y) ∈ m for every x, y ∈ F.

Proof. Start again with the decomposition

M = ⟨u1, ..., ur⟩ ⊥ N

where β(x, x) ∈ m for every x ∈ N . If β(x, y) ∈ m for every x, y ∈ N then we have
F = N and we are done. Otherwise there exist x, y ∈ N for which β(x, y) ∈ R×.
Then E1 := Rx ⊕ Ry is a regular submodule of N so we have an orthogonal splitting
N = E1 ⊥ E⊥

1 .
By inducting on the rank of N we obtain the decomposition.

Corollary 2.6. Suppose 2 /∈ R×.
(i) Every regular quadratic space over R decomposes in the form

M =
s

⊥
i=1

Ei

where rank(Ei) = 2.
(ii) Every semiregular quadratic space over R decomposes in the form

M = ⟨u⟩ ⊥ E

where E is regular and u ∈ R×.

In particular if M is regular then rank(M) is even.

Proof. (i) The summands ⟨u1, ..., ur⟩ and F in Proposition 2.5 are not regular and
therefore cannot appear.
(ii) Semiregular spaces have odd rank, so in the decomposition of Proposition 2.5 the
quadratic form Q = ⟨u1, ..., ur⟩ ⊥ F must have odd rank. If P is the half-discriminant
then P (Q) ∈ m unless F = 0, in which case

P (Q) = P (⟨u1, ..., ur⟩) = 2r−1 · u1u2...ur · (R×)2.

By assumption this is a unit if and only if r = 1.
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2.2. Witt’s theorem

Diagonalization and related decompositions are a step towards the classification of
quadratic forms. However, a big problem is that these decompositions are far from
unique. The fundamental result we need is Witt’s theorem (in any of its forms).

One form of Witt’s theorem is about extending isometries. Briefly, if M is a
quadratic space, the theorem gives conditions for isometries U → V between sub-
modules U, V ⊆M to extend to elements of O(M), defined on the entire space.

The extension is generally constructed as a composition of reflections. So in a
situation where Witt’s theorem in one of its forms applies, there is often a corollary
stating that O(M) is generated by its reflections.

Theorem 2.7 (Witt extension theorem). Let M be a quadratic module over a
local ring R. Let U, V ⊆ M be sharply primitive submodules and t : U → V an
isometry. Then there exists φ ∈ O(M) such that φ|U = t.

Corollary 2.8. Let (M,Q) be a quadratic module over a local ring R. Let x, y ∈ M
with Q(x) = Q(y) ∈ R×. Then there exists σ ∈ O(M) with σx = y.

This follows from the theorem because Rx and Ry are sharply primitive submodules.
When 2 ∈ R× this corollary is easy to prove directly. In fact one can even take σ to be
a reflection along an appropriately chosen vector: Let u = x−y

2
and v = x+y

2
, such that

u · v = 0. Then we have

Q(x) = Q(u+ v) = Q(u) +Q(v).

Since Q(x) ∈ R× and the nonunits in a local ring are closed under addition, we have
either Q(u) ∈ R× or Q(v) ∈ R×. Suppose Q(v) ∈ R×. Then the reflection σv maps
u 7→ u and v 7→ (−v) and therefore σvx = y. If instead Q(u) ∈ R× then −σux = y.

Remark 2.9. When 2 is a nonunit, the analog of the “Witt extension theorem” for
symmetric bilinear forms is false even for fields! Consider F3

2 and take the bilinear form

β((x1, x2, x3), (y1, y2, y3)) = x1y1 + x2y2 + x3y3.

Let x = (1, 0, 0) and y = (1, 1, 1) and let U = Rx, V = Ry. Then U and V are
sharply primitive and the map t : U → V , tx = y is an isometry, but the orthogonal
complements

U⊥ = R(0, 1, 0)⊕R(0, 0, 1), V ⊥ = R(1, 1, 0)⊕R(0, 1, 1)

do not carry equivalent bilinear forms (V ⊥ is even and U⊥ is not) so there cannot be
an isometry of the total space φ ∈ O(M) mapping U to V .
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We will prove the following generalized version due to Kneser.
Recall that if (M,Q) is a quadratic module and U ⊆ M is a submodule then we

define
bU :M −→ U∗, bU(x)(y) = x · y (x ∈M, y ∈ U).

Theorem 2.10 (Witt extension theorem). Let (M,Q) be a quadratic module.
Suppose U, V ⊆M are any submodules and there is a submodule H such that

bU(H) = U∗ and bV (H) = V ∗.

Suppose t : U → V is an isometry that satisfies t(x) − x ∈ H for every x ∈ U .
Then there is an isometry φ ∈ O(M) such that φ|U = t; moreover, φ can be
chosen such that

φ(x)− x ∈ H for every x ∈M

and φ(x) = x for every x ∈ H⊥.

H is meant to be the subspace through which we are allowed to take reflections,
and this theorem is formulated to keep H as small as possible. However we do need
H to contain a hyperbolic complement to both U and V simultaneously, which is the
same as demanding bU(H) = U∗ and bV (H) = V ∗.

If 2 were invertible, and x1, ..., xr were an orthogonal basis of U , and each hi =
t(xi)−xi

2

satisfied Q(hi) ∈ R×, then (as in the remark following Corollary 2.8 above) we could
define φ as the product of reflections along hi. Unfortunately it won’t be that easy.

Theorem 2.7 follows immediately from Theorem 2.10 by taking H =M .

Proof. Let (M,Q) be the quadratic module over k given by reducing Q mod m, as
outlined in Remark 2.1.

We want to construct φ as a product of reflections along vectors of H. This is
not necessarily possible. In fact there might not be any vectors of invertible length
(equivalently, any reflections) inH at all. To guarantee that there are enough reflections
we need the following assumption: either
(1) #k ≥ 3 and Q(H) ̸= {0}; or
(2) #k = 2 and Q(H

⊥
) ̸= {0}.

(In (2) note that H
⊥
is the radical of the bilinear space, but not the quadratic form. In

other words we are asking for x ∈ H such that x ·y = 0 for all y ∈ H but Q(x) ̸= 0.) We
may assume without loss of generality that (1) or (2) holds (depending on k) because:
if not, then define

M ′ :=M ⊥ E

where E is a hyperbolic plane: E = Re⊕ Rf with vectors satisfying Q(e) = Q(f) = 0
and e · f = 1. Then take U ′ := U ⊥ Re and V ′ := V ⊥ Re and H ′ := H ⊥ R(e + f).
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Conditions (1) or (2) are satisfied because Q(e + f) ̸= 0 (and if k = F2 then e + f
belongs to the radical). Any isometry t : U → V with t(x) = x mod H extends to an
isometry

t′ : U ′ → V ′, t′(e) = e,

and if the Witt extension theorem holds forM ′ then we obtain an extension φ′ ∈ O(M ′)
which satisfies φ′(e) = e and also (since e − f is orthogonal to H ′) φ′(e − f) = e − f .
Hence φ′ acts trivially on E and has the form φ′ = φ ⊥ idE where φ ∈ O(M) is the
extension we need.

So assume (1) or (2) holds. We will prove by total induction on rank(U) = rank(V )
that φ can be constructed as a product of reflections:

1. Base case. First suppose rank(U) = rank(V ) = 1, so U = R · x and V = R · y
where t(x) = y. By assumption, we can write

h = y − x = t(x)− x ∈ H.

Since
Q(x) = Q(y) = Q(x+ h) = Q(x) +Q(h) + (x · h),

we have
x · h = −Q(h)

and also
y · h = (h+ x) · h = Q(h).

If Q(h) is invertible, then the reflection σh satisfies

σh(x) = x− x · h
Q(h)

h = x+ h = y

and it acts trivially on H⊥, so φ = σh is the extension. The difficult case is Q(h) ∈ m.
We will actually construct φ as a product of two reflections σdσe where d, e ∈ H and
Q(d), Q(e) ∈ R×. We use the ansatz

d = y − σe(x),

in other words
d = y − x+

e · x
Q(e)

e = h+
e · x
Q(e)

e.

Then the earlier computation (with x replaced by σex) shows that σdσex = y.

Since

Q(d) = Q(h) +
(e · x)(e · h)

Q(e)
+

(e · x)2

Q(e)

= Q(h) +
(e · x)(e · y)

Q(e)
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and Q(h) was assumed to be a nonunit, Q(d) ∈ R× is equivalent to both e · x ∈ R×

and e · y ∈ R×. So it is enough to find a vector e ∈ H with

Q(e) ∈ R× and e · x ∈ R× and e · y ∈ R×.

The equations e · x = 0 and e · y = 0 for e ∈ H define hyperplanes H1, H2 in H.
(This is due to the assumption bU(H) = U∗ and bV (H) = V ∗.) To produce e we need
to show that Q does not vanish identically on the complement of H1 ∪ H2. Suppose
this were not the case. Let u ∈ H1 ∩ H2 and v /∈ H1 ∪ H2 be any vectors. Then for
λ ∈ k, the vector λu+ v also does not belong to H1 ∪H2 and therefore

0 = Q(λu+ v) = λ2Q(u) + λ(u · v) +Q(v).

If #k ≥ 3 then the fact that this polynomial in λ is identically zero implies

0 = Q(u) = u · v = Q(v).

Taking u = h (which is possible since h · x = −Q(h) = 0 and h · y = Q(h) = 0) we
obtain h · v = 0 for every v /∈ H1 ∪H2. Since H\(H1 ∪H2) spans all of H, we obtain
h ·H = 0. But h = y − x and therefore H1 = H2, so we have

Q(u) = 0, Q(v) = 0 for all u ∈ H1, v ∈ H\H1

hence Q(H) = {0}, in contradiction to assumption (1).

If #k = 2 then we have H
⊥∩H1 = H

⊥∩H2, so every vector of H
⊥
belongs to either

H1∩H2 or H\(H1∪H2). But for any u ∈ H
⊥∩H1∩H2 and any v ∈ H

⊥\(H1∪H2) and
any λ ∈ k, still under the assumption that Q vanishes identically on the complement
of H1 ∪H2, we have

0 = Q(λu+ v) = λ2Q(u) +Q(v).

The fact that this polynomial vanishes identically forces

Q(u) = Q(v) = 0,

even in characteristic two, but then Q(H
⊥
) = {0} in contradiction to assumption (2).

In all cases, we obtain a vector e ∈ H with Q(e) ̸= 0 and e · x ̸= 0, e · y ̸= 0. Then
for any preimage e ∈ H, with d = y − σe(x), we obtain the Witt extension φ = σdσe.

2. Induction step. Suppose r = rank(U) > 1 and let x1, ..., xr be an R-basis
of U . Let U ′ =

⊕r
i=2Rxi. By the induction assumption, the restricted isometry t|U ′

extends to a product of reflections σ ∈ O(M). After replacing t by σ−1t, we may
assume without loss of generality that t(xi) = xi for all i ̸= 1.
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Since bU(H) = U∗, there are vectors h1, ..., hr ∈ H such that

xi · hj = δi,j.

Then

H =
( r⊕

i=1

Rhi

)
⊕ (H ∩ U⊥).

Let H1 be the submodule H1 = Rh1 ⊕ (H ∩ U⊥). Since

(t(x1)− x1) · xj = t(x1) · t(xj)− x1 · xj = 0

for every j ≥ 2, we have t(x1) − x1 ∈ H1. Now we want to apply the induction
assumption to U1 = Rx1, V1 = Rt(x1) and H1 instead of U, V,H. For an appropriate
choice of the basis, these satisfy the assumptions (1) or (2), because: let h ∈ H or

h ∈ H
⊥
, according to whether #k ≥ 3 or #k = 2, be a vector with Q(h) ̸= 0. We

choose h1 not in H ∩ U⊥ such that h has a preimage h ∈ H1 = Rh1 ⊕ (H ∩ U⊥), and
extend H1 via an arbitrary basis h2, ..., hr to a basis of H. Then let x1, ..., xr ∈ U be
the dual basis of h1, ..., hr.

By the induction hypothesis applied to U1, V1 andH1, we get an isometry φ1 ∈ O(M)
with φ(x1) = t(x1) and which leaves H⊥

1 pointwise fixed. But x2, ..., xr ∈ H⊥
1 , so

φ(xi) = xi = t(xi) for all i ≥ 2 and therefore φ extends t. This is the extension we
wanted.

2.3. Generators of orthogonal groups

Before going further, note that the proof of Witt’s theorem in the formulation given by
Kneser implies that orthogonal groups over local rings are almost always generated by
reflections. This was hinted at earlier and it will be proved now.

First the statement for fields:

Theorem 2.11. Let (M,Q) be a regular or semiregular quadratic module over a
field K. Then, with exactly one exception, O(M) is generated by reflections.

The exception is the space H ⊥ H over F2.

Here H is the hyperbolic plane H(X, Y ) = XY .

Remark 2.12. The orthogonal group of H ⊥ H over F2 really cannot generated by
reflections. O(H ⊥ H) is a finite group of size only 72 so one could simply go through
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the reflections and check that they generate a strictly smaller group, but the isometry

H ⊥ H ∼= E ⊥ E,

where E(X, Y ) = X2+XY +Y 2 is the elliptic plane over F2, makes it clearer. Since E
is anisotropic, every vector in E ⊥ E that does not lie in either copy of E has norm 0.
Hence every reflection of E ⊥ E leaves the subspaces E ⊥ {0} and {0} ⊥ E invariant.
However the map

E ⊥ E −→ E ⊥ E, (x, y) 7→ (y, x) for x, y ∈ E

is an isometry that does not leave those subspaces invariant.

The theorem follows from the general result for local rings:

Theorem 2.13. Let (M,Q) be a regular quadratic module over a local ring R
with residue field k = R/m. If k = F2 then suppose rank(M) ≥ 6. Then O(M)
is generated by reflections.

Theorem 2.11 can be derived from this, because:
(i) The only regular modules of rank two over F2 are the hyperbolic and elliptic planes
H(X, Y ) = XY , E(X, Y ) = X2 +XY + Y 2, and since any regular module over F2 is
an orthogonal direct sum of planes, the only such modules of rank four are H ⊥ H,
H ⊥ E and E ⊥ E ∼= H ⊥ H. The fact that O(H) and O(H ⊥ E) are reflection groups
can be checked by hand.
(ii) A semiregular module (over a field k of characteristic two) has the formM = kx ⊥ N
where Q(x) is a unit and M is regular. For any isometry φ ∈ O(M), apply the Witt
extension theorem to t = φ|N with H = M , (this is allowed because H has nontrivial
bilinear radical, since ⟨Q(x)⟩ does) to obtain a product of reflections σ with σ|N = φ|N .
Then σ−1φ maps N into itself, so it maps x 7→ ax for some a ∈ k×. Since this is an
isometry, we have a2 = 1; but k has characteristic two and therefore a = 1. Hence
σ−1φ = id and φ = σ is already a product of reflections.

Proof. [Proof of Theorem 2.13] Let φ ∈ O(M). If k ̸= F2, then the claim follows
immediately from the proof of the Witt extension theorem: taking U = V = H = M ,
and observing that Q(H) ̸= {0}, we obtain a product of reflections which “extends”
and therefore coincides with φ.
In the case k = F2, we first choose any vector x ∈ M with Q(x) /∈ m. We can assume
without loss of generality that φ(x) = x, because: Take U = R · x and V = R · y where
y = φ(x), and look for a submodule H with the property

x ·H = y ·H = R, y − x ∈ H

as well as Q(H
⊥
) ̸= {0}. This is possible if we take H = h⊥ + m ·M where h is any

vector with
Q(h) ∈ R×, h ∈ (y − x)⊥, h ̸= x, y
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since in this case h ∈ H⊥. In other words it is enough if the hyperplane (y − x)⊥

contains at least three vectors h with Q(h) ̸= 0. This is possible if rank(M) ≥ 6,
since x and y belong to at most two regular planes that split off orthogonally from Q,
with the orthogonal complement being regular and having nontrivial intersection with
(y − x)⊥. By Witt’s theorem, there is a product of reflections σ with σx = y, and
σ−1φ ∈ O(M) maps x to x.

So assume there exists x ∈ M with Q(x) ∈ R× and φ(x) = x. By Nakayama’s
lemma, M splits as a direct sum (which is not necessarily orthogonal),

M = (R · x)⊕N.

By applying Witt’s theorem to U = N and V = φ(N) and H = x⊥, noting that
x ∈ H⊥, we obtain a product of reflections σ with σ|N = φ|N and which leaves H⊥

pointwise fixed. But x ∈ H⊥ and therefore σx = x = φx, so σ = φ everywhere.

For fields of characteristic ̸= 2, analyzing the proof gives us the following more
precise result.

Theorem 2.14 (Cartan–Dieudonné theorem). Let K be a field, char(K) ̸= 2,
and let (M,Q) be a regular quadratic space of dimension n. Then every automor-
phism φ ∈ O(M) is a product of at most n reflections.

2.4. Witt decomposition

From Witt’s theorem on extending isometries we quickly get the version of Witt’s
theorem that allows you to “cancel” regular quadratic subspaces.

Theorem 2.15 (Witt cancellation theorem). Let (M,QM) and (N,QN) be
quadratic modules over a local ring R and let F be a regular quadratic space
over R. If F ⊕M ∼= F ⊕N , then M ∼= N .

Proof. Let φ : F ⊕ M → F ⊕ N be an isometry. Then φ|F defines an isometric
embedding of F into F ⊕ N , which by Witt’s theorem extends to an automorphism
ψ ∈ O(F ⊕N). The composition ψ−1 ◦φ|F acts as the identity on F and therefore has
the form

ψ−1 ◦ φ|F = id ⊥ t,

where t :M → N is an isometry.

Conversely, Witt’s theorem in the form of extending isometries (for regular modules)
follows easily from the Witt cancellation theorem. If U, V ⊆M are regular submodules
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of a quadratic space and t : U → V is an isometry, then we have decompositions

M = U ⊥ U⊥ = V ⊥ V ⊥ ∼= U ⊥ V ⊥,

the rightmost isometry being t−1 ⊥ id. By Witt cancellation, U ⊥ U⊥ ∼= U ⊥ V ⊥

implies the existence of an isometry t⊥ : U⊥ → V ⊥, and then t + t⊥ ∈ O(M) is an
automorphism extending t.

So Witt’s extension theorem and cancellation theorem are essentially equivalent.

Remark 2.16. This has been said already but it bears repeating. Over local rings
where 2 is not a unit, (e.g. fields of characteristic two), Witt’s theorem, also in the
form of the cancellation theorem, does not hold for symmetric bilinear forms.

Witt’s cancellation theorem leads to the following normal form for quadratic forms
over local rings:

Theorem 2.17 (Witt decomposition). Let (M,Q) be a regular quadratic space
over a local ring R. Then M decomposes as

M = Hr ⊥ N,

where H(X, Y ) = XY is the hyperbolic plane, where Hr = H ⊥ ... ⊥ H is
r orthogonal copies of H, and where N is anisotropic. The Witt index r is
unique, and the core form N is unique up to isometry.

The existence of this decomposition is relatively easy to prove. The salient point is
the uniqueness of the core form N and the number of hyperbolic planes (i.e. the Witt
index).

Proof. Existence: induction on rank(M). If M is anisotropic then we are done. Oth-
erwise let x ∈ M with Q(x) = 0 and (by regularity) choose y ∈ M with x · y = 1. If y
does not already have Q(y) = 0 then replace it by y −Q(y)x, noting that

Q(y + ax) = Q(y) + a(x · y) = 0 for a = −Q(y).

Then x, y span a hyperbolic plane H which is regular and therefore splits off orthogo-
nally: M = H ⊥M1 where rank(M1) = rank(M)− 2. The claim follows by induction.

Uniqueness: Suppose we have two decompositions

M = Hr1 ⊥ N1 = Hr2 ⊥ N2,

where N1 and N2 are anisotropic. Without loss of generality assume r1 ≥ r2. Since H
is regular, by repeatedly applying the Witt cancellation theorem, we obtain

Hr1−r2 ⊥ N1
∼= N2.

Since H is isotropic and N2 is not, we have r1 − r2 = 0 and therefore N1
∼= N2.
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The Witt index can also be described as the rank of any totally isotropic subspace
T of M which is maximal in the sense that any totally isotropic subspace of M con-
taining T must already be T itself. Remember that a totally isotropic subspace means
a finitely-generated and projective (hence in this case free) submodule on which the
quadratic form vanishes identically, not merely the bilinear form. (In practice we only
care about discrete valuation rings, i.e. local principal ideal domains, in which case
submodules are automatically finitely-generated and free.)

More precisely we have the following:

Proposition 2.18. Let (M,Q) be a regular quadratic space over a local ring R.
(i) Let T ⊆ M be a totally isotropic subspace. Then the hyperbolic space
H(T ) ∼= Hrank(T ) embeds isometrically into M .
(ii) For any two totally isotropic spaces T1, T2 ⊆ M of equal rank, there exists
φ ∈ O(M) such that φT1 = T2.
(iii) All maximal totally isotropic subspaces T have equal rank, equal to the Witt
index of M .

Proof. (i) SinceM is regular, every linear functional on T is realized as the bilinear prod-
uct with an element ofM . So if e1, ..., er is any basis of T then there exist f1, ..., fr ∈M
such that ei · fj = δij. The elements fj can further be assumed to satisfy Q(fj) = 0;
if not, then use the usual trick of replacing fj by fj −Q(fj)ej. Then e1, ..., er, f1, ..., fr
are linearly independent and span a subspace that is isometric to H(T ).
(ii) The hyperbolic spaces H(T1) and H(T2) are isometric and regular, and by Witt’s
theorem any isometry between them extends to all of M .
(iii) The maximal free totally isotropic subspaces have equal rank by (ii). If
M = Hr ⊥ N with N anisotropic, and each copy of H is written Rei ⊕ Rfi with
vectors satisfying Q(ei) = Q(fi) = 0, ei · fi = 1, then {e1, ..., er} spans a maximal,
totally isotropic space of rank equal to the Witt index r, which proves (iii).

For fields of characteristic other than two, we obtain the Witt decomposition without
the assumption of regularity:

Corollary 2.19. Let (M,Q) be a quadratic space over a field K with char(K) ̸= 2.
Then M decomposes as

M = rad(M) ⊥ N ⊥ Hr,

where H(X, Y ) = XY , where N is anisotropic, and rad(M) is the radical, and the Witt
index r and core form N are unique.

Proof. rad(M) splits off as a direct summand:

M = rad(M)⊕M1,
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and the direct sum is orthogonal by definition of rad(M). Then M1 is regular and has
a unique Witt decomposition.

Definition 2.20. Regular quadratic spacesM1,M2 areWitt equivalent if there
are hyperbolic spaces H1, H2 (=sums of copies of the hyperbolic plane) such that

M1 ⊥ H1
∼= M2 ⊥ H2.

In other words, M1,M2 are Witt equivalent if their core forms are isometric. Hy-
perbolic spaces are exactly the quadratic spaces that are Witt equivalent to 0.

2.5. The Witt ring

The uniqueness of the Witt decomposition naturally leads to a group structure on the
set of Witt equivalence classes.

The sum of Witt equivalence classes is defined to be

[M ]⊕ [N ] := [M ⊥ N ].

This is clearly well-defined, associative and commutative. Every Witt equivalence class
has an inverse, because: let (M,Q) be any regular space and consider the space

F := (M,Q) ⊥ (M,−Q),

where −Q is the negative of the quadratic form Q. We will show that F is hyperbolic:
If x1, ..., xn is any R-basis of M , then e1 = (x1, x1), ..., en = (xn, xn) is a system of
vectors of F which are all orthogonal and have norm zero: Q(ei) = ei · ej = 0. Hence
F has Witt index n = rank(M) = 1

2
rank(F ), which means it splits completely into

hyperbolic planes.

Therefore, taking orthogonal direct sums defines a group structure on Witt equiva-
lence classes.

Definition 2.21. The Witt group W (R) of a local ring R is the abelian group
of Witt equivalence classes of regular quadratic spaces over R.

W (R) carries the additional structure of a commutative ring with multiplication
given by the tensor product. If (M1, Q1) and (M2, Q2) are regular quadratic spaces,
then we define a quadratic form on M1 ⊗R M2 on pure tensors by

Q1 ⊗Q2(x1 ⊗ x2) = 2 ·Q1(x1) ·Q2(x2)

and its bilinear form by

βQ1⊗Q2(x1 ⊗ x2, y1 ⊗ y2) = βQ1(x1, y1) · βQ2(x2, y2).
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Now βQ1⊗Q2 extends to all ofM1⊗RM2 by bilinearity, and Q1⊗Q2 extends toM1⊗RM2

by the polarization formula.
(If R has charactistic two then this multiplication is identically zero. In this case it
would seem to be more natural to define Q1⊗Q2(x1⊗x2) = Q1(x1)Q2(x2), but then it
is no longer clear how Q1 ⊗Q2 is defined on tensors that are not pure.) To prove that
this defines a ring structure, one uses the rule

(M ⊕H)⊗N ∼= (M ⊗N)⊕ (H ⊗N),

together with the fact that H ⊗ N is a hyperbolic space, (where H is the hyperbolic
plane): if we write H = Re⊕Rf , where Q(e) = Q(f) = 0 and e · f = 1, then (Re)⊗N
is a hyperbolic space of rank 1

2
rank(H ⊗N).

In practice, to compute the tensor product of quadratic forms, we usually use the
observation that for diagonal quadratic forms,

⟨a1, ..., am⟩ ⊗ ⟨b1, ...bn⟩ = ⟨aibj : 1 ≤ i ≤ m, 1 ≤ j ≤ n⟩.

We will now work out some examples of the Witt ring (or Witt group).

Example 2.22. Over C (or any algebraically closed field of characteristic ̸= 2), the only
anisotropic quadratic spaces are those of dimension one, and they are all equivalent.
So the Witt ring is W (C) = Z/2.
(This remains true for algebraically closed fields K of characteristic two, but those
spaces are not regular so we have W (K) = {0}.)
Example 2.23. Over R, a quadratic form is anisotropic if and only if it is definite
(positive or negative). So an anisotropic form can be diagonalized to ⟨a1, ..., an⟩, with
ai either all positive or negative, hence is equivalent to either ⟨1, ..., 1⟩ or ⟨−1, ...,−1⟩.
This observation leads to an isomorphism (of rings!)

sgn : W (R) −→ Z,

sending Q to n if its core form is positive definite of dimension n, and to −n if its core
form is negative definite of dimension n. Equivalently, if the matrix of Q has r positive
and s negative eigenvalues then sgn(Q) = r− s. The fact that this number is the same
for equivalent quadratic forms over R is generally known as Sylvester’s law of inertia.

Example 2.24. Over F2, all regular quadratic spaces are orthogonal direct sums of
regular quadratic planes (this is true over any field of characteristic two) and over F2

the only regular planes are the hyperbolic plane

H(X, Y ) = XY

and elliptic plane
E(X, Y ) = X2 +XY + Y 2.

The form E is anisotropic and H is isotropic, so we definitely have H ̸∼= E. But
E ⊥ E is isotropric, and we cannot have E ⊥ E ∼= E ⊥ H as that would violate Witt
cancellation . Hence E ⊥ E has trivial core form and (by the uniqueness of the Witt
decomposition) there must exist an isometry E ⊥ E ∼= H ⊥ H.
In any case, we have W (F2) ∼= Z/2, where E represents the nontrivial class.
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Example 2.25. More generally, in this extended example we will work out the Witt
rings of finite fields. The Chevalley theorem (or rather a special case of it) states
that a polynomial f of homogeneous degree d in n variables over K has a nontrivial
zero whenever n > d. In particular every quadratic form in at least three variables is
isotropic. (Proof: let q = #K. Expanding coefficients in the polynomial identity

Xq −X =
∏
a∈K

(X − a) ∈ K[X]

implies that
∑

a∈K a
n = 0 for every n < q − 1. The number of zeros of f is then∑

a1∈K

...
∑
an∈K

(
1− f(a1, ..., an)

q−1
)
,

and writing out 1 − f q−1 as a sum of monomials shows that this sum is zero if n > d;
in other words, the number of zeros of f is a multiple of char(K). But f has at least
the zero (a1, ..., an) = (0, ..., 0), so it must have at least char(K)− 1 other zeros.)

Hence an anisotropic space Q has dimension at most two. If char(K) ̸= 2 then Q
can be diagonalized. Let a ∈ K×/(K×)2 represent the (unique) nontrivial square class
of K. Then any rank one regular form is equivalent to either ⟨1⟩ or ⟨a⟩, and both are
anisotropic. Any rank two regular form is equivalent to one of ⟨1, 1⟩ or ⟨1, a⟩ or ⟨a, a⟩.

The forms ⟨1, 1⟩ and ⟨a, a⟩ are anisotropic if and only if −1 is a nonsquare in K,
or equivalently if q = #K ≡ 3 (mod 4). In this case we can take a = −1. Since
⟨1, 1, 1⟩ is isotropic, and ⟨1, 1, 1⟩ ∼= H ⊕ ⟨1⟩ would violate Witt’s theorem, we have
[⟨1, 1, 1⟩] = [⟨−1⟩]. But then

[⟨1, 1, 1, 1⟩] = [⟨1,−1⟩] = [0]

inW (K), hence [⟨−1,−1⟩] = [⟨1, 1, 1, 1, 1, 1⟩] = [⟨−1,−1⟩], and we obtainW (K) ∼= Z/4Z
(as rings) with ⟨1⟩ as a generator.

If on the other hand q = #K ≡ 1(mod 4), then the Witt group has elements
[0], [⟨1⟩], [⟨a⟩], [⟨1, a⟩], and since [⟨1⟩] and [⟨a⟩] both have order two, the ring structure
can only be Z/2Z× Z/2Z.

Finally, suppose char(K) = 2. Then the only anisotropic regular spaces over
K are planes. A regular quadratic form in two variables is necessarily of the form
Q = aX2 + bXY + cY 2 where b ∈ K×, and if it is anisotropic then we must have
a, c ∈ K× as well. Since every element of K is a square, we may assume up to equiva-
lence that Q = X2 +XY + aY 2 with a ∈ K. The equivalence class of Q depends only
on a modulo the (additive) subgroup

℘(K) := {b2 + b : b ∈ K}

which has index two in K; this equivalence is realized by the substitution

(X, Y ) 7→ (X + bY, Y ).

30



(This is related to Artin–Schreier theory. The coset a + ℘(K) is a special case of the
Arf invariant.) And since ℘(K) contains a = 0, for which the form is isotropic, there
is only one equivalence class of anisotropic forms. Hence the Witt group is

W (K) ∼= Z/2Z,

where the nontrivial Witt class is represented by any form X2 +XY + aY 2 with a not
equal to b2 + b for b ∈ K. If K = F2 then we may take a = 1 as before.
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3. Clifford algebra

3.1. Clifford algebra

Let (M,Q) be a quadratic module over a ring R.

The Clifford algebra is a noncommutative algebra, containing the set M and the
ground ring R, in which the square of any element x ∈M is Q(x). It is meant to be the
most general such algebra in the sense that all relations can be derived from x2 = Q(x).
The way to make this definition precise is through a universal property:

Definition 3.1. A Clifford algebra C(M) is an associative R-algebra together
with an R-module homomorphism

ι :M −→ C(M)

that satisfies ι(x)2 = Q(x) for x ∈M , and for which if A is any other associative
algebra and f : M → A is any module homomorphism satisfying f(x)2 = Q(x),
there is a unique algebra homomorphism g : C(M) → A with f = g ◦ ι.

This is expressed by the commutative diagram

M C(M)

A

ι

f
g

If a Clifford algebra for (M,Q) exists, it is certainly unique up to unique isomorphism
by the universal property. To construct a Clifford algebra, we begin with the tensor
algebra of M :

T :=
∞⊕
n=0

M⊗n = R⊕M ⊕ (M ⊗M)⊕ (M ⊗M ⊗M)⊕ ...

an associative algebra in which multiplication is given by the tensor product ⊗. The
tensor algebra comes with an inclusion M → T and satisfies a universal property: for
any module homomorphism f :M → A into an associative R-algebra, there is a unique
homomorphism of R-algebras g : T → A such that f = g ◦ ι.
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M T

A

ι

f
g

Let I be the two-sided ideal of T generated by all expressions of the form x⊗x−Q(x)·1R
for x ∈M , and define the algebra

C := T /I.

Suppose A is an associative algebra and f : M → A is a module homomorphism such
that f(x)2 = Q(x) for all x. By the universal property of tensor algebras, there is a
unique algebra homomorphism g : T → A with g(x) = f(x) for x ∈ M . The map g
sends I to 0 because

g(x⊗ x−Q(x) · 1) = g(x)2 −Q(x) = f(x)2 −Q(x) = 0, x ∈M,

so it descends to a (unique) algebra homomorphism g : C → A satisfying g ◦ ι = f ,
where ι :M → T → T /I = C is the natural map. This shows:

Proposition 3.2. A Clifford algebra C(M) for (M,Q) exists and is unique up
to unique isomorphism.

Remark 3.3. Some basic properties of the Clifford algebra:

(i) Let β(x, y) = Q(x+ y)−Q(x)−Q(y) be the polar bilinear form of Q. By abuse
of notation, write x = ι(x) for x ∈ M (the justification for this will come later). Then
the equation

x2 = Q(x), x ∈M

implies

xy + yx = (x+ y)2 − x2 − y2 = Q(x+ y)−Q(x)−Q(y) = β(x, y).

(ii) Let (M,Q) be a quadratic R-module and let C be its Clifford algebra, with
homomorphism ι : M → C. Define the opposite algebra Cop to be the set C with
the reversed multiplication x ∗ y := yx. Then the map ιop : M → Cop, x 7→ ι(x) also
satisfies

ιop(x)2 = ι(x)2 = Q(x),

so by the universal property of Clifford algebras there is a canonical algebra homomor-
phism

J : C −→ Cop;

in other words, C comes with a natural anti -automorphism

J : C −→ C, J(xy) = J(y)J(x),
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and it satisfies J(ιx) = ιx for every x ∈M .

(iii) The tensor algebra has a Z-grading, where an element ofM⊗n is defined to have
degree n. The generators of the ideal I do not have homogeneous degree, but their
degrees are all even (x⊗ x has degree two, Q(x) has degree zero). So the construction
above shows that C(M) has a natural Z/2Z-grading:

C(M) = C0(M)⊕ C1(M),

where C0(M) consists of elements of even degree and C1(M) consists of elements of odd
degree, and that this grading is compatible with the multiplication. In other words,
C(M) is a superalgebra.
In particular, C0(M) is itself an algebra: the even Clifford algebra of (M,Q).

(iv) Let f : (M1, Q1) → (M2, Q2) be an isometric embedding. Composing f with
the map ι2 :M2 → C(M2) gives us a map ι2 ◦ f :M1 → C(M2) satisfying

(ι2f(x))
2 = Q2(f(x)) = Q1(x), x ∈M1.

Hence f induces an algebra homomorphism

C(f) : C(M1) −→ C(M2),

by the universal property of C(M1). This makes the Clifford algebra a functor.

(v) As a special case of (iv), any φ ∈ O(M) induces an automorphism C(φ) : C → C
of the Clifford algebra.

Example 3.4. Let M be a finitely generated projective R-module and let Q ≡ 0 be
the trivial quadratic form on M . Then the Clifford algebra is the quotient T /I by
the two-sided ideal generated by all x ⊗ x, x ∈ M . This special case of the Clifford
algebra is usually known as the Grassmann algebra or exterior algebra ∧M of M , and
multiplication in it is written x ∧ y.

We have not yet shown that the map from M to C(M) is injective, or even that
the Clifford algebra C(M) is nonzero (i.e. that the ideal I generated by expressions
x⊗x−Q(x) is not the entire tensor algebra). This is not trivial. The situation is similar
to (but easier than) the Poincaré–Birkhoff–Witt theorem that embeds Lie algebras in
their universal enveloping algebra. We only prove the case where M is free.

Theorem 3.5. Suppose (M,Q) is a free quadratic module with basis e1, ..., en.
Then C(M) is free as an R-module, with basis

ei1 ...eir = [ei1 ⊗ ...⊗ eir ], 1 ≤ i1 < ... < ir ≤ n.

In particular rankC(M) = 2n.
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In particular the module structure of C(M) is essentially independent of Q! By
comparing with the form Q = 0, we get an isomorphism of modules C(M) ∼= ∧M with
the Grassmann algebra.
It is not hard to see that these elements are a spanning set: The tensor algebra is
spanned by pure tensors ei1 ⊗ ...⊗eir without any restriction on the ordering of i1, ..., ir.
Due to the relations eiej + ejei = β(ei, ej) and eiei = Q(ei), the Clifford algebra is
spanned, modulo products of shorter length, by terms ei1 ...eir with i1 < ... < ir. The
essential point is that those products are linearly independent.

The main step of the proof is the following lemma (which is useful anyway):

Lemma 3.6. Suppose M =M1 ⊥M2. Then

C(M) = C(M1)⊗̂C(M2),

where C(M1)⊗̂C(M2) is the algebra which has C(M1) ⊗ C(M2) (tensor of mod-
ules) as its underlying R-module, and where the multiplication is defined on pure
tensors by

(x1 ⊗ x2)(y1 ⊗ y2) = (−1)ij(x1y1)⊗ (x2y2)

if x2 has degree i and y1 has degree j.

N.B. This is the usual definition of tensor product of superalgebras.

Proof. This is proved by showing that C(M1)⊗̂C(M2) satisfies the universal property
of Clifford algebras. Let ιi : Mi → C(Mi) be the maps that come with C(Mi), and
define the linear map

ι :M1 ⊥M2 −→ C(M1)⊗ C(M2), v1 + v2 7→ ι1(v1)⊗ 1 + 1⊗ ι2(v2)

for vi ∈Mi. Let f :M → A be any module homomorphism into an associative algebra
for which f(x)2 = Q(x) for all x ∈ M . From the restrictions of f to M1 and M2 and
the universal properties of C(Mi), we obtain unique algebra homomorphisms

gi : C(Mi) −→ A with gi(ιxi) = f(xi), xi ∈Mi.

These yield a unique module homomorphism

g : C(M1)⊗ C(M2) −→ A

with the property

g(x1 ⊗ x2) = g1(x1) · g2(x2), x1 ∈ C(M1), x2 ∈ C(M2).

It is in fact an algebra homomorphism, because: note that in A, the identity
f(v)2 = Q(v) implies

f(v)f(w) + f(w)f(v) = β(v, w), v, w ∈M.
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If v ∈M1 and w ∈M2 then β(v, w) = 0 implies

f(v)f(w) = −f(w)f(v).

Then the fact that g1, g2 are algebra homomorphisms and ιi(Mi) generates C(Mi) gives
us the general super-commutativity rule:

g1(x)g2(y) = (−1)ijg2(y)g1(x), x ∈ Ci(M1), y ∈ Cj(M2).

Hence

g((x1 ⊗ x2)(y1 ⊗ y2)) = (−1)ijg(x1y1 ⊗ x2y2)

= (−1)ijg1(x1)g1(y1)g2(x2)g(y2)

= g1(x1)g2(x2)g1(y1)g2(y2)

= g(x1 ⊗ x2)g(y1 ⊗ y2)

for any x1, y1 ∈ C(M1) and x2, y2 ∈ C(M2) if x2 has degree i and y1 has degree j.

By construction, the algebra homomorphism g satisfies

g(ι(v1 + v2)) = g1(ι1v1)⊗ 1 + 1⊗ g2(ι2v2) = f(v1) + f(v2) = f(v1 + v2)

for any v1 ∈M1, v2 ∈M2. It is uniquely determined from the fact that

g(x1 ⊗ x2) = ±g((x1 ⊗ 1)(1⊗ x2)) = ±g1(x1)g2(x2)

and the uniqueness of g1, g2.

Proof. [Proof of Theorem 3.5] Via two reduction steps, we will eventually reduce to
the case of fields of characteristic ̸= 2, which is simpler.

(1) Suppose R = K is a field of characteristic char(K) ̸= 2. Then M can be
diagonalized:

M =
n

⊥
i=1

(Rei)

and its Clifford algebra splits as a superalgebra tensor product:

C(M) =
⊗̂

C(Rei).

For a one-dimensional quadratic module R ·e, the Clifford algebra has a single generator
e and a single relation e2 = Q(e)1, so as a module

C(R · e) = R⊕Re.

36



Therefore, on the level of R-modules,

C(M) = (R⊕Re1)⊗ (R⊕Re2)⊗ ...⊗ (R⊕Ren)

which has the claimed basis.

(2) Reduction to fields. Suppose R is an integral domain of characteristic
char(R) ̸= 2 and let K be its field of fractions. We can pass fromM to the K-quadratic
module M ⊗R K. The construction as a quotient of the tensor algebra yields

C(M ⊗R K) = C(M)⊗R K.

By (1) the elements ei1 ...eir , i1 < ... < ir are linearly independent, viewed as elements
of C(M ⊗RK) = C(M)⊗RK. Hence they must also be linearly independent in C(M).

(3) Reduction to char(R) ̸= 2. Let R be an integral domain with char(R) = 2, and
write R = S/a where char(S) = 0 and a is an appropriate ideal. (For example, one can
use the group algebra S = Z[R] and take a as the kernel of the map that sends each
basis element ex to x, x ∈ R.) Let M ′ be the free S-module with formal basis e′1, ..., e

′
n

and identify
M ∼= M ′/(a ·M ′), ei 7→ e′i + a ·M ′,

and choose a quadratic form Q′ on M ′ for which

Q′(e′i) + a = Q(ei).

By (2), the Clifford algebra C(M ′) of (M ′, Q′) is free on the basis e′i1 ...e
′
ir , i1 < ... < ir.

It follows that C(M ′)/(a · C(M ′)) is a free R-module on the basis e′i1 ...e
′
ir + a · C(M ′).

Now the R-linear map

f :M −→ C(M ′)/(a · C(M ′)), ei 7→ e′i + a · C(M ′)

satisfies

f(x)2 =
(∑

i

xie
′
i + a · C(M ′)

)2

=
∑
i

x2iQ
′(e′i) +

∑
i,j

xixjβ
′(e′i, e

′
j) + a · C(M ′)

= Q′
(∑

i

xie
′
i

)
+ a · C(M ′)

= Q(x)

for every x =
∑

i xiei ∈ M . By the universal property of Clifford algebras, there is an
algebra homomorphism

h : C(M) −→ C(M ′)/(a · C(M ′))

with h(ei) = e′i + a · C(M ′). Since the images of h(ei1 ...eir) (i1 < ... < ir) are lin-
early independent in C(M ′)/(a ·C(M ′)), it follows that ei1 ...eir themselves are linearly
independent in C(M).
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Remark 3.7. The module isomorphism C(M) ∼= ∧M with the exterior algebra and
the fact that M injects into C(M) hold even when M is not free. We omit the proof1.

3.2. The Clifford algebra of a plane

In this section we will study the Clifford algebra of a free rank two module in more
detail. For a quadratic module (M,Q), we identify M with its image in the Clifford
algebra C(M).

Example 3.8. Let (M,Q) be a free quadratic module of rank two with basis e1, e2.
The even Clifford algebra C0 is then spanned by 1 and z = e1e2. The antiautomorphism
J of 3.3 maps J(1) = 1 and J(z) = e2e1, and we have

z + Jz = β(e1, e2), z(Jz) = Q(e1) ·Q(e2),

so if X is a formal indeterminate then (X − z)(X − Jz) = X2 − bX + ac where

b = β(e1, e2), a = Q(e1), c = Q(e2),

i.e. where Q =

(
a b

c

)
. Therefore the even Clifford algebra is

C0
∼= R[X]/(X2 − bX + ac).

Recall that if C is an algebra (say the Clifford algebra C(M)) and X ⊆ C is a subset
then

CX = {y ∈ C : yx = xy for all x ∈ X}
denotes the centralizer of X.

The centralizer of the even algebra C0 turns out to play an important role. Suppose
M is regular and free of rank two, and choose a basis e, f ∈ M with β(e, f) = b ̸= 0.
Then C0 is spanned by 1 and ef , and CC0 is just the centralizer of ef . That element
satisfies

vef = fev for every v ∈M,

as one can check on the basis elements v = e, f ; and since fe = b− ef ̸= ef , it follows
that ef does not commute with any element of odd degree. So

CC0 = C0 = R · 1 +R · ef.

From this one obtains further that the center CC is just R · 1.

Example 3.9. Let’s look at two examples:
(i) Take R = R, and let Q be the quadratic form

Q(X, Y ) = −X2 − Y 2.

1See section II.2 of R. Baeza, Quadratic forms over semilocal rings, Lecture Notes in Mathematics
655, Springer-Verlag 1978.
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If e1, e2 is the standard basis of R2, and we denote i = e1, j = e2 and k = e1, e2, then the
Clifford algebra is the vector space with basis 1, i, j, k, and the multiplication satisfies

i2 = Q(1, 0) = −1, j2 = Q(0, 1) = −1,

ijk = k2 = e1e2e1e2 = −e1e1e2e2 = −(−1)(−1) = −1.

These are the defining equations for the quaternions H.

(ii) Let R = K be any field and M = H the hyperbolic plane with standard basis e, f .
The Clifford algebra has basis 1, e, f, ef with the multiplication

e2 = f 2 = 0, ef + fe = 1.

This is isomorphic to the algebra of (2× 2)-matrices over R via the map

e 7→
(
0 1
0 0

)
, f 7→

(
0 0
1 0

)
.

Both are examples of central simple algebras, that is, finite-dimensional K-algebras
whose center is exactly R and which have no proper two-sided ideals other than 0. This
is true for regular quadratic spaces in general:

Lemma 3.10. Let (M,Q) be a regular quadratic space over a field K and that
M is free of rank two. Then the Clifford algebra C = C(M) is a central simple
algebra.

Proof. Suppose I ⊆ C is a two-sided ideal that contains a nonzero element x = x0+x1,
where x0 ∈ C0 and x1 ∈ C1, and suppose without loss of generality that x1 ̸= 0
(otherwise, multiply it by any v ∈ M with Q(v) ∈ R×). Let e, f ∈ M be a basis and
write a = Q(e), b = β(e, f), c = Q(f). Then one can compute

(ef − fe)(ef − fe) = efef + fefe− 2 ∗ ac
= (b− fe)ef + (b− ef)fe− 2 ∗ ac
= b(ef + fe)− 4 ∗ ac
= b2 − 4ac.

Up to sign, this is the determinant of the Gram matrix

(
2a b
b 2c

)
in the basis e, f and

in particular it is a unit. Since I contains the element

xef − efx = x1ef − efx1 = x1(ef − fe),

it also contains x1 itself. But then if y ∈M is any element with β(x1, y) = 1, we obtain

1 = β(x1, y) = x1y + yx1 ∈ I

and therefore I is the entire ring.
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A central simple algebra C/K with dimKC = 4 is also called a quaternion alge-
bra. So Clifford algebras of two-dimensional regular quadratic spaces are quaternion
algebras. If char(K) ̸= 2 and Q = aX2 + bY 2 is a diagonal quadratic form, then C has
basis 1, i := e1, j := e2, k := e1e2 with multiplication

i2 = a, j2 = b, ij = −ji = k;

this algebra is denoted by the symbol
(
a,b
K

)
.

3.3. Discriminant algebra and center

We will now discuss the center and the centralizer of C0 in a general Clifford algebra.

Let R be a local ring or field, and let (M,Q) be a quadratic R-module with Clifford
algebra C. As usual we identify M with its image in C.

Definition 3.11. The discriminant algebra ∆(M) of (M,Q) is the centralizer
of C0 in C:

∆(M) = CC0 = {x ∈ C : xz = zx for all z ∈ C0}.

∆(M) is easiest to describe in the case 2 ∈ R×. In this case, any regular quadratic
space over R can be orthogonally diagonalized:

M =
n

⊥
i=1

Rei, β(ei, ej) = 0 for i ̸= j.

The equation β(ei, ej) = 0 means that the Clifford product satisfies eiej = −ejei. If
I = {i1, ..., ir} is a set of indices with i1 < ... < ir, and the Clifford product is denoted

eI := ei1 ...eir ,

then this computation shows that

ejeI = (−1)|I|eIej if j /∈ I.

On the other hand, since ej does commute with itself, we have

ejeI = (−1)|I|−1eIej if j ∈ I.

This implies that for any two indices i, j,

eiejeI =

{
eIeiej : either i, j ∈ I or i, j /∈ I;

−eIeiej : either i ∈ I, j /∈ I or i /∈ I, j ∈ I.

In particular, the longest Clifford product

z := e1e2...en
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commutes with all products eiej, 1 ≤ i < j ≤ n; conversely, every other Clifford
product (besides the trivial 1) anticommutes with at least one pair eiej. Since the eiej
generate the even Clifford algebra C0, we obtain:

Proposition 3.12. Suppose R is a field or local ring, 2 ∈ R×, and let e1, ..., en
be an orthogonal basis of a regular quadratic space (M,Q). Then

∆(M) = R⊕Rz, z = e1e2...en.

The algebra structure of ∆(M) is determined by

z2 = e1...ene1...en = (−1)r−1e21e2...ene2...en

= ... =
( r∏

i=1

(−1)i−1
)
Q(e1)...Q(en)

= (−1)r(r−1)/2Q(e1)...Q(en)

where r = rank(M), so
∆(M) ∼= R[X]/(X2 − d)

where d = (−1)r(r−1)/2 · disc(e1, ..., en) is the signed discriminant in the basis e1, ..., en.
(Hence the name discriminant algebra.) Conversely, the isomorphism class of the R-
algebra ∆(M) uniquely determines the discriminant as an element of (R×)/(R×)2.

Corollary 3.13. Suppose R is a local ring, 2 ∈ R×, and let e1, ..., en be an orthogonal
basis of a regular quadratic space M . Let z = e1...en.
(i) The center of C is {

R : n ≡ 0 (2);

R⊕Rz : n ≡ 1 (2).

(ii) The center of C0 is {
R⊕Rz : n ≡ 0 (2);

R : n ≡ 1 (2).

Proof. (i) Since eize
−1
i = (−1)n−1z, it follows that z commutes with all C if and only

if n is odd.
(ii) We have CC0

0 = C0 ∩ CC0 , and z ∈ C0 if and only if n is even.

If 2 /∈ R×, then for regular quadratic spaces we only have a decomposition into
planes M = ⊥n

i=1Ei, rank(Ei) = 2. We have to reduce the computation of ∆(M) to
the computation of ∆(Ei), which was essentially done in the previous section: if e, f is
a basis of Ei and a = Q(e), b = β(e, f), c = Q(f) then

∆(Ei) = R[X]/(X2 − bX + ac).
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Lemma 3.14. Let (M,Q) be a regular quadratic space. There is a unique auto-
morphism α of ∆(M) with the property

xz = α(z)x, x ∈M,

and it satisfies α2 = id.

For example, if rank(M) = 2 then α is the natural antiautomorphism J of C,
restricted to ∆(M).

Proof. Let e ∈ M be any element with e2 = Q(e) = a ∈ R× (this exists since M is
regular). Then α is uniquely determined by

α(z) = α(z)e2a−1 = ezea−1, z ∈ CC0 .

This definition satisfies

α(z)x = ezexa−1 = e(ex)za−1 = xz

for every x ∈M , since z commutes with ex ∈ C0 by definition, and we have

α(αz) = e(eze)ea−2 = Q(e)zQ(e)a−2 = z.

It maps ∆(M) into itself, because

α(z)xy = xzy = xα(α(z))y = xyα(z)

for any x, y ∈M and because the products xy generate C0. It is an algebra homomor-
phism, since α(zw) = ezwea−1 = eze2wea−2 = α(z)α(w) for z, w ∈ CC0 .

Lemma 3.15. Let M = M1 ⊥ M2 be a regular quadratic space over R, 2 /∈ R×,
where M1,M2 are regular, and let αi be the automorphism of ∆(Mi) constructed
in the previous lemma. Then

∆(M) = {z ∈ ∆(M1)⊗∆(M2) : (α1 ⊗−I)(z) = (−I ⊗ α2)(z)}.

If
∆(Mi) = R⊕Rzi ∼= R[X]/(X2 −X + ci), i = 1, 2,

then
∆(M) = R⊕Rz ∼= R[X]/(X2 −X + c), c = c1 + c2 − 4c1c2,

where z = z1 ⊗ z2 + α1(z1)⊗ α2(z2), and the involution α of ∆(M) maps

α(z) = z1 ⊗ α2(z2) + α1(z1)⊗ z2.
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Here we view ∆(M1)⊗∆(M2) as a subalgebra of C(M) = C(M1)⊗̂C(M2), and −I
is the automorphism of C(Mi) induces by −id; i.e. −I acts as (−1)j on elements of
degree j. Note that this value of c satisfies

1− 4c = (1− 4c1)(1− 4c2).

The proof is more or less a direct computation; see II.7.8 in Kneser for details.

From the decomposition M =⊥n
i=1Ei, we obtain:

Theorem 3.16. Let M be a regular quadratic space over a local ring R, 2 /∈ R×

and write M = ⊥m
i=1Ei with rank(Ei) = 2. Suppose each Ei has basis e2i−1, e2i

with Q(e2i−1) = ai, β(e2i−1, e2i) = 1, Q(e2i) = ci. Then

∆(M) ∼= R⊕Rz = R[X]/(X2 −X + c)

where

1− 4c =
m∏
i=1

(1− 4aici) = (−1)m · disc(e1, ..., e2m)

is the signed discriminant in the basis e1, ..., e2m. The basis element z can be
chosen such that z + α(z) = 1 and zα(z) = c.

3.4. The spin group

The spin group is a double cover of the special orthogonal group. In this section we
will define both of those groups. (The definition of SO is somewhat subtle over a field
of characteristic two.)

Example 3.17. For a concrete example of spin group, let K = R and consider the
space V = R2×2 of matrices of size two. This becomes a quadratic space where the
quadratic form is given by the determinant. Its orthogonal group contains left- and
right-multiplication maps

LA : X 7→ AX, RA : X 7→ XA

where A ∈ SL2(R); and in fact these transformations generate the special orthogonal
group: so we have a surjective map

SL2(R)× SL2(R) −→ SO(det), (A,B) 7→ [X 7→ AXB].

But this map has a kernel: (−I,−I) acts trivially. Hence SL2(R)× SL2(R) is a double
cover of SO(det) = SO(2, 2;R).

To define general spin groups, we use the Clifford algebra.
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Let (M,Q) be a regular quadratic space over a field or local ring R, and view M as
a submodule of its Clifford algebra C. Fix an element z such that

∆(M) = R⊕Rz;

as we saw earlier, if M =⊥n
i=1Rei is diagonalizable then we take

z = e1...en

to be the longest Clifford product, and if M = ⊥n
i=1Ei, Ei = Re2i−1 ⊕ Re2i with

β(e2i−1, e2i) = 1 in the case that 2 is a nonunit, then we take z such that z + α(z) = 1
where

α(z)x = xz for z ∈ ∆(M), x ∈M.

An orthogonal transformation φ ∈ O(M) can be viewed as a homomorphism

φ :M −→ C

satisfying
φ(x)2 = Q(φx) = Q(x),

and it induces, by the universal property, an algebra automorphism C(φ) : C → C.
Conversely, if u ∈ Aut(C) is an automorphism of C that maps M into itself, then for
x ∈M we have

Q(u(x)) = u(x)2 = u(x2) = u(Q(x)) = Q(x)

and therefore u|M ∈ O(M). Hence we have an identification

O(M) ∼= {u ∈ Aut(C) : u(M) =M}.

We will fix the following definition now and explain it later:

Definition 3.18. The special orthogonal group SO(M) is the stabilizer of z:

SO(M) = {φ ∈ O(M) : φ(z) = z}.

The motivation for this definition comes from reflections,

σx : y 7→ y − β(x, y)

Q(x)
x, x ∈M with Q(x) ∈ R×.

Any r ∈M withQ(r) ∈ R× is invertible in the Clifford algebra, with inverse r−1 = r/Q(r),
and it comes with an inner automorphism

ir ∈ Aut(C), ir(x) = rxr−1.

The automorphism ir and the reflection σr are related via

ir(x) = rxr−1

= −(xr − β(x, r))r/Q(r)

= −x+ β(x, r)

Q(r)
r (3.1)

= −σr(x), x ∈M ; (3.2)
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that is, ir is exactly the automorphism of C induced by −σr.

By definition, the involution α of Lemma 3.14 satisfies

xz = α(z)x, x ∈M,

and we have α(z) = (−1)n−1z if 2 ∈ R× and n = rank(M) and α(z) = 1− z otherwise.
So σr acts on z via

σr(z) = C(−1)ir(z) = C(−1)α(z) =

{
−z : 2 ∈ R×;

1− z : 2 /∈ R×.

This immediately implies:

Proposition 3.19. Suppose O(M) is generated by reflections. Then SO(M) has
index two in O(M), and it consists exactly of products of an even number of
reflections.

Corollary 3.20. If R is a local ring with char(R) ̸= 2, then

SO(M) = {φ ∈ O(M) : detφ = 1}.

If R = K is a field of characteristic two, then any φ ∈ O(M) satisfies φz = z+D(φ)
for some number D(φ) ∈ Z/2Z. This follows for all cases except H ⊥ H over F2

by the above observation, since O(M) is then a reflection group. It remains true in
the exceptional case as well (one can check this directly, or apply the Skolem–Noether
theorem that automorphisms of central simple algebras are inner).
The number D(φ) is called the Dickson invariant of φ; by this observation, it defines
an isomorphism

D : O(M)/SO(M) −→ Z/2Z

and is therefore an “additive” analog of the determinant in characteristic two.

Generalizing beyond reflections, we have:

Definition 3.21. (i) The Clifford group Γ is the subgroup of units a ∈ C× for
which the (twisted) inner automorphism

ia : C −→ C, y 7→ aya−1

maps M into itself.
(ii) The even Clifford group is Γ0 := C0 ∩ Γ.

Here we abbreviate a = C(−1)a. So if a = a0 + a1 where a0 is even and a1 is odd,
then a = a0 − a1.
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By definition, the map a 7→ ia|M defines a group homomorphism

Γ → O(M)

that restricts to a group homomorphism

Γ0 → SO(M).

From now on, let R = K be a field.

Proposition 3.22. Let (M,Q) be a regular quadratic space over a field K,
char(K) ̸= 2. Then there are exact sequences

1 −→ K× −→ Γ −→ O(M) −→ 1

and
1 −→ K× −→ Γ0 −→ SO(M) −→ 1

and therefore O(M) ∼= Γ/K× and SO(M) ∼= Γ0/K
×.

This also holds when char(K) = 2 but we will not prove this.

Proof. The kernel of the map a 7→ ia|M consists of elements

a = a0 + a1 ∈ C×, a0 ∈ C0, a1 ∈ C1

that satisfy
(a0 − a1)y = y(a0 + a1) for all y ∈M,

i.e. for which a0y = ya0 and a1y = −ya1. The equation a0y = ya0, y ∈M implies that
a0 is central of even degree and therefore a scalar. Meanwhile a1y = −ya1 implies that
a1xy = xya1 for all x, y ∈M , so a1 belongs to CC0 = K ⊕Kz.
Since a1 is odd, it actually belongs to Kz; and if a1 ̸= 0, then necessarily z is odd.
But in this case z ∈ CC is central and the equation a1y = −ya1 is a contradiction. So
a1 = 0 and a = a0 ∈ K×.

The map to O(M) is surjective since O(M) is already generated by reflections ia|M ,
a ∈M ∩ C×. Hence we have the exact sequence

1 −→ K× −→ Γ −→ O(M) −→ 1

and therefore the exact sequence

1 −→ K× −→ Γ0 −→ SO(M) −→ 1.

The Clifford group Γ is too large. We will consider only the subgroup of elements
of so-called unit norm:
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Lemma 3.23. Let a ∈ Γ. Then N(a) := a(Ja) ∈ K× is a scalar, called its
norm.

J is, as always, the natural antiautomorphism of C that reverses the order in Clifford
products, and a0 + a1 = a0 − a1.
Bear in mind that a · Ja does not land in K for arbitrary a ∈ C. The norm is only
meaningful on Γ.

Proof. Applying the antiautomorphism J to the equation

ιa(x) = axa−1 = y, x, y ∈M,

we get
J(a)−1xJ(a) = y

and therefore
a(Ja)y(aJa)−1 = axa−1 = y

for every y ∈ M . It follows that a(Ja) belongs to the kernel of the map Γ → O(M),
which we proved consists only of scalars.

The norm satisfies N(ab) = abJ(ab) = abJ(b)J(a) = N(a)N(b) for a, b ∈ Γ; i.e. it
is a group homomorphism

N : Γ −→ R×.

So its kernel is also a group.

Definition 3.24. (i) The spin group is

Spin(M) = {a ∈ Γ0 : N(a) = 1}.

(ii) The pin group is

Pin(M) = {a ∈ Γ : N(a) = 1}.

The exact sequence

1 −→ K× −→ Γ0 −→ SO(M) −→ 1

descends to an exact sequence

1 −→ µ2(K) −→ Spin(M) −→ SO(M).

The final map in the sequence is not generally surjective.
Since N : Γ → K× maps K× into (K×)2, it induces a homomorphism:
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Definition 3.25. The spinor norm is the group homomorphism

N : O(M) −→ K×/(K×)2, σx 7→ N(x) · (K×)2.

For a reflection σx with x ∈M , Q(x) ∈ K×, the norm of x is

N(x) = −xJ(x) = −x2 = −Q(x).

So the spinor norm of σx is simply the class of −Q(x) modulo squares. (The minus
sign is a slightly annoying convention that is used to make N a homomorphism even
for non-homogeneous elements of Γ.) So the exact sequence actually goes

1 −→ µ2(K) −→ Spin(M) −→ SO(M)
N−→ Q×/(Q×)2.

3.5. The Witt invariant

Let K be a field.

Recall that for a regular quadratic space (M,Q) of dimension two over K, we proved
that the Clifford algebra C(M) is a central simple algebra over K. In the case of a
hyperbolic plane H, we observed that C(H) is the algebra K2×2 of (2× 2)-matrices.

The property of being a central simple algebra is preserved under tensor product.
However, Clifford algebras only make super tensor products out of orthogonal direct
sums:

C(M1 ⊥M2) = C(M1)⊗̂C(M2),

with multiplication

(x1 ⊗ x2)(y1 ⊗ y2) = (−1)ij(x1y1)⊗ (x2y2)

if x1, y1 ∈ C(M1), x2, y2 ∈ C(M2), deg(x2) = i, deg(y1) = j.

To fix this in the case dim(M1) is even, recall that ∆(M1) = K ⊕ Kz1 with an
element that satisfies xz1 = α1(z1)x for any x ∈ C(M1) of odd degree. Hence K is the
center of C(M1), while if we define z := α1(z1)− z1 then z and its scalar multiples are
the only elements that satisfy zx = (−1)deg(x)xz for every homogeneous x ∈ C(M1). It
follows that the algebras C(M1)⊗ 1 and

1⊗ C0(M2)⊕ z ⊗ C1(M2)

commute with one another; and since their dimensions match as well, we have an
isomorphism

C(M1 ⊥M2) ∼= C(M1)⊗
(
1⊗ C0(M2)⊕ z ⊗ C1(M2)

)
.
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But 1 ⊗ C0(M2) ⊕ z ⊗ C1(M2) is nothing other than the Clifford algebra of the
quadratic module {z ⊗ x : x ∈M2}, which is M2 with its quadratic form rescaled by

Q(z) = z2 = (α1(z1)− z1)
2 = d1,

the signed discriminant of M1. We record this observation in the following lemma:

Lemma 3.26. Let M =M1 ⊥M2 be a regular quadratic space with r = dimM1

even. Then
C(M) ∼= C(M1)⊗ C(M2(d1)),

where M2(d1) is M1 with its quadratic form multiplied by

d1 = (−1)r(r−1)/2disc(M1),

the signed discriminant of M1.

d1 is only determined modulo (K×)2 but any two choices of d1 yield equivalent
modules M2(d1).

Remark 3.27. Lemma 3.26 and the fact that tensor products of CSAs are again CSA
implies that the Clifford algebra of any even-dimensional regular quadratic space is a
central simple algebra.

If (M,Q) is an odd-dimensional semiregular quadratic space, the candidate for a
CSA is the even subalgebra C0(M) as this is known to have exactly K as its center. In
fact, if we can write M = N ⊥ Ke where N is regular and e ∈M has Q(e) ∈ K×, then

C0(M) = C0(N)⊗ 1⊕ C1(N)⊗ e

is just C(N(δ)) with δ = −Q(e). (Note that (xe)2 = −x2e2 = −Q(e)x2 for x ∈ N .)

To summarize: if M is regular of even dimension, then C(M) is a CSA, while if M
is semiregular of odd dimension then C0(M) is a CSA.

The Witt decomposition theorem for regular, or half-regular, quadratic spaces over
K yields

M ∼= Hr ⊥ N

where r = ind(M) is the Witt index and N is anisotropic. As we observed earlier,
C(H) = K2×2 is the matrix algebra. Since H has signed discriminant 1, repeatedly
applying Lemma 3.26 yields

C(M) = (K2×2)⊗r ⊗ C(N) = K2r⊗2r ⊗ C(N);

C0(M) = (K2×2)⊗r ⊗ C0(N) = K2r⊗2r ⊗ C0(N).

That motivates the following definition:

49



Definition 3.28. (i) Two central simple algebras A,B are Brauer equivalent
if there are matrix algebra Km×m, Kn×n such that

A⊗Km×m ∼= B ⊗Kn×n.

In other words, A ∼ B if the matrix algebras Am×m and Bn×n are isomorphic.
(ii) The Brauer group Br(K) of K is the group of central simple algebras over
K modulo Brauer equivalence, with group law given by the tensor product.
(iii) The Witt invariant of a regular or semiregular quadratic space M is

c(M) =

{
[C(M)] : dim(M) even;

[C0(M)] : dim(M) odd;

the equivalence class of C(M) or C0(M) in the Brauer group.

Thus theWitt invariant ofM depends only on theWitt equivalence class [M ] ∈ W (K).
Note however that the Witt invariant as a map c : W (K) → Br(K) is not a homomor-
phism, due to the rescaling in Lemma 3.26.
By the Artin–Wedderburn theorem, the Brauer group Br(K) can be interpreted as the
group of division algebras (or skew fields) over K: any CSA is uniquely of the form
Dn×n where D is a division algebra.

Remark 3.29. For finite fields K, one can show that Br(K) = 0. (This follows
immediately from Wedderburn’s little theorem: a finite division algebra is already a
field.)
Also, for any algebraically closed field K we have Br(K) = 0. In these cases the Witt
invariant gives no information.

Remark 3.30. In general the Brauer group is too large: what we have really shown
is that the Witt invariant of a semiregular quadratic form belongs to the subgroup of
Br(K) generated by quaternion algebras. Call that group BrQ(K).

If char(K) ̸= 2, recall that (a, b) or
(
a,b
K

)
denotes the quaternion algebra

K ⊕Ki⊕Kj ⊕Kij

with multiplication rules

i2 = a, j2 = b, ij + ji = 0,

where a, b ∈ K\{0}. By abuse of notation we also denote by (a, b) its Brauer equivalence
class. Then we have the following useful calculation rules: (au2, bv2) for u, v ∈ K×, i.e.
(a, b) depends only on the square classes of a, b; and

(1, b) = (1, 1) = [K] =: 1 for all binK×;

(a, b) = (b, a);
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and
(a, c)(b, c) = (ab, c), (a, b)(a, c) = (a, bc).

As a corollary, we get

(a, b)(a, b) = (a2, b) = (1, b) = 1 ∈ Br(K),

so BrQ(K) consists only of 2-torsion. (In fact the Merkurjev theorem states that BrQ(K)
is exactly the 2-torsion group of Br(K); we do not need this.)

Example 3.31. Let’s work out the Clifford algebras of the quadratic forms

Qk = X2
1 + ...+X2

k , Q−k = −X2
1 − ...−X2

k

over R. Note first that

C(Q0) = R;
C(Q−1) = R[X]/(X2 + 1) = C;
C(Q1) = R[X]/(X2 − 1) ∼= R⊕ R.

We observed earlier that C(Q−2) = H is the Hamilton quaternions.
The algebra C(Q2) is generated by basis vectors e1, e2 mod the relations

e21 = e22 = 1, e1e2 + e2e1 = 0;

it can be identified with the matrix algebra R2×2, for example by mapping

e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
.

By Lemma 3.26, we have the general rule

C(Qk) = C(Q2 ⊥ Qk−2) ∼= C(Q2)⊗ C(Q2−k);

i.e. C(Qk) is the 2× 2 matrix algebra over the algebra C(Q2−k). Hence C(Q3) = C2×2;
and C(Q4) = H2×2. Similarly, we have

C(Q−k) = C(Q−2 ⊥ Q2−k) ∼= C(Q−2)⊗ C(Qk−2) = H⊗ C(Qk−2),

such that C(Q−3) = H⊗ (R⊕ R) = H⊕H, and C(Q−4) = H⊗ R2×2 = H2×2.
To go further, we use the identifications

C2×2 = H⊗R C, R4×4 = H⊗R H

to write

C(Q−5) = H⊗ C2×2 = H⊗H⊗ C = C4×4;

C(Q5) = (H⊕H)2×2 = H2×2 ⊕H2×2;

C(Q−6) = H⊗H⊗ R2×2 = R8×8;

C(Q6) = (H2×2)2×2 = H4×4;

C(Q−7) = H⊗ (H2×2 ⊕H2×2) = R8×8 ⊕ R8×8;

C(Q7) = (C4×4)2×2 = C8×8;
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and finally
C(Q−8) = C(Q8) = R16×16.

The latter equation implies that C(Qk+8) is just the algebra of (16× 16)-matrices over
the algebra C(Qk), and that C(Q−k−8) is the algebra of (16×16)-matrices over C(Q−k).
It follows that the Brauer classes of C(Qk) (k even) and C0(Qk) (k odd) are periodic
with period 8. (This is an incarnation of a very pervasive and important phenomenon
called Bott periodicity.)
Since C0(Qk) = C0(Q−k) = C(Q1−k) for k > 0 by Remark 3.27, we finally get the
following table:

k C(Qk) C0(Qk) c(Qk)
−8 R16×16 R8×8 ⊕ R8×8 [R]
−7 R8×8 ⊕ R8×8 R8×8 [R]
−6 R8×8 C4×4 [R]
−5 C4×4 H2×2 [H]
−4 H2×2 H⊕H [H]
−3 H⊕H H [H]
−2 H C [H]
−1 C R [R]
0 R R [R]
1 R⊕ R R [R]
2 R2×2 C [R]
3 C2×2 H [H]
4 H2×2 H⊕H [H]
5 H2×2 ⊕H2×2 H2×2 [H]
6 H4×4 C4×4 [H]
7 C8×8 R8×8 [R]
8 R16×16 R8×8 ⊕ R8×8 [R]

Figure 3.1: Clifford algebras, even Clifford algebras and Witt invariants of quadratic
forms over R.

Now any regular quadratic form Q over R is Witt-equivalent to Qσ, where

σ = sig(Q) ∈ Z

is the signature. So the Witt invariants of regular quadratic forms over R depend only
on the signature modulo 8:

c(Q) =

{
[R] : σ ≡ 0, 1, 2, 7 mod 8;

[H] : σ ≡ 3, 4, 5, 6 mod 8.

Remark 3.32. Suppose char(K) ̸= 2, and Q is a regular quadratic form that is diag-
onalized as

Q = ⟨a1, ..., an⟩, ai ∈ K×.
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Then we have the following expression for c(Q) in terms of quaternion symbols:

c(⟨a1, ..., an⟩) =
(∏

i<j

(ai, aj)
)
· (−1, d)r · (−1,−1)s, d =

∏
ai,

where: if n = 2m is even, then r = m − 1 and s = m(m − 1)/2, and if n = 2m + 1 is
odd then r = m and s = m(m+ 1)/2. This can be proved by induction using the rule
of Lemma 3.26. In the case of K = R, we can take all ai = ±1; the quaternion symbols
are (1,±1) = (±1, 1) = [R] and (−1,−1) = [H]; and the result can be compared with
the previous example.
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4. Quadratic forms over p-adic fields

4.1. The p-adic numbers

We review some properties of p-adic numbers, without any proofs. Let p be a prime.

For n ∈ Z, n ̸= 0, define

νp(n) = a if n = pam where p ∤ m.

The p-adic valuation is defined by

|n|p := p−νp(n), n ∈ Z, n ̸= 0,

and |0|p = 0. It satisfies the ultrametric inequality

|m+ n|p ≤ max(|m|p, |n|p), m, n ∈ Z

as well as multiplicativity,
|mn|p = |m|p · |n|p,

and in particular it makes Z into a metric space. The ring of p-adic integers Zp is the
completion of Z with respect to | · |p.

Concretely, elements a ∈ Zp can be represented as formal power series

a =
∞∑
k=0

akp
k, ak ∈ {0, ..., p− 1}.

The exponential valuation νp extends to the map

νp : Zp\{0} −→ N0, νp(a) = min{k : ak ̸= 0}.

The ring Zp has the following key properties:
(1) it is local and its maximal ideal has a single generator: m = pZp;
(2) the residue field is finite: Zp/pZp

∼= Z/pZ.

Property (1) is the definition of a discrete valuation ring. The discrete valuation is
exactly | · |p.
By (1), the units Z×

p are exactly the elements a ∈ Zp with νp(a) = 0.
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The field of fractions of Zp is the field of p-adic numbers, Qp. Equivalently, Qp is
the completion of Q with respect to | · |p (defined by |r/s|p = |r|p/|s|p for r, s ∈ Z with
s ̸= 0). Nonzero elements of Qp can be represented as formal Laurent series

a =
∞∑

k=k0

akp
k, ak ∈ {0, ..., p− 1}, k0 ∈ Z, ak0 ̸= 0,

and the exponential valuation is νp(a) = k0.

If p ̸= 2, then it follows from Hensel’s lemma that any p-adic integer a =
∑∞

k=0 akp
k

for which a0 ∈ {1, ..., p− 1} is a square modulo p actually has a square root in Zp. The
procedure is completely constructive: first choose b0 ∈ {1, ..., p − 1} such that b20 = a0
mod p, then choose b1 such that (b0+ pb1)

2 = a0+ pa1 mod p2, then choose b2, etc. For
example, the square roots of 7 in Q3 are

1 + 1 · 3 + 1 · 32 + 2 · 33 + 0 · 34 + 2 · 35 + ...

and
2 + 1 · 3 + 1 · 32 + 2 · 33 + 0 · 34 + 2 · 35 + ...

For p = 2 the procedure must begin with a number that is a square modulo 8 (i.e.
1); a dyadic unit

a =
∞∑
k=0

ak2
k ∈ Z×

2 , ak ∈ {0, 1}, a0 = 1

is a square if and only if a1 = a2 = 0.

4.2. Quadratic forms over Qp, p ̸= 2

In this section, p is always an odd prime.

The exponential valuation νp defines an exact sequence

0 −→ Z×
p −→ Q×

p −→ Z −→ 0.

By Hensel’s lemma,
Z×

p /(Z×
p )

2 ∼= F×
p /(F×

p )
2 ∼= Z/2Z,

so we obtain a (split) exact sequence

0 −→ Z/2 −→ Q×
p /(Q×

p )
2 −→ Z/2 −→ 0.

In other words:

Lemma 4.1. The square classes in Qp are

Q×
p /(Q×

p )
2 = {1, p, α, pα},

where α ∈ Z is any fixed nonsquare modulo p.
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From now on (at least within this section) we fix such an element α.
A regular quadratic form over Qp can be diagonalized, and up to isometry its coef-

ficients depend only on their square classes. So up to isometry we may write

Q = Q1 ⊥ pQ2 = ⟨u1, ..., um⟩ ⊥ ⟨pv1, ..., pvn⟩,

where ui, vj ∈ {1, α}. The quadratic formsQ1, Q2 determine quadratic formsQ1 = ⟨u1, ..., um⟩
and Q2 = ⟨v1, ..., vn⟩ defined over Fp, where ui, vj are the mod p cosets of ui, vj.

Theorem 4.2. Let Q = Q1 ⊥ pQ2 as above. The following are equivalent:
(i) Q is anisotropic;
(ii) Q is anisotropic as a quadratic form defined over Zp;
(iii) Both Q1 and Q2 are anisotropic forms over Fp.

Proof. (i) ⇔ (ii) Any solution v ∈ Zp of Q(v) = 0 is, a fortiori, a solution defined over
Qp. Conversely any solution v ∈ Qp of Q(v) = 0 can be improved to a solution defined
over Zp by clearing denominators.

(ii) ⇒ (iii) Suppose either Q1 or Q2 is isotropic over Fp. The solvability of Qi(v) = 0
with v ̸= 0 can be interpreted as the existence of a certain nonzero square root in Fp.
By Hensel’s lemma v lifts to a solution v of Qi(v) = 0 over Zp. Hence one of Q1 or Q2

is isotropic, so Q = Q1 ⊥ pQ2 is isotropic.

(iii) ⇒ (ii) Suppose Q1 and Q2 are both anisotropic, and suppose v is a solu-
tion, defined over Zp, of Q(v) = 0. Write v = (v1, v2) with respect to the splitting
Q = Q1 ⊥ pQ2. Then Q1(v1) = −pQ2(v2) implies Q1(v1) = 0 ∈ Fp, so by anisotropy
v1 = 0; in other words, v1 = pv3 with v3 defined over Zp. But then

−pQ2(v2) = Q1(pv3) = p2Q1(v3)

implies Q2(v2) = 0, so by anisotropy v2 = 0 and v2 = pv4 with v4 defined over Zp.
Repeating this argument shows that both v1, v2 are divisible by arbitrarily large powers
of p and therefore v1 = 0, v2 = 0. This proves that Q is anisotropic.

Corollary 4.3. (i) Every quadratic form over Qp in at least five variables is isotropic.
(ii) Any anisotropic, regular quadratic form over Qp in four variables is equivalent to
the diagonal form

U = ⟨1,−α, p,−αp⟩.

Proof. (i) If Q is not regular then it is certainly isotropic. If Q is regular and we
diagonalize and decompose Q = Q1 ⊥ pQ2 as above, then Q is anisotropic if and only
if both Q1 and Q2 are anisotropic. But Chevalley’s theorem implies that an anisotropic
form over Fp has rank at most two (Example 2.25).
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(ii) Example 2.25 shows that there is a unique anisotropic form over Fp of rank two and
it is ⟨1,−α⟩.

Corollary 4.4. Every regular quadratic form Q over Qp in at least four variables
represents every number in Qp.

That is: for every a ∈ Qp, the equation Q(x) = a has a solution x.

Proof. If Q is isotropic, then by Witt decomposition it splits a hyperbolic plane H,
and H already represents every number.

So assume that Q is the anisotropic form in four variables. Then Q ⊥ ⟨−a⟩ has five
variables and is therefore isotropic. Since Q itself is anisotropic, any vector of norm
zero for Q ⊥ ⟨−a⟩ can be rescaled to have the form v = (x, 1) (with x ∈ Q4

p) and then
Q(x) = a.

Corollary 4.5. (i) Every regular quadratic form Q over Zp in at least three variables
splits a hyperbolic plane over Zp.
(ii) Every regular quadratic form Q over Zp in at least two variables represents every
number t ∈ Z×

p .

As a special case of (ii) we find that −1 ∈ Zp can always be written as a sum of two
squares. Of course if p ≡ 1 (mod 4) then −1 already has a square root in Zp by Hensel’s
lemma.

Proof. (i) If Q is a regular quadratic form over Zp, then it can be diagonalized to
⟨u1, ..., um⟩ where ui ∈ Z×

p . In particular the decomposition Q = Q1 ⊥ pQ2 holds with

Q1 = Q and Q2 = 0. Since Q is isotropic due to having rank at least three, Theorem
4.2 shows that Q is isotropic (over Zp), hence splits a hyperbolic plane. (ii) follows
because the quadratic form Q ⊥ ⟨−t⟩ is isotropic.

Corollary 4.6. There is a unique quaternionic division algebra over Qp: it is repre-
sented by the quaternion symbol (α, p).

Proof. Suppose D = (a, b) is a quaternion algebra:

D = Qp ⊕Qpi⊕Qpj ⊕Qpk

with i2 = a, j2 = b, ij = −ji = k and k2 = −ab. Then D defines a division algebra if
and only if the norm

N(x11+xii+xjj+xkk) = (x1+xii+xjj+xkk)(x1−xii−xjj−xkk) = x21−ax2i−bx2j+abx2k
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is an anisotropic quadratic form. Proposition 4.2 and the classification of anisotropic
forms over Fp shows that either a or b must have odd valuation: without loss of gen-
erality, b = pu with u ∈ Z×

p . Then without loss of generality, we may assume a has
even valuation (otherwise, swap the roles of i and k) and even that a ∈ Z×

p . Then
modulo squares, we must have a = α. The two choices b = p or b = pα yield equivalent
quaternion algebras (up to swapping j and k) so D is uniquely determined.

In the notation of Section 3.5, the subgroup of Br(Qp) generated by quaternion
algebras is BrQ(Qp) = Z/2Z.
By the way, the full Brauer group of Qp is described by local class field theory in a
reasonably explicit way: there is a canonical isomorphism

inv : Br(Qp)
∼−→ Q/Z,

under which the division algebra D = (α, p) is mapped to 1
2
. But we do not need this.

To make these computations less abstract we introduce the following notation:

Definition 4.7. (i) Let a, b ∈ Q×
p . The Hilbert symbol is

(a, b)p =

{
1 : ⟨a, b,−1⟩ is isotropic;
−1 : otherwise.

(ii) Let Q be a regular quadratic form over Qp with diagonalization

Q = ⟨a1, ..., an⟩.

The Hasse invariant of Q is

s(Q) :=
∏
i<j

(ai, aj)p.

If (a, b)p = 1, then the norm form ⟨1,−a,−b, ab⟩ on the quaternion algebra (a, b)
is certainly also isotropic. Conversely, if (a, b)p = −1 then the quaternion algebra
(a, b) cannot split, (Q2×2

p has no 3-dimensional anisotropic subspaces) so it must be
the division algebra D. So the Hilbert symbol is essentially the Witt invariant of the
quadratic form aX2 + bY 2:

(a, b)p =

{
1 : c(⟨a, b⟩) = 0;

−1 : c(⟨a, b⟩) ̸= 0.

Since the Witt invariant of a diagonal quadratic form is given by the formula

c(⟨a1, ..., an⟩) =
(∏

i<j

(ai, aj)
)
· (−1, d)r · (−1,−1)s, d =

∏
ai,
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1 α p pα
1 + + + +
α + + − −
p + − +ε −ε
pα + − −ε +ε

Figure 4.1: The Hilbert symbol (a, b)p for an odd prime p. In the table, ε = +1 if p ≡ 1
mod 4 and ε = −1 if p ≡ 3 mod 4.

it follows that, once the discriminant is fixed, the Hasse invariant and the Witt invariant
uniquely determine one another. In particular, the Hasse invariant really is an invariant
of the quadratic form (it does not depend on how Q was diagonalized).

Together with the discriminant, the Hasse (or Witt) invariant completely solves the
equivalence problem:

Theorem 4.8. Let Q,Q′ be regular quadratic forms over Qp. The following are
equivalent:
(i) Q and Q′ are isometric;
(ii) Q,Q′ have equal rank, discriminant and Hasse invariant.

Proof. Clearly (i) implies (ii), so the point is to show that quadratic forms of equal
rank, discriminant and Hasse invariant are isometric over Qp. The forms Q and Q′ can
be diagonalized and may be supposed to be in diagonal form:

Q = ⟨a1, ..., an⟩, Q′ = ⟨a′1, ..., a′n⟩.

We split the proof into cases depending on the rank.

(i) Rank one: Q(X) = a1X
2 and Q′(X) = a′1X

2. The Hasse invariant is trivial and
the equality of discriminants

2a1 = 2a′1 ∈ Q×
p /(Q×

p )
2

implies that a1 and a′1 are equal modulo squares, so Q and Q′ are equivalent.

(ii) Rank two: Q(X, Y ) = a1X
2 + a2Y

2 and Q′(X, Y ) = a′1X
2 + a′2Y

2. Then the
quaternion algebras (a1, a2) and (a′1, a

′
2) are isomorphic, so their norm forms

⟨1,−a1,−a2, a1a2⟩ ∼= ⟨1,−a′1,−a′2, a′1a′2⟩.

are equivalent. On the other hand, a1a2 and a′1a
′
2 are the discriminants of Q and Q′ as

cosets modulo squares:
a1a2 = a′1a

′
2 ∈ Q×

p /(Q×
p )

2.
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By applying Witt cancellation to remove ⟨1, a1a2⟩ = ⟨1, a′1a′2⟩ from both sides, we obtain

⟨−a1,−a2⟩ ∼= ⟨−a′1,−a′2⟩

and therefore Q ∼= Q′.

(iii) Rank three: Let d = det(Q) = det(Q′). By rescaling Q and Q′ by −d, we can
assume without loss of generality that both Q and Q′ have discriminant −1 (×(Q×

p )
2),

and can therefore be diagonalized to

Q = ⟨a1, a2,−a1a2⟩, Q′ = ⟨a′1, a′2,−a′1a′2⟩

with ai, a
′
i ∈ Q×

p . The Witt invariants of Q and Q′ are represented by their even Clifford
algebras, and therefore by the quaternion symbols (a1, a2) and (a′1, a

′
2). Since these are

equivalent, their norm forms

⟨1,−a1,−a2, a1a2⟩ ∼= ⟨1,−a′1,−a′2, a′1a′2⟩

are equivalent. Using Witt cancellation to remove ⟨1⟩ from both sides, we obtain
Q ∼= Q′.

(iv) Rank ≥ 4: In this case Q and Q′ both represent every number in Qp. In
particular, they represent 1, say Q(e) = Q′(e′) = 1. Then we can split

Q = (Ke) ⊥ N = ⟨1⟩ ⊥ N, Q′ = ⟨1⟩ ⊥ N ′

where N and N ′ are quadratic forms, again of equal discriminant and Hasse invariant,
and of lower rank. The fact that N ∼= N ′ (and therefore Q ∼= Q′) follows by an induction
argument.

Corollary 4.9. Up to equivalence, there are exactly 16 anisotropic quadratic forms
over Qp.

The anisotropic forms are listed below. From the table one can see that the Witt
group W (Qp) decomposes into two copies of the Witt group W (Fp) (which is Z/4 if
p ≡ 3 mod 4, and (Z/2)2 if p ≡ 1 mod 4).

Corollary 4.10. There are unique group homomorphisms

ψ0, ψ1 : W (Qp) −→ W (Fp),

called the residue class form homomorphisms, with the properties

ψ0(⟨u⟩) = ⟨u⟩, ψ0(⟨pu⟩) = 0,

ψ1(⟨u⟩) = 0, ψ1(⟨pu⟩) = ⟨u⟩
for every u ∈ Z×

p .
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Q r(Q) d(Q) s(Q)
0 0 1 1
⟨1⟩ 1 1 1
⟨α⟩ 1 α 1
⟨p⟩ 1 p 1
⟨pα⟩ 1 pα 1

⟨1,−α⟩ 2 −α 1
⟨p,−pα⟩ 2 −α −1
⟨1, p⟩ 2 p 1
⟨α, pα⟩ 2 p −1
⟨1, pα⟩ 2 pα 1
⟨p, α⟩ 2 pα −1

⟨α, p,−pα⟩ 3 −1 −1
⟨1,−p, pα⟩ 3 −α −1
⟨1,−α,−pα⟩ 3 p −ε
⟨1,−α,−p⟩ 3 pα −ε

⟨1,−α, p,−pα⟩ 4 1 −1

Figure 4.2: Representatives for the 16 isometry classes of anisotropic quadratic forms
over Qp, p ̸= 2, with their ranks, discriminants and Hasse invariants. As in the previous
figure, ε = 1 if p ≡ 1 mod 4 and ε = −1 if p ≡ 3 mod 4.
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4.3. Quadratic forms over Q2

The results for quadratic forms over Q2 turn out to be similar to those for Qp, p ̸= 2, but
the proofs have to be modified. Since Q2 is a field of characteristic zero, all quadratic
forms over Q2 can be diagonalized. (For Z2 this will no longer be true!)

But the immediate problem is that there are 8 square classes instead of 4:

Z×
2 /(Z×

2 )
2 = {1, 3, 5, 7}

and
Q×

2 /(Q×
2 )

2 = {1, 3, 5, 7, 2, 6, 10, 14}.

Hence there are seven quadratic extensions of Q2. The extension Q2(
√
5) is distin-

guished because it is unramified: its discriminant (5) has valuation 0.

For each of the seven quadratic extensions K/Q2, the norm group N(K×) is a sub-
group of Q×

2 , containing (Q×
2 )

2 (any a2, a ∈ Q×
2 occurs as the norm of a itself). Hence

N(K×)/(Q×
2 )

2 is a subgroup of Q×
2 /(Q×

2 )
2. Kummer theory guarantees that that group

is of size exactly four.

In the case of the unramified extension K = Q2(
√
5), the valuation of an element

x ∈ K× is always an integer and the valuation of its norm xσ(x) must be even, so
N(K×)/(Q×

2 )
2 = {1, 3, 5, 7}.

The norm groups (modulo squares) of the other extensions can be worked out directly,
by computing the norms of sufficiently many elements of K×. In any case, the square
classes represented by the norms are as follows:

Q2(
√
3) : 1, 5, 6, 14

Q2(
√
5) : 1, 3, 5, 7

Q2(
√
7) : 1, 2, 5, 10

Q2(
√
2) : 1, 2, 7, 14

Q2(
√
6) : 1, 3, 10, 14

Q2(
√
10) : 1, 6, 7, 10

Q2(
√
14) : 1, 2, 3, 6

The dyadic Hilbert symbol is defined by exactly the same rule as (a, b)p, p ̸= 2: for
a, b ∈ Q×

2 ,

(a, b)2 :=

{
1 : ⟨a, b,−1⟩ is isotropic over Q2;

−1 : otherwise.

As before, (a, b)2 depends only on the classes of a, b modulo squares. For ∆ /∈ (Q×)2 we
have (a,∆)2 = +1 if and only if a is a norm from Q(

√
∆). So we get the following table.
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1 3 5 7 2 6 10 14
1 + + + + + + + +
3 + − + − − + − +
5 + + + + − − − −
7 + − + − + − + −
2 + − − + + − − +
6 + + − − − − + +
10 + − − + − + + −
14 + + − − + + − −

Figure 4.3: The dyadic Hilbert symbol.

Proposition 4.11. (i) Let Q be an anisotropic quadratic form over Q2 in four
variables. Then discr(Q) = 1.
(ii) Let Q be a regular ternary form over Q2. Then Q represents every element
of seven square classes.
(iii) Let Q be a quadratic form over Q2 in at least five variables. Then Q is
isotropic.
(iv) Let Q be a regular quadratic form over Q2 in four variables. Then Q repre-
sents every number t ∈ Q2.

Proof. (i) We can diagonalize Q and write it in the form

Q = ⟨a,−a∆1,−b, b∆2⟩

with some square classes a, b,∆1,∆2. Since the binary forms ⟨a,−a∆1⟩ and ⟨b,−b∆2⟩
are anisotropic, they are multiples of the norms on quadratic extensions Q2(

√
∆1)

and Q2(
√
∆2). Since Q is anisotropic, it follows that ⟨a,−a∆1⟩ and ⟨b,−b∆2⟩ never

represent the same number t; equivalently, (at,∆1)2 ̸= (bt,∆2)2 for every t ∈ Q×
2 . But

that is only possible if ∆1 = ∆2 (as one can read off the table), which implies

disc(Q) = ∆1∆2 = 1 · (Q×
2 )

2.

(ii) The ternary quadratic form ⟨a, b, c⟩ fails to represent t ∈ Q×
2 exactly when

⟨a, b, c,−t⟩ is anisotropic. By (i) this implies −abct ∈ 1 · (Q×
2 )

2 and therefore

t ∈ (−abc) · (Q×
2 )

2.

(iii) Suppose Q is anisotropic. After diagonalizing, we can write Q as a sum

Q = T ⊥ (−B)

where T is an anisotropic ternary quadratic form and B is an anisotropic binary
quadratic form. By (ii), T represents every element of (at least) 7 square classes; and
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B represents every element of exactly 4 square classes. In particular they represent at
least one square class in common, so T ⊥ (−B) represents 0 nontrivially.

(iv) IfQ is isotropic then it splits a hyperbolic plane byWitt’s theorem, and therefore
represents every number. Otherwise, Q ⊥ ⟨−t⟩ is isotropic by (iii) and any isotropic
vector after rescaling to (x, 1) yields a solution Q(x) = t.

We state the following theorem without proof.1

Theorem 4.12. There is a unique quaternionic division algebra D over Q2. It
is represented by the quaternion symbol (−1,−1): i.e.

D = Q2 ⊕Q2i⊕Q2j ⊕Q2k, i2 = j2 = k2 = ijk = −1.

For a, b ∈ Q×
2 , we have the following interpretation of the Hilbert symbol:

(i) The quaternion algebra (a, b) splits if and only if (a, b)2 = +1;
(ii) The quaternion algebra (a, b) is the division algebra D if and only if
(a, b)2 = −1.

Moreover, D ⊗Q2(
√
d) splits for every nontrivial square class d ̸= 1 ∈ Q×

2 /(Q×
2 )

2.

If a quadratic form is diagonalized as

Q = ⟨a1, ..., an⟩

then its Hasse invariant is defined to be

s(Q) :=
∏
i<j

(ai, aj)2.

By Theorem 4.12, the Hasse invariant and Witt invariant uniquely determine one an-
other. In particular s(Q) is independent of the diagonalization of Q.

The proof of Theorem 4.8 carries over to p = 2 exactly:

Theorem 4.13. Let Q,Q′ be regular quadratic forms over Q2. The following are
equivalent:
(i) Q and Q′ are isometric;
(ii) Q,Q′ have equal rank, discriminant and Hasse invariant.

Also, just as for p ̸= 2, the anisotropic quadratic form in four variables is unique:

1More generally, a form of this theorem holds over every nonarchimedean local field. This was easy
enough for Qp, p ̸= 2, but even over Q2 the proof is hard. See Main Theorem 12.3.2 of J. Voight,
Quaternion algebras for more details.
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Remark 4.14. This implies, just as for p ̸= 2, that all anisotropic quadratic forms over
Q2 are equivalent; in particular, equivalent to the form

X2
1 +X2

2 +X2
3 +X2

4 .

We showed earlier that any such form has discr(Q) = 1 · (Q×)2, and also that Q
represents 1. This implies that Q can be diagonalized as

Q = ⟨1,−a,−b, ab⟩, a, b ∈ K×,

i.e. that Q is the norm form on a quaternion algebra (a, b), which in turn represents its
Witt invariant c(Q). But Q is anisotropic and therefore (a, b) is nontrivial.

Note that the Hasse invariant of Q is actually +1! This is because c(Q) and s(Q)
differ by factors involving (−1, discr(Q)) and (−1,−1).

With that in mind, we can compute the Witt group:

Proposition 4.15. The Witt group of Q2 is

W (Q2) ∼= Z/8Z⊕ Z/2Z⊕ Z/2Z.

So there are exactly 32 isometry classes of anisotropic quadratic forms over Q2.

First consider the generator ⟨1⟩: Since 4⟨1⟩ = ⟨1, 1, 1, 1⟩ is anisotropic, it is nonzero
in W (Q2). On the other hand, ⟨−1,−1,−1,−1⟩ is anisotropic and therefore equivalent
to ⟨1, 1, 1, 1⟩; so

8⟨1⟩ ∼= 4⟨1⟩ ⊥ 4⟨−1⟩ ∼= H ⊥ H ⊥ H ⊥ H = 0 ∈ W (Q2).

So ⟨1⟩ generates a subgroup Z/8.

The Witt group is generated by the eight classes ⟨a⟩, a ∈ Q×
2 /(Q×

2 )
2. We have

⟨1, 1⟩ ∼= ⟨2, 2⟩ ∼= ⟨5, 5⟩ ∼= ⟨10, 10⟩

since all of these forms have the same determinant (1) and Hasse invariant (+1). So

2⟨2⟩ = 2⟨5⟩ = 2⟨10⟩ = ⟨1, 1⟩

in W (Q2), from which it follows that

2⟨3⟩ = 2⟨7⟩ = 2⟨6⟩ = 2⟨14⟩ = −2⟨1, 1⟩ = 6⟨1, ⟩

in W (Q2), and finally

⟨3⟩ = 7⟨5⟩, ⟨7⟩ = 7⟨1⟩, 6 = 7⟨10⟩, ⟨14⟩ = 7⟨2⟩.
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In particular, W (Q2) is already generated by ⟨1⟩ and the differences

x := [⟨1⟩]− [⟨2⟩] = [⟨1, 14⟩], y := [⟨1⟩]− [⟨5⟩] = [⟨1, 3⟩], z := [⟨1⟩]− [⟨10⟩] = [⟨1, 6⟩],

where 2x = 2y = 2z = 0. Also,

x+ y = [⟨1, 1⟩]− [⟨2, 5⟩], y + z = [⟨1, 1⟩]− [⟨5, 10⟩], x+ z = [⟨1, 1⟩]− [⟨2, 10⟩]

do not belong to the subgroup of W (Q2) generated by ⟨1⟩, since the discriminants
2 · 5, 5 · 10, 2 · 10 do not belong to ±1 · (Q×)2. However, the form ⟨1, 2, 5, 10⟩ is the

norm form of the split quaternion algebra
(

−2,−5
Q2

)
and is therefore hyperbolic:

⟨1, 2, 5, 10⟩ = H ⊥ H,

which implies that

x+ y + z = [⟨1, 1, 1, 1⟩]− [⟨1, 2, 5, 10⟩] = [⟨1, 1, 1, 1⟩].

Altogether,W (Q2) is generated by ⟨1⟩ and x, y modulo only the relations 8⟨1⟩ = 2x = 2y = 0.

The 32 anisotropic forms over Q2 (up to isometry) can be described as follows:
(1) The quadratic form of rank zero;
(2) 8 unary quadratic forms, with all 8 possible discriminants and Hasse invariant +1;
(3) 14 binary quadratic forms, with all discriminant classes d ̸= −1 and either Hasse
invariant ±1;
(4) 8 ternary quadratic forms, with all 8 possible discriminants d, and with Hasse in-
variant given by the dyadic Hilbert symbol (−1,−d)2;
(5) The quaternary form ⟨1, 1, 1, 1⟩ with discriminant +1 and Hasse invariant +1.

Representatives of the anisotropic binary forms can be found among the multiples
of the seven field norms NK/Q2 , where K/Q2 is a quadratic extension. For ternary forms
we have the diagonal forms ±⟨1, 1, d⟩ where d ∈ {1, 2, 5, 10}.

Definition 4.16. The oddity is the homomorphism

t2 : W (Q2) −→ Z/8Z,

defined by t2(⟨1⟩) = 1, t2(x) = 0, t2(y) = 4.

Here x = ⟨1⟩ − ⟨2⟩, y = ⟨1⟩ − ⟨5⟩ are the two additional generators of W (Q2) as
described above. Using the computations above, this leads to the strange formula

t2(⟨u⟩) = u,

t2(⟨2u⟩) =

{
u : u ≡ ±1 (mod 8);

u+ 4 : u ≡ ±3 (mod 8);

for u ∈ {1, 3, 5, 7} (mod 8). More generally, if Q = ⟨a1, ..., an⟩ has been diagonalized,
then by definition t2(Q) =

∑
i t2(ai).
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5. Quadratic forms over the rational numbers

The goal of this chapter is to understand the theory of quadratic forms over Q.

Any quadratic form Q/Q can be viewed “locally” as a quadratic form over R, and
over every p-adic field Qp. Over these local fields, Q is completely described by simple
invariants: its signature in the case of R, and its discriminant and Hasse invariant in
the case of Qp. This collection of local data turns out to determine the global quadratic
form Q uniquely.

5.1. The Witt group of Q

First we describe the (infinite) group W (Q) of Witt equivalence classes.

Since Q is a field of characteristic ̸= 2, all quadratic forms can be diagonalized. So
W (Q) is certainly generated by the forms ⟨a⟩, where a ∈ Q×/(Q×)2.

For k ∈ N, denote by W k the subgroup of W (Q) generated by the quadratic forms
⟨±a⟩, a ∈ N, for which all prime divisors of a are ≤ k. We will try to build up W (Q)
from the quotient groups W k/W k−1. These are trivial unless k = p is a prime.

The elements of W 1 are diagonal forms ⟨±1, ...,±1⟩ modulo Witt equivalence. Here
⟨1,−1⟩ ∼= H is hyperbolic over Q. On the other hand, the signature

sgn(Q) = #{positive diagonal terms} −#{negative diagonal terms}

is an invariant of Witt classes over R (and therefore also over Q), we obtain an isomor-
phism

sgn : W 1 ∼−→ Z.

For p = 2: W 2/W 1 is generated by the Witt classes of ⟨±2⟩. There are equivalences

±(X2 + Y 2) = ⟨±1,±1⟩ ∼= ⟨±2,±2⟩ = ±2(x2 + y2)

given by the substitutions X = (x + y), Y = (x − y); and ⟨2,−2⟩ is hyperbolic and
therefore Witt equivalent to 0. So

W 2/W 1 = {⟨2⟩}.
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Another way of looking at this is that the map

s2 : W (Q) −→ Z/2Z, s2([Q]) =

{
0 : ν2(d(Q)) ≡ 0 (2);

1 : ν2(d(Q)) ≡ 1 (2);

where d(Q) ∈ Q×/(Q×)2 is the discriminant, is well-defined and induces an isomorphism

s2 : W
2/W 1 ∼−→ Z/2Z.

Finally, let p be an odd prime. Let Q be a regular quadratic form. By diagonalizing,
up to equivalence we can write Q in the form

Q = ⟨a1, ..., am⟩ ⊥ ⟨pb1, ..., pbn⟩

where a1, ..., am, b1, ..., bn are squarefree integers not divisible by p. The main result is:

Theorem 5.1. The map

⟨a1, ..., am⟩ ⊥ ⟨pb1, ..., pbn⟩ 7→ ⟨b1, ..., bn⟩

determines a well-defined isomorphism

sp : W
p/W p−1 ∼−→ W (Fp) =

{
Z/2Z× Z/2Z : p ≡ 1 (4);

Z/4Z : p ≡ 3 (4).

Proof. Extending scalars from Q to Qp gives us a projection map

π : W (Q) −→ W (Qp).

We observed earlier that the map

⟨a1, ..., am⟩ ⊥ ⟨pb1, ..., pbn⟩ 7→ (⟨a1, ..., am⟩, ⟨b1, ..., bn⟩), ai, bj ∈ Z×
p

determines an isomorphism W (Qp)
∼→ W (Fp) ⊕ W (Fp). Applying π and taking the

second component of that isomorphism is therefore a well-defined map

sp : W (Q) −→ W (Fp).

Since any class in W p−1 is represented by a diagonal form ⟨a1, ..., am⟩ with p ∤ ai,
we have sp(W

p−1) = {0}. So sp descends to a map

sp : W
p/W p−1 −→ W (Fp).

The fact that sp is surjective is clear. That it is injective (i.e. its kernel is W
p−1) is due

to the following lemma:
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Lemma 5.2. Suppose a = a1 ·...·ar ∈ Z with factors |ai| < p. Let b ∈ {1, ..., p−1}
with b ≡ a mod p. Then

⟨pa⟩ ≡ ⟨pb⟩ mod W p−1.

Proof. Induction on r, beginning with r = 2. (The case r = 1 follows from this by
taking a2 = 1.)
Suppose a = a1a2 = b+ pc. Then

|c| < (p− 1)2 + (p− 1)

p
< p.

We can write ⟨a, pc⟩ ∼= ⟨b, pabc⟩, because: ⟨a, pc⟩ represents b = a − pc, so it can be
diagonalized in the form ⟨b, x⟩, and the value of x is determined by bx ≡ apc mod
(Q×)2.
Rescaling both sides by p yields

⟨pa, c⟩ = ⟨pa, p2c⟩ = ⟨pb, p2abc⟩ = ⟨pb, abc⟩,

i.e. ⟨pa⟩ ⊥ ⟨c⟩ = ⟨pb⟩ ⊥ ⟨abc⟩. But both ⟨c⟩ and ⟨abc⟩ belong to W p−1.

In general if c ∈ {1, ..., p − 1} with a1 · ... · ar−1 ≡ c mod p, then by the induction
hypothesis we have

⟨p(a/ar)⟩ ≡ ⟨pc⟩

mod W p−1, and after recaling by ar (which preserves the subgroup W p−1) we obtain

⟨pa⟩ ≡ ⟨pcar⟩ ≡ ⟨pb⟩ mod W p−1;

in the last step we again use the proof in rank r = 2.

Theorem 5.3. The map s = (sgn, sp : p prime) defines an isomorphism of groups

s : W (Q)
∼−→ Z⊕ Z/2Z⊕

⊕
p ̸=2

W (Fp).

Proof. More precisely, one can use the above description of W p/W p−1 to show that

W k ∼= Z⊕ Z/2Z⊕
⊕

2<p≤k

W (Fp)

via the map (sgn, sp : p ≤ k).
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5.2. Hilbert reciprocity

Let t denote the homomorphism

t : W (Q)
π−→ W (Q2)

t2−→ Z/8Z,

where π corresponds to extending scalars from Q to Q2, and t2 is the oddity. (t itself
is also called the oddity.)

Let
s : W (Q)

∼−→ Z⊕ Z/2⊕
⊕
p̸=2,∞

W (Fp)

be the isomorphism given by the local symbols, and define homomorphisms

t∞ : Z −→ Z/8Z;

t2 : Z/2Z −→ Z/8Z;
tp : W (Fp) −→ Z/8Z

by

t∞(u∞) + t2(u2) +
∑

p ̸=2,∞

tp(up) = ts−1(u∞, u2, up, p prime).

We will compute t∞ and tp. Surprisingly, the result of this computation leads to a
significant generalization of the law of quadratic reciprocity.

For t∞, the form ⟨1⟩ is mapped to zero under sp for every p <∞, but its signature
is sgn(⟨1⟩) = 1. Therefore we have

t∞(1) = t(⟨1⟩) = 1mod 8,

which shows that t∞(n) = n mod 8 for every n ∈ Z.

To compute t2, note that ⟨1,−2⟩ is mapped to zero under sp for every p ̸= 2 (and
has signature zero), but is nonzero under s2. Since its oddity is trivial, we have

t2(1) = t(⟨1,−2⟩) = 0,

so t2 is the zero map.
For an odd prime p, the form ⟨−1, p⟩ is mapped to 0 under sq for every q ̸= p, and

to ⟨1⟩ ∈ W (Fp) under sp. The oddity is always p− 1 (mod 8). So tp satisfies

tp(⟨1⟩) = p− 1 mod 8.

Evaluating tp on the rest of W (Fp) is more difficult and is the content of the following
lemma:

Lemma 5.4. Let α be a quadratic nonresidue mod p and let Q = ⟨1,−α⟩ repre-
sent the nontrivial Witt class of even rank. Then tp(Q) = 4.
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Proof. We use induction on p.
If p ≡ 3 mod 4 then W (Fp) is cyclic, generated by ⟨1⟩, so tp is already completely
determined. If p ≡ 5 mod 8, then consider the quadratic form ⟨−p, 2p⟩: it has signature
0 and satisfies

s2(⟨−p, 2p⟩) = 1, sp(⟨−p, 2p⟩) = ⟨−1, 2⟩,
and sq(⟨−p, 2p⟩) = 0 at all primes q ̸= 2, p. The oddity is

t(⟨−p, 2p⟩) = −p+ (p+ 4) = 4 (mod 8).

The fact that the image under s2 is nonzero does not matter, since t2 is identically zero.
Therefore we have

tp(⟨−1, 2⟩) = t(⟨−p, 2p⟩) = 4.

(Incidentally, the form ⟨1,−2⟩ must be anisotropic because its image under tp is
nonzero. This implies that 2 is not a square modulo p.)

The remaining case is p ≡ 1 mod 8: here is where we use induction. Let q <
√
p

be a prime with the property that p is not a square modulo q. This exists, because:
suppose not. Let m be the odd number for which m <

√
p < m+ 2 and define

N :=
p− 1

4
· p− 9

4
· ... · p−m2

4
.

Since p− a2 = (
√
p− a)(

√
p+ a) < (m+ 2− a)(m+ 2 + a), we have

N <
(m+ 2 + 1)(m+ 2− 1)

4
· (m+ 2 + 3)(m+ 2− 3)

4
· ... · (m+ 2 +m)(m+ 2−m)

4

=
2 · 4 · ... · (2m+ 2)

2m−1

= (m+ 1)!.

If p is a square modulo q, say p ≡ a2 (mod q), then it is a square of exactly four residues
modulo 4qi for every i ∈ N; and the solutions a ∈ {1, ...,m} with a2 ≡ p mod qi are
precisely those for which qi divides the factor (p − a2)/4. By counting the number of
solutions, we obtain the valuation

νq(N) =
∞∑
i=1

⌊(m+ 1)

qi
⌋,

where ⌊−⌋ is the floor function. But the right-hand side is νq((m + 1)!). Since
N < (m+ 1)!, there are primes q for which the equality does not hold, i.e. for which p
is not a square mod q.

For this prime q, consider the rational quadratic form

Q = ⟨1,−p,−q, pq⟩.
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This has signature 0 and

sp(Q) = ⟨−1, q⟩, sq(Q) = ⟨−1, p⟩, sℓ(Q) = 0 (ℓ ̸= p, q).

Its oddity is
oddity(Q) = 1− p− q + pq (mod 8) = 0 (mod 8)

since p ≡ 1 (8). So

tp(⟨−1, q⟩) + tq(⟨−1, p⟩) = t(⟨1,−p,−q, pq⟩) = 0 mod 8.

Since tq(⟨−1, p⟩) = 4 mod 8 by induction, we also have

tp(⟨−1, q⟩) = 4 mod 8.

Altogether this proves the following:

Proposition 5.5. The homomorphisms

t∞ : Z → Z/8, t2 : Z/2 → Z/8, tp : W (Fp) → Z/8

are given as follows:
(i) t∞(n) = n mod 8;
(ii) t2 ≡ 0;
(iii) For an odd prime p, tp(⟨1⟩) = p− 1 mod 8, and tp(⟨α⟩) = p+3 mod 8 where
α is any quadratic nonresidue mod p.

Now let a, b ∈ Q×, and let

Q = ⟨1,−a,−b, ab⟩

be the norm on the quaternion algebra (a, b). In Q2, if (a, b)2 = +1 then Q is hyper-
bolic and therefore has oddity zero; otherwise, Q is anisotropic, hence equivalent to
⟨1, 1, 1, 1⟩, hence has oddity 4.
For an odd prime p, if (a, b)p = 1 then Q is hyperbolic and satisfies sp(Q) = 0. Oth-
erwise, if (a, b)p = −1 then Q is equivalent to the form ⟨1,−α, p,−pα⟩, such that
sp(Q) = ⟨1,−α⟩ ∈ W (Fp), and tpsp(Q) = 4 mod 8.

The signature of Q modulo 8 is

sgn(Q) mod 8 =

{
0 : a > 0 or b > 0;

4 : a < 0 and b < 0.

We write (a, b)∞ := +1 if a > 0 or b > 0, and (a, b)∞ := −1 if a < 0 and b < 0.
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The oddity equation

t∞(sgn(Q)) +
∑
p odd

tpsp(Q) = t(Q) =

{
0 : (a, b)2 = +1;

4 : (a, b)2 = −1;

now becomes the Hilbert reciprocity law:

Theorem 5.6 (Hilbert reciprocity).∏
p≤∞

(a, b)p = 1.

The infinite product is well-defined in the sense that (a, b)p = 1 for almost all p. For
example, this is the case for any prime p ̸= 2 for which νp(a), νp(b) are both even.

Remark 5.7. Hilbert reciprocity generalizes the law of quadratic reciprocity. Recall
that the reciprocity symbol is defined by

(
a

p

)
=


1 : a is a quadratic residue mod p;

−1 : a is a quadratic nonresidue mod p;

0 : p|a.

If p, q are odd primes, then using the tables for the Hilbert symbol we find

(p, q)p =

(
q

p

)
, (p, q)q =

(
p

q

)
, (p, q)2 =

{
−1 : p ≡ q ≡ 3 (mod 4);

1 : otherwise;

and (p, q)ℓ = +1 for all ℓ ̸= p, q, 2. By Hilbert reciprocity we get(
q

p

)
·
(
p

q

)
= (p, q)2 = (−1)(p−1)(q−1)/4.

The auxiliary laws follow similarly: for an odd prime p, we have

(2, p)p =

(
2

p

)
, (2, p)2 =

{
1 : p ≡ ±1 (mod 8);

−1 : p ≡ ±3 (mod 8);

and (2, p)q = +1 for all q ̸= 2, p. Therefore(
2

p

)
= (2, p)2 = (−1)(p

2−1)/8.

Finally,

(−1, p)p =

(
−1

p

)
, (−1, p)2 =

{
1 : p ≡ 1 (mod 4);

−1 : p ≡ 3 (mod 4);

and (−1, p)q = +1 for all q ̸= 2, p, so(
−1

p

)
= (−1, p)2 = (−1)(p−1)/2.
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Corollary 5.8 (Reciprocity for Witt invariants). Let (V,Q) be a regular quadratic Q-
space. For p a prime, let Vp = V ⊗Qp, and let V∞ = V ⊗ R.
(i) The Hasse invariants satisfy ∏

p≤∞

s(Vp) = +1.

(ii) Write c(Vp) = +1 if the Witt invariant of Vp is trivial and c(Vp) = −1 if the Witt
invariant is nontrivial. Then ∏

p≤∞

c(Vp) = +1.

5.3. The Hasse–Minkowski principle

The computation of the Witt group of Q immediately implies the following theorem
(which is the “weak” Hasse–Minkowski principle; the “strong” Hasse–Minkowski prin-
ciple will be discussed later).

Let (V,Q) be a regular quadratic space. For any prime p, let Vp := V ⊗Q Qp be the
quadratic space given by extending scalars to Qp; similarly, define V∞ := V ⊗Q R by
extending scalars to R.

Theorem 5.9 (Weak Hasse–Minkowski principle). The following are equivalent:
(i) V is hyperbolic;
(ii) Vp is hyperbolic for every p (including ∞).

Proof. Certainly if V =⊥H splits into hyperbolic planes over Q, then it does so over
R and every Qp.
The converse is true because (ii) means that the image of V under the map

s : W (Q)
∼−→ Z⊕ Z/2⊕

⊕
p ̸=2

W (Fp)

is zero, hence [V ] = 0 ∈ W (Q).

Corollary 5.10. Let (V,QV ) and (W,QW ) be regular quadratic spaces over Q. The
following are equivalent:
(i) V ∼= W ;
(ii) Vp ∼= Wp for every p (including ∞).

Proof. This is equivalent to the weak Hasse–Minkowski principle because V ∼= W if
and only if V ⊕W (−1) is hyperbolic.
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Theorem 5.11 (Strong Hasse–Minkowski principle). Let (V,Q) be a regular
quadratic space over Q. The following are equivalent:
(i) V is isotropic;
(ii) Vp is isotropic for every p (including ∞).

As the name suggests, the strong Hasse–Minkowski principle implies the weak prin-
ciple: Suppose Vp is hyperbolic for every p. (In particular, rank(V ) is even.) By
induction on r = rank(Vp) we will show that V is hyperbolic. If r = 2 then V being
hyperbolic is equivalent to it being isotropic, by Witt’s theorem. In general, the strong
principle implies that V is isotropic, and therefore V = H ⊥ N for some other regular
quadratic space N . But then Vp = H ⊥ Np is hyperbolic, so Np is hyperbolic for every
p. By induction, N and therefore V is hyperbolic.

Proof. The nontrivial direction is (ii) ⇒ (i). We prove it for small values of r = rank(V )
by cases, and in general by induction.

The theorem is vacuous for r = 1 as a regular quadratic space of rank one is never
isotropic.
For r = 2, being isotropic is equivalent to being hyperbolic and the theorem follows
from the weak Hasse–Minkowski principle.
For r = 3, let d = disc(V ) and consider the space

W = V ⊥ ⟨d⟩.

Then each Wp is isotropic, hence splits in the form

Wp = H ⊥ Qp

for some binary quadratic form Qp. Since disc(W ) = 1 (·(Q×)2), it follows that each
Qp has discriminant −1 and is therefore hyperbolic. So Wp is hyperbolic for all p. By
the weak Hasse–Minkowski principle, W is hyperbolic, which forces V to be isotropic,
because:

H ⊥ H ⊥ ⟨−d⟩ ∼= W ⊥ ⟨−d⟩ ∼= V ⊥ ⟨d,−d⟩ ∼= V ⊥ H

implies V ∼= H ⊥ ⟨−d⟩ by Witt cancellation.

Now suppose r = 4. Write each Vp in the form Vp = Up ⊥ H where Up is two-
dimensional. Fix a representative d ∈ Z of the discriminant [d] = disc(V ) ∈ Q×/(Q×)2.
Then each Up has discriminant −d · (Q×

p )
2, and can be diagonalized in the form

Up = ⟨ap,−dap⟩, where ap ∈ Q×
p .

Moreover, if p <∞ and p ∤ 2d, then by Witt’s decomposition theorem we can split

Vp = Up ⊥ H
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over Zp, where Up is Zp-regular, and hence assume ap ∈ Z×
p . (By abuse of notation, if

p = ∞ then Qp means R.)

We will construct a quadratic Q-space

W = ⟨a,−da⟩, a ∈ Q

with Wp
∼= Up for every p. If p ∤ 2d then ⟨ap,−dap⟩ is equivalent to ⟨1,−d⟩ over Qp

whenever (ap,−dap)p = 1: both sides have discriminant −d and Hasse invariant +1.
This is automatically the case if νp(ap) = 0.

We will find a ∈ Z such that [a] = [ap] ∈ Q×
p /(Q×

p )
2 for the remaining places p|2d

(including∞). This is a finite set of congruence conditions on a. By Dirichlet’s theorem
on primes in arithmetic progressions, there is actually a solution of the form

a = ±q ·
∏
p|2d

pα,

with q ∤ 2d prime. So at every p ≤ ∞, with the possible exception of p = q,

⟨a,−da⟩ ∼= ⟨ap,−dap⟩ = Up.

But by reciprocity for Witt invariants, we also have

c(Uq) = c(Vq) = c(⟨a,−da⟩q)

at the missing place p = q, and therefore ⟨a,−da⟩ ∼= Uq as well.

Finally, suppose r ≥ 5. We will show that V already contains an isotropic space of
dimension four. Let U ⊆ V be any three-dimensional space for which U∞ is indefinite,
and diagonalize it in the form U = ⟨a, b, c⟩ with a, b, c ∈ Z. Let P be the finite set
of primes dividing abc. If p /∈ P then the form Up is isotropic (since a, b, c ∈ Z×

p ).
Suppose p ∈ P for which Up is anisotropic. Since the full space Vp is isotropic, we can
find a norm-zero element xp + yp where xp ∈ Up, yp ∈ U⊥

p are both nonzero. If U⊥
p is

anisotropic, then Q(yp) is automatically nonzero; otherwise, it represents a hyperbolic
plane and therefore every number, so we can choose xp ∈ Up nonzero and arbitrary
and find yp ∈ U⊥

p with Q(yp) = −Q(xp) ̸= 0. In all cases, the four-dimensional space
Up ⊥ Qpyp is isotropic.

Now we choose y ∈ Q with the property that Q(y) ∈ Q(yp) · (Q×
p )

2 for all p ∈ P .
This can be done by approximating the coordinates of yp with respect to any basis of
V by rational numbers. Then W := U ⊥ Qy is a four-dimensional space for which

Wp = Up ⊥ Qpy = Up ⊥ Qpyp

is isotropic for all p ≤ ∞, so W is already isotropic.
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Corollary 5.12. Let Q be a rational quadratic form. Then Q represents a number
t ∈ Q if and only if Qp represents t for every t ≤ ∞.

Proof. This is because Q represents t if and only if Q ⊥ ⟨−t⟩ is isotropic.

Corollary 5.13 (Mayer’s theorem). Every indefinite quadratic form over Q in at least
five variables is isotropic.

Proof. Any such form Q is isotropic over every Qp, (p prime, i.e. p < ∞) since it
involves at least five variables. It is also isotropic over R as it is indefinite. By the
Hasse–Minkowski principle, Q is already isotropic over Q.

Example 5.14. Every positive rational number can be represented as a sum of four
rational squares.

Proof. Let t ∈ Q>0; then the quadratic form

Q(X1, ..., X4, X5) = X2
1 +X2

2 +X2
3 +X2

4 − tX2
5

is indefinite and involves five variables, and is therefore isotropic over Q. Any vector
v = (v1, ..., v5) ∈ Q5 with Q(v) = 0 and v ̸= 0 necessarily has v5 ̸= 0, and therefore can
be rescaled to have v5 = 1. So

t = v21 + v22 + v23 + v24.

Example 5.15. A positive rational number t can be written as a sum of three rational
squares if and only if it is not of the form t = 4a · n with n ≡ 7 mod 8.

Proof. The quadratic form Q(X1, ..., X4) = X2
1 + X2

2 + X2
3 − tX2

4 = ⟨1, 1, 1,−t⟩ is
isotropic over R because it is indefinite, and it is isotropic over every Qp, p ̸= 2 because
⟨1, 1, 1⟩ is already isotropic.
By the Hasse–Minkowski principle, Q is isotropic over Q if and only if it is isotropic in
Q2, and that is the case if and only if −t ∈ (Q×

2 )
2, or equivalently

t ∈ 7 · (Q×
2 )

2.

Example 5.16. A positive rational number t can be written as a sum of two rational
squares if and only if νp(t) is even for every prime p ≡ 3 mod 4.

Proof. The quadratic form Q(X1, X2, X3) = X2
1 +X2

2 − tX2
3 is isotropic over R. Over

Q2, it is anisotropic if and only if

−t ∈ {1, 2, 5, 10} mod (Q×
2 )

2,

i.e. if
t ∈ {3, 6, 7, 14} mod (Q×

2 )
2,

which is the case if and only if t = 2a · n with n ≡ 3 mod 4.
At an odd prime p, the discriminant is d(Q) = −t and the Hasse invariant is s(Q) = 1.
These are the invariants of an anisotropic ternary form if and only if p ≡ 3 mod 4 and
νp(t) is odd.
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5.4. The existence theorem

The Hasse–Minkowski local-global principle shows that the most interesting questions
for quadratic forms over Q can be answered by passing to their localizations at R =: Q∞
and Qp. In this section, we will consider a kind of converse: when do quadratic forms
over R and Qp “glue” to a global quadratic form over Q?

As before, by abuse of notation we write Qp = R for p = ∞.

Theorem 5.17. Let n ≥ 2 and let d ∈ Q×/(Q×)2 be fixed. Suppose Qp, p ≤ ∞
are regular quadratic forms over Qp in n variables, with common discriminant

d(Qp) = d · (Q×
p )

2, p ≤ ∞

for some d ∈ Q×, and whose Hasse invariants satisfy∏
p≤∞

s(Qp) = +1.

(In particular, s(Qp) may be −1 for only finitely many p.) Then there exists
a regular quadratic form Q, defined over Q, which is equivalent to Qp at every
p ≤ ∞.

The form Q is then unique up to Q-equivalence by the weak Hasse–Minkowski
principle.

Proof. Let P be a finite set of primes containing ∞, 2, and every prime p for which
νp(d) ≡ 1 (2) or s(Qp) = −1.

The proof uses induction on n. First suppose n = 2. For each p ∈ P , let tp ∈ Q×
p

be any number that is represented by Qp. So we can diagonalize

Qp = ⟨tp, dtp⟩.

For p = ∞ we may assume without loss of generality that t∞ = 1 (otherwise, replace
all Qp by their negatives).

By Dirichlet’s theorem on primes in arithmetic progressions, there exists a prime
q /∈ P with the property

q ∈ tp · (Q×
p )

2, p ∈ P.

(At p = ∞ this is a sign condition, while at p < ∞ this is a congruence condition
modulo p.) Then define

Q := ⟨q, dq⟩.
By construction, Q ∼= Qp at every prime p ∈ P . At any prime p /∈ P , p ̸= q, both
Q and Qp have trivial Hasse invariant and the same discriminant and are therefore
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equivalent. Finally, Hilbert reciprocity and the condition
∏

p≤∞ s(Qp) = +1 implies
that Q and Qq also have the same q-adic Hasse invariant, and are therefore equivalent
over Qq.

Now suppose n ≥ 3. As before, let tp ∈ Q×
p be any numbers represented by Qp, and

let q /∈ P be a prime with
q ∈ tp · (Q×

p )
2, p ∈ P.

In particular, Qp represents q for every p ∈ P . At any prime p /∈ P , the form Qp is
isotropic, and therefore also represents q. So we can write

Qp = ⟨q⟩ ⊥ fp

with some quadratic forms fp in (n−1) variables. We will show that the family (fp)p≤∞
also satisfies the conditions of the theorem: every fp has discriminant qd modulo Q×

p ,
and the Hasse invariants satisfy

s(Qp) = s(⟨q⟩ ⊥ fp) = (q, d)p · s(fp).

By Hilbert reciprocity,
∏

p≤∞(q, d)p = 1 and therefore∏
p≤∞

s(fp) =
∏
p≤∞

s(Qp) = 1.

By the induction assumption, there is a global quadratic form f/Q that is Qp-
equivalent to every fp. Then the quadratic form Q = ⟨q⟩ ⊥ f is Qp-equivalent to every
Qp.
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6. Quadratic forms over the integers

6.1. Lattices

To study quadratic forms over Z, it is often helpful to take a somewhat different point
of view: we identify Z-quadratic modules (M,Q) with lattices in the space M ⊗Q, or
in the spaces M ⊗ R or M ⊗Qp.

In this section we introduce some terminology for lattices (also over more general
rings):

Definition 6.1. Let R be an integral domain with field of fractions K. Let V
be a finite-dimensional K-vector space with a basis f1, ..., fn. An R-lattice in
V is an R-submodule L ⊆ V with the following property: there exist elements
a, b ∈ K× such that

a ·
n∑

i=1

Rfi ⊆ L ⊆ b ·
n∑

i=1

Rfi.

Note that this definition is independent of the choice of basis f1, ..., fn: for any other
basis g1, ..., gn, we obtain values of a, b with

a ·
n∑

i=1

Rfi ⊆
n∑

i=1

Rgi ⊆ b ·
n∑

i=1

Rfi

by taking common denominators in the change-of-basis matrices from {f1, ..., fn} to
{g1, ..., gn} and back.

In this generality we do not assume that L is free. But over Z (or any principal
ideal domain) L is automatically free, and the condition

a ·
n∑

i=1

Rfi ⊆ L ⊆ b ·
n∑

i=1

Rfi

implies that L is free of rank exactly n.

For the rest of this section, suppose R is a principal ideal domain of characteristic
zero. (Later we will specialize to R = Z or R = Zp, p a prime.) Then the definition of
lattices becomes much simpler:
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Definition 6.2. Let V be a finite-dimensional K-vector space. A lattice in V
is a set of the form

L =
n∑

i=1

Rfi = {a1f1 + ...+ anfn : ai ∈ R},

where f1, ..., fn is a K-basis of V .

By an integral lattice we mean a lattice L in a regular symmetric bilinear space
(V, ⟨−,−⟩)/K, written x ·y = ⟨x, y⟩, with the property that x ·y ∈ R for every x, y ∈ L.
The integral lattice is called even if x · x ∈ 2R for every x ∈ L, and odd otherwise. In
the even case, we denote by

Q(x) =
1

2
(x · x)

the R-valued quadratic form Q : L→ R.

Conversely, every nondegenerate quadratic space (L,Q) over R can be interpreted
as an even lattice in the space

V := L⊗K.

So the notions of even lattice and nondegenerate quadratic form are equivalent.

Definition 6.3. Let L be a lattice in a regular symmetric bilinear space
(V, ⟨−,−⟩)/K. The dual lattice is

L′ := {y ∈ V : x · y ∈ R for all x ∈ L}.

If e1, ..., en is an R-basis of L then, since ⟨−,−⟩ is regular, there are elements
f1, ..., fn ∈ V with the property

ei · fj =

{
1 : i = j;

0 : i ̸= j.

Then L′ has the R-basis f1, ..., fn. Dually, the basis f1, ..., fn of L′ admits the corre-
sponding K-basis e1, ..., en of V with

fi · ej =

{
1 : i = j;

0 : i ̸= j;

which shows that the double dual (L′)′ is exactly L itself.

If L is an integral lattice, (not necessarily even) we have L ⊆ L′. The lattice L is
unimodular if L = L′. Note that L is unimodular if and only if L is regular as a
symmetric bilinear R-module, and L is even unimodular if and only if it is regular as a
quadratic R-module.
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Example 6.4. Let R = Z and let V = Qn with the standard (Euclidean) inner product

ei · ej =

{
1 : i = j;

0 : i ̸= j;

where ei = (0, ..., 1, ..., 0). Then L = Zn is an odd unimodular lattice.

If L ⊆ V is a lattice and K ⊆ L is a subgroup, then K is a lattice in K ⊗ R ⊆ V .
Recall from Chapter 1 that K ⊆ L is called primitive if L = K ⊕ N for some other
R-module N (as abstract modules, not as quadratic modules!). The module K∗ may
be identified with the dual lattice K ′.

Lemma 6.5. Let L ⊆ V be a lattice and P ⊆ L a submodule. The following are
equivalent:
(i) P is primitive in L;
(ii) L/P is torsion-free;
(iii) There is a vector subspace W ⊆ V with P = L ∩W ;
(iv) P = (P⊥)⊥, where ⊥ means the orthogonal complement in L.

Proof. (i) ⇒ (ii) If L = P ⊕ N then L/P ∼= N is a submodule of the torsion-free
R-module L, hence free.
(ii) ⇒ (iii) By the elementary divisor theorem, for any subgroup P ⊆ L, there is a basis
e1, ..., en of L and natural numbers d1, ..., dk ∈ N such that d1e1, ..., dkek is a basis of
K. If L/P is torsion-free then d1 = ... = dk = 1, hence P = L ∩W where W is the
K-vector space spanned by e1, ..., ek.
(iii) ⇒ (iv): If P = L ∩W then P⊥ = L ∩W⊥, hence

(P⊥)⊥ = L ∩ (W⊥)⊥ = L ∩W = P.

(iv) ⇒ (i): Any submodule of the form X⊥, where X ⊆ L is a set, is primitive: this
is because X⊥ is the intersection of L with the orthogonal complement of X in V . So
P = (P⊥)⊥ is primitive.

The determinant or discriminant det(L) of an integral lattice L is the discriminant
of the underlying quadratic form (viewed as a coset modulo (R×)2).

Proposition 6.6. Let L be an integral lattice that is regular as a quadratic module
over R. For any primitive submodule P ⊆ L,

det(P⊥) = det(E) · det(P ) mod (R×)2.

Note that det(E) ∈ R× is a unit. So det(P⊥) equals det(P ) up to a unit.
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Proof. Since P ⊆ E and P⊥ ⊆ E are both primitive, they have complements:

E = P ⊕Q = P⊥ ⊕R,

where Q,R ⊆ E are submodules. Now the R-module E ⊥ P (−1) has determinant

det(E ⊥ P (−1)) = det(E) · det(P (−1)) = (−1)rank(P ) · det(E) · det(P );

on the other hand, it contains the totally isotropic submodule P ′ = {(x, x) : x ∈ P}
and a direct sum decomposition

E ⊥ P (−1) = E ⊕ P ′.

With respect to the decomposition

E ⊥ P (−1) = E ⊕ P ′ = R⊕ P⊥ ⊕ P ′,

any Gram matrix decomposes in block form

S =

 ∗ ∗ C
∗ B 0
CT 0 0


where B is a Gram matrix for P⊥ (such that det(C) = det(P⊥)) and where C is the
matrix of inner products of a basis of R with a basis of P ′. The matrix C is invertible,
because E is regular and P ′ has trivial inner product with the other summands P⊥ and
P ′ itself. So det(C)2 ∈ (R×)2, and

(−1)kdet(E)det(P ) = det(E ⊥ P (−1))

= det(S)

= (−1)kdet(B) · det(C)2

= (−1)kdet(B) = (−1)kdet(P⊥) mod (R×)2,

and det(E)det(P ) = det(P⊥) mod (R×)2.

Example 6.7. Let n ∈ N. The An root lattice, denoted An, is the orthogonal comple-
ment of the all-ones vector (1, ..., 1) in the odd unimodular lattice Zn+1. With respect to
the Z-basis (1,−1, 0, ..., 0), (0, 1,−1, 0, ..., 0), ..., (0, ..., 0, 1,−1), it has the Gram matrix

2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2

 .
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Since P = Z · (1, ..., 1) has determinant

det(P ) = (1, ..., 1) · (1, ..., 1) = n+ 1,

it follows that An = P⊥ also has determinant

det(An) = n+ 1.

Proposition 6.8. Let L be an integral lattice over Z, and let M ⊆ L be a
subgroup of finite index [L :M ]. Then

det(L) = [L :M ]2 · det(M).

Proof. By the elementary divisor theorem, there is a basis e1, ..., en of L and elements
d1, ..., dn ∈ R, d1|d2|...|dn such that d1e1, ..., dnen is a basis of M . The Gram matrix of
M is just the Gram matrix of L with the ith row and ith column multiplied by di, so

det(M) = d21 · ... · d2n · det(L).

On the other hand, the quotient module is

L/M ∼= Z/d1 × ...× Z/dn

and the index is [L :M ] = |d1...dn|.

Example 6.9. TheDn root lattice, denotedDn, is the subgroup of vectors x = (x1, ..., xn) ∈ Zn

with
∑

i xi ∈ 2Z. Since

x · x =
∑
i

x2i ≡
∑
i

xi ≡ 0 (mod 2)

for any x ∈ Dn, this is an even integral lattice. Since Dn has index two in Zn, it follows
that det(Dn) = 4.

6.2. Lattices over Zp

Fix a prime p.

In this section we will describe the structure of Zp-integral lattices (or quadratic
forms). As usual, the theory differs significantly for the prime p = 2. Therefore we first
suppose that p is odd.

Lemma 6.10. Let p be an odd prime and let L1 and L2 be unimodular Zp-integral
lattices. Then L1 and L2 are Zp-equivalent if and only if the reductions L1, L2

modulo p are Fp-equivalent.
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Proof. A Zp-equivalence from L1 to L2 reduces mod p to an Fp-equivalence from L1

to L2. Conversely, an Fp-equivalence from L1 to L2 lifts by Hensel’s lemma1 to a
Zp-equivalence from L1 to L2.

Theorem 6.11. Let p be an odd prime and let L be a Zp-integral lattice. Then
L has a Jordan decomposition

L =
∞

⊥
i=0

Li(p
i),

where each Li is a unimodular lattice. The constituents Li(p
i) are unique up to

Zp-isometry.

Here Li(p
i) means Li with its bilinear form multiplied by pi. (This pi is called the

scale of the constituent Li(p
i).) The dual lattice is therefore

L′ =
∞

⊥
i=0

Li(p
−i).

Proof. The existence of such a decomposition can be shown by diagonalizing

L = ⟨a1, ..., an⟩

and by taking Li(p
i) to be the sublattice ⟨aj : νp(aj) = i⟩.

To show uniqueness we use induction on rank(L). We may assume without loss
of generality that L represents numbers of p-adic valuation 0, (otherwise L(p−1) is
integral and represents numbers of lesser valuation).

If rank(L) = 1 then uniqueness is clear. Generally, suppose

L =
n

⊥
i=0

Li(p
i) =

n

⊥
i=0

Mi(p
i)

are two Jordan decompositions. After reducing mod p we have Li(pi) = 0, Mi(pi) = 0
for all i ≥ 1, (i.e. the quadratic forms are identically zero), hence L0

∼= M0 by the
Witt decomposition theorem over Fp. Since both L0 and M0 are unimodular, we have
L0

∼= M0. By the Witt cancellation theorem, we can remove L0 and M0 and obtain
Jordan decompositions

n

⊥
i=1

Li(p
i) =

n

⊥
i=1

Mi(p
i).

By the induction hypothesis we have Li
∼= Mi for all i ≥ 1.
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By the computation of the Witt group W (Fp), each reduced form Li is uniquely
determined up to Fp-equivalence by its rank and the square class of its discriminant.
Hence the Jordan constituents Li(p

i) are uniquely determined by their scale pi, their
rank, and the square classes of their determinants.

Definition 6.12. Let p be an odd prime and let L be a Zp-integral lattice with
Jordan decomposition

L =
∞

⊥
i=0

Li(p
i).

The p-adic genus symbol is the formal symbol

1ε0r0pε1r1(p2)ε2r2 ...,

where ri = rank(Li) and where

εi =

(
det(Li)

p

)
∈ {±1}.

So the Zp-integral lattice L is determined up to isometry by its genus symbol.

Example 6.13. Consider the A2 root lattice as the lattice spanned by basis vectors
x, y where

x · x = y · y = 2, x · y = −1.

We view A2 as a lattice over Z3. The vector x spans a regular submodule ⟨2⟩, so we
can diagonalize A2

∼= ⟨2, ?⟩; and det(A2) = 3 so the diagonalization must be

A2
∼= ⟨2, 3/2⟩ ∼= ⟨2, 6⟩

over Z3. Since 2 is a nonsquare, A2 has 3-adic genus symbol 1−13−1.

By contrast, the 3-adic quadratic form A2(−1) ∼= ⟨−2,−6⟩ has genus symbol 1+13+1.

The situation for integral lattices over Z2 is complicated. For one thing, lattices are
not generally diagonalizable. Even without diagonalizing, we can emulate the Jordan
decomposition for p = 2 but the constituents are still not generally unique. Also one has
to distinguish between even and odd unimodular lattices, and even among unimodular
lattices there is an invariant (the oddity).

Proposition 6.14. Let p = 2. Then L has a Jordan decomposition

L =
∞

⊥
i=0

Li(2
i),

where each Li is a unimodular lattice.
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Proof. Use induction on rank(L). By rescaling by 2−n if necessary, we can assume that
L represents numbers of 2-adic valuation 0.
By Proposition 2.5 there is a decomposition

L = L0 ⊥ F,

where L0 is unimodular (written there in the form

L0 = ⟨u1, ..., ur⟩ ⊥
s

⊥
i=1

Ei,

where ui ∈ Z×
2 and Ei is unimodular and indecomposable of rank two), and where F

satisfies x · y ∈ pZp for every x, y ∈ F. But then F (2−1) is an integral lattice of lower
rank and therefore has a Jordan decomposition ⊥n

i=1 Li(2
i−1), so

L = L0 ⊥ F = L0 ⊥
n

⊥
i=1

Li(2
i).

Given a Jordan decomposition L = ⊥∞
i=0 Li(2

i) over Z2, we attach to each block
Li(2

i) the following data:
(i) the scale 2i;
(ii) the type: I if Li is odd and II if Li is even;
(iii) the rank ri = rank(Li);
(iv) the sign

εi =

{
+1 : det(Li) ≡ ±1 (mod 8);

−1 : det(Li) ≡ ±3 (mod 8);

(v) the oddity ti of Li (viewed as a quadratic form over Q2).

The dyadic genus symbol of a type I block Li(2
i) of scale s, rank r, sign ± and

oddity t is
[s±r]t.

The dyadic genus symbol of a type II block Li(2
i) of scale s, rank r and sign ± is

[s±r]II, or simply s±r.

Remark 6.15. The reason that the notation for type II blocks is different is that if
L is 2-adically type II unimodular then its oddity is automatically 0. Since any such
L decomposes as L = ⊥s

i=1Ei into type II unimodular planes, it is enough to prove
this for each Ei; so assume rank(L) = 2. Then L is represented by a Gram matrix(
2a b
b 2c

)
where b ≡ 1 mod 2, and after diagonalizing over Q2 we have

L ∼= ⟨2a, 4ac− b2

2a
⟩ ∼= ⟨2a, 8a2c− 2ab2⟩
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with oddity
t(L) = t(⟨2a⟩) + t(⟨−2ab2⟩) = 0.

Example 6.16. Consider the A3 root lattice over Z2 : choose basis vectors x1, x2, x3

with respect to which A3 has Gram matrix

 2 −1 0
−1 2 −1
0 −1 2

.

The vectors x1, x2 span a sublattice, isometric to A2 with Gram matrix

(
2 −1
−1 2

)
,

which is 2-adically even unimodular and therefore splits off as an orthogonal direct
summand. The remainder is determined by det(A3) = 4: since det(A2) = 3, the
decomposition must be

A3
∼= A2 ⊥ ⟨4/3⟩ ∼= A2 ⊥ ⟨3⟩(4).

The block A2 of scale zero is type II unimodular with determinant 3 (nonsquare), and
the block ⟨3⟩ with scale 4 is type I unimodular with determinant 3 (again nonsquare)
and oddity 3. So the dyadic genus symbol is

1−2[4−1]3.

Example 6.17. The Z2-lattice H(2) with Gram matrix

(
0 2
2 0

)
consists of a single

Jordan block, of scale 2, type II, rank 2 and sign + and therefore has genus symbol

22.

The Z2-lattice ⟨2,−2⟩ with Gram matrix

(
2 0
0 −2

)
also consists of a single Jordan

block, of the same scale (2), rank (2), sign (+) and oddity (0) as above; but the block
is type I and therefore the genus symbol is

[22]0.

A dyadic genus symbol then specifies an integral lattice uniquely up to Z2-isometry.
Warning: unlike the case of odd primes, the genus symbol is not unique! The classi-
fication problem for quadratic forms over Z2 is more technical.2

6.3. The Hermite constant

Let (V, ⟨−,−⟩) be a regular quadratic space over Q. Since (Z×)2 = {1}, the deter-
minant det(L) of a lattice L ⊆ V is nothing but a rational number. In the case that
V is positive-definite one can interpret det(L) as the square of the covolume of L,

2An algorithm to decide whether two dyadic genus symbols are equivalent is given in Chapter 15
(On the classification of integral quadratic forms) of Conway and Sloane’s Sphere packings, lattices
and groups.
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i.e. of the volume of a fundamental parallelotope for V/L. There is a geometric in-
tuition that if det(L) is small then some of the points in L must also be relatively small.

The following inequality makes that notion precise: there is indeed a relationship
between |det(L)| and the size of the norms (x · x), x ∈ L. (This is independent of the
signature!)

Theorem 6.18. There is a constant Cn, depending only on dim(V ), with the
property that for any lattice L ⊆ V , the minimum

m(L) := min(|x · x| : x ∈ L, x ̸= 0)

and the determinant satisfy the inequality

m(L) ≤ Cn · |det(L)|1/n.

The best possible constant Cn in this theorem is the Hermite constant. The exact
values of Cn are known only for n ≤ 8 and n = 24.

The inequality we will prove is actually

m(L) ≤ (4/3)(n−1)/2 · |det(L)|1/n.

Proof. We may assume without loss of generality that L is anisotropic (otherwise
m(L) = 0). The proof uses induction on n. If n = 1 then trivially m(L) = |det(L)|.

In general, choose a vector e1 ∈ L that realizes m(L) = |e1 ·e1|. Then e1 is primitive
(if not, then some e1/n with n ≥ 2 would be a lattice vector of smaller norm) and can
therefore be extended to a Z-basis e1, e2, ..., en. Let p be the orthogonal projection

p : V −→ V, p(x) = x− x · e1
e1 · e1

e1

onto the hyperplane e⊥1 . Then

L′ := p(L) = Zp(e2)⊕ ...⊕ Zp(en)

can be viewed as an (n− 1)-dimensional lattice in e⊥1 . We have

|det(L)| = |det(Ze1 + ...+Zen)| = |det(Ze1 +Zp(e2) + ...+Zp(en))| = m(L) · |det(L′)|.

In addition, if x ∈ L′ is chosen such that m(L′) = |x · x|, and y ∈ L is chosen such that
y = x+ te1 with −1/2 ≤ t ≤ 1/2, then

y · y = x · x+ t2(e1 · e1)

implies
m(L) ≤ |y · y| ≤ |x · x|+ (1/4)|e1 · e1| = m(L′) +m(L)/4,
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i.e.
m(L) ≤ (4/3)m(L′).

Using the induction assumption for L′ we obtain

m(L) ≤ (4/3)m(L′)

≤ (4/3) · (4/3)(n−2)/2|det(L′)|1/(n−1)

= (4/3)n/2 ·
( 1

m(L)
|det(L)|

)1/(n−1)

,

such that
m(L)n ≤ (4/3)n(n−1)/2|det(L)|

and finally
m(L) ≤ (4/3)(n−1)/2|det(L)|1/n.

This leads to a finiteness theorem for lattices of a fixed discriminant:

Theorem 6.19. Let n and d be fixed. Then (up to isometry) there are only
finitely many integral lattices L with rank(L) = n and |det(L)| ≤ d.

Proof. Induction on n; this is trivial if n = 1. Suppose n > 1 and let L be a lattice
with rank(L) = n and |det(L)| ≤ d.
If m = m(L) ̸= 0, choose a minimizing vector x ∈ L with |x · x| = m and define the
submodule M := Zx.
Otherwise, let x ∈ L be primitive with x · x = 0, choose a vector y ∈ L such that

(x · y)Z = x · L

as ideals of Z, and define the submodule M := Zx⊕Zy. By replacing y by y+λx with
λ ∈ Z, such that

(y + λx) · (y + λx) = (y · y) + 2λ(x · y),
we may assume that

|y · y| ≤ a := |x · y|.
Note that a2 divides det(L), as one can see by considering a Gram matrix for L in a
basis whose first vector is x.

In either case, there are finitely many possibilities for the submodule M . Define the
submodule

N := L ∩M⊥;

then the orthogonal projection to M ⊗Q defines an injective map

L/(M ⊥ N) −→M ′/M
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such that M ⊥ N ⊆ L is a sublattice of index at most |M ′/M | = |det(M)|, and
therefore

|det(M)| · |det(N)| = |det(M ⊥ N)| ≤ |det(M)|2 · |det(L)|.

So the determinant of N is bounded by |det(N)| ≤ |det(M)| · |det(L)|. Since N has
lower rank than L, by the induction hypothesis there are finitely many possible lattices
N .

Since
M ⊥ N ⊆ L ⊆ L′ ⊆M ′ ⊥ N ′

it follows that there are only finitely many possiblities for L.

6.4. Genera and equivalence classes

A rational quadratic form is determined uniquely by its localizations at R and at Qp,
p prime.

The analogous statement for integral quadratic forms is usually not true. Neverthe-
less, it defines a useful equivalence relation:

Definition 6.20. Let V andW be regular quadratic spaces over Q. Two integral
lattices L ⊆ V and M ⊆ W belong to the same genus if their localizations

Lp
∼= Mp

are isometric at every place p ≤ ∞.

For p <∞, we write
Lp = L⊗ Zp ⊆ V ⊗Qp,

and at p = ∞ we mean L∞ = L⊗ R.

If L andM belong to the same genus, then the rational quadratic spaces V = L⊗Q
and W = M ⊗ Q containing them are locally equivalent at every place p ≤ ∞, hence
isometric over Q by the Hasse–Minkowski principle.
So there is no loss of generality in assuming that V = W .

If L,M ⊆ V are integrally equivalent, (i.e. equivalent as quadratic spaces over Z),
then they are certainly equivalent over R and over every Zp. So each genus splits into
equivalence classes.

Lemma 6.21. Integral lattices in the same genus have the same determinant.
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Proof. Suppose L and M belong to a common genus. Then Lp
∼= Mp at every prime p,

hence
det(Lp) = det(Mp) mod (Z×

p )
2.

So det(L) and det(M) contain the same power of p.
From L∞ ∼= M∞ we see that det(L) and det(M) have the same sign.
This shows that det(L) = det(M) in Z.

Example 6.22. The even, unimodular Z-lattices of any fixed signature (p, q) form a
single genus: they are locally equivalent
(i) over R, because they have the same signature;

(ii) over Zp, p odd, because they have the same genus symbol 1±(p+q) with ± =
(

−1
p

)q

;

(iii) over Z2, because they have the same genus symbol [1p+q]II.

Any such lattice L ⊆ V has oddity 0 mod 8 by Remark 6.15. The oddity equation

t∞(sgn(V )) +
∑
p odd

tpsp(V ) = t(V ) = 0

together with the fact that V has local invariants sp(V ) = 0 implies

sgn(L) = sgn(V ) ≡ 0 (mod 8).

So unimodular even Z-lattices can only exist in signature (p, q) with p− q ≡ 0 mod 8.

Conversely, if p ≡ q (mod 8) then there do exist even unimodular Z-lattices of sig-
nature (p, q): Let E8 be the E8 root lattice

E8 = D8 ∪ (D8 + (1/2, ..., 1/2)),

whereD8 ⊆ Z8 is the (even) sublattice of vectors whose sum is even, andD8+(1/2, ..., 1/2)
is that lattice shifted by (1/2, ..., 1/2). It is not hard to check that this is indeed an
even lattice; since it properly contains D8 and det(D8) = 4, we must have det(E8) = 1.
Then even unimodular lattices of any signature (p, q) with p ≡ q (mod 8) can be con-
structed as direct sums of E8, E8(−1) and the hyperbolic plane H.

For a similar reason, the odd unimodular Z-lattice of a fixed signature (p, q) also
form a single genus. (At p = 2 the oddity is determined by the signature mod 8.)

So in any signature (p, q) there are at most two genera of unimodular lattices: there
is always the genus Ip,q of odd unimodular lattices; and if p ≡ q mod 8 then there is
also the genus IIp,q of even unimodular lattices.

Theorem 6.23 (Finiteness of the class number). A genus of integral lattices
contains only finitely many equivalence classes.

92



Proof. The theorem follows immediately from the fact that all lattices in a genus have
the same determinant, and that there are finitely many integral lattices (up to integral
equivalence) of any fixed determinant and rank by Theorem 6.19.

Remark 6.24. “Finitely many” tends to grow very quickly as the rank of the lattices
becomes larger. For example, the class number hn of the genus of even, unimodular,
positive-definite lattices of rank n is known only for n = 8, 16, 24:

h8 = 1, h16 = 2, h24 = 24 (Niemeier).

For n = 32 the best lower bound is h32 ≥ 1, 162, 109, 0243.

The following construction is a useful way to understand the different integral lat-
tices that live in a fixed rational quadratic space:

Proposition 6.25. Let V be a regular quadratic space over Q and let L ⊆ V be
a fixed integral lattice. There is a bijection:

{integral latticesM ⊆ V }

↔ {sequences of Zp-integral lattices (Mp)p with Mp = Lp for almost all p},

under which M ⊆ V corresponds to Mp =M ⊗Zp. The inverse map sends (Mp)p
to

M :=
⋂

p prime

(Mp ∩ V ).

Proof. Fix bases of L and M ; then the change-of-basis matrix sending L to M belongs
to GLn(Q), and is p-adically integral at all but finitely many primes S. Then Mp = Lp

for every p /∈ S.
Conversely, suppose (Mp) is such a sequence of Zp-integral lattices. Then

M :=
⋂

p prime

(Mp ∩ V )

is a Z-integral lattice, because: Let S be a finite set of primes for which Mp = Lp for
every p /∈ S, and at any p ∈ S choose exponents ap, bp ∈ Z with

papZp · L ⊆Mp ⊆ pbpZp · L.

3Corollary 17 of O. King, A mass formula for unimodular lattices with no roots, Math. Comp. 72
(2003), 839–863.
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Then we have (∏
p∈S

pap
)
· L =

⋂
p prime

(papZpL ∩ V )

⊆
⋂

p prime

(Mp ∩ V )

⊆
⋂

p prime

(pbpZpL ∩ V ) =
(∏

p∈S

pbp
)
· L,

which shows that M is a lattice. For any x ∈M , we have

x · x ∈
⋂

p prime

(Zp ∩Q) = Z,

so M is integral.

These correspondences are inverse to one another, because: ifM is an integral lattice
with basis e1, ..., en, then ZpM ∩ V consists of rational linear combinations of e1, ..., en
that do not have p in the denominator, so⋂

p prime

(ZpM ∩ V )

consists exactly of rational linear combinations of e1, ..., en in which all coordinates are
integers; i.e. it is M . On the other hand, suppose (Mp) is a sequence of Zp-integral
lattices as in the theorem, and define

M :=
⋂

p prime

(Mp ∩ V ).

Then we certainly have
Zq ⊗M ⊆ Zq ⊗Mq =Mq

at every prime q. This is an equality, because: let e1, ..., en be a Z-basis of the lattice
M . Then e1, ..., en is also a Qq-basis of Mq. Let x ∈Mq be any element, write

x =
n∑

i=1

aiei, ai ∈ Qq,

and fix n ∈ N such that we can decompose

ai =
bi
qn

+ ci, where bi ∈ Z, ci ∈ Zq.

Then
n∑

i=1

ciei ∈ Zq ⊗M
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and
n∑

i=1

bi
qn
ei ∈ (Mq ∩ V );

and trivially
∑n

i=1
bi
qn
ei ∈Mp ∩ V for every p ̸= q. So

n∑
i=1

bi
qn
ei ∈

⋂
p

(Mp ∩ V ) =M

and therefore

x =
( n∑

i=1

ciei

)
+
( n∑

i=1

bi
qn
ei

)
∈ Zq ⊗M.

Theorem 6.26. Let L be an integral lattice in a regular quadratic space (V,Q).
Let t ∈ Q. The following are equivalent:
(i) Lp represents t for every p ≤ ∞;
(ii) There is a lattice M in the genus of L that represents t.

Proof. (ii) ⇒ (i) holds because Lp
∼= Mp for all p ≤ ∞ (by definition of genus), and

because M already represents t.
(i) ⇒ (ii): By the Hasse–Minkowski theorem, V = L ⊗ Q represents t; choose x ∈ V
with Q(x) = t. Let S be the (finite) set of primes for which x /∈ Lp, i.e. the set of
primes that occur in the denominators of the coordinates of x. For each p ∈ S, choose
a vector xp ∈ Lp with Q(xp) = t. Then x and xp span isometric sublattices in Vp. By
the Witt extension theorem, there exists up ∈ O(Vp) such that

x = upxp for all p ∈ S.

Now we define the integral lattice

M :=
⋂
p/∈S

(Lp ∩ V ) ∩
⋂
p∈S

(upLp ∩ V ) ⊆ V,

which satisfies Mp = Lp for p /∈ S (including p = ∞) and Mp = upLp
∼= Lp for p ∈ S.

So M belongs to the genus of L. By construction, x ∈M represents t.

This is a “local-global principle” for genera of lattices that consist of only a single
equivalence class.

Example 6.27. The genus of the (odd) unimodular lattice Zn consists of a single class
for 1 ≤ n ≤ 5.
(In fact, this is true for 1 ≤ n ≤ 8. For n = 9 we already have two non-isomorphic
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classes ⟨1, ..., 1⟩ and ⟨1⟩ ⊥ E8 in the genus I9,0, and the situation deteriorates rapidly
as n grows.)
Proof: Any lattice L in the genus of Zn has det(L) = 1. By Hermite’s inequality its
minimum is

m(L) = min(x · x : x ∈ L\{0}) ≤ (4/3)(n−1)/2,

which is < 2 for n ≤ 5. In particular there exists x ∈ L with x · x = 1. This spans a
regular submodule that can be split off:

L = ⟨1⟩ ⊥ L̃,

where L̃ is also odd unimodular, hence belongs to the genus of Zn−1. The claim follows
by induction.

Example 6.28 (Sums of two squares). A number t ∈ N can be written as a sum of
two integral squares if and only if νp(t) is even for every prime p ≡ 3 (4).

Proof. Since ⟨1, 1⟩ is alone in its genus, it is enough to check representability over the
p-adic integers.
The form ⟨1, 1⟩ is hyperbolic over Zp at every prime p ≡ 1 (4), so it represents every-
thing. Over p ≡ 3 (4) or p = 2, it represents t over Zp if and only if it represents t
over Qp. (For p ≡ 3 (4), this is because x2 + y2 ≡ 0 mod p has only the trivial solution
x ≡ y ≡ 0 mod p, since −1 is not a square. So p cannot occur in the denominator of a
solution x2 + y2 = t with t integral. At p = 2 this is similarly because 0 is not a sum
of two odd squares modulo 8.) So:

t is a sum of two integer squares

⇔ t is a sum of two squares in Zp for every prime p

⇔ t is a sum of two squares in Qp for every prime p

⇔ t is a sum of two rational squares

⇔ νp(t) is even for every prime p ≡ 3 (4).

Example 6.29 (Sums of three squares). A number t ∈ N can be written as a sum of
three integral squares if and only if it is not of the form t = 4an with n ≡ 7 mod 8.

Proof. Again ⟨1, 1, 1⟩ is alone in its genus, so it is enough to check representability over
Zp.
At every odd prime, ⟨1, 1, 1⟩ splits a hyperbolic plane and therefore represents every-
thing.
Over p = 2, it represents t over Z2 if and only if it represents t over Q2: if we can write

t = x2 + y2 + z2, x, y, z ∈ Q2

where x, y, z are not all integers, then clearing denominators yields a representation
0 ≡ a2 + b2 + c2 modulo 4 where at least one of a, b, c is odd, which is impossible. The
condition of representing t over Q2 was t ̸= 4an with n ≡ 7 mod 8.
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Corollary 6.30 (Lagrange four-square theorem). Every t ∈ N can be written as a sum
of four integral squares.

Proof. Every integer that is not of the form t = 4an with n ≡ 7 mod 8 is already a sum
of three integral squares. If t is of that form, then t− 4a+1 is positive and not of that
form, so it is represented as a sum x2 + y2 + z2 of three integral squares. Then

t = x2 + y2 + z2 + (2a+1)2

is a representation of t as a sum of four integral squares.

6.5. Spinor genera

Integral lattices L ⊆ V and M ⊆ W belong to the same class if there is an isometry
u : V → W of quadratic Q-spaces for which u(L) = M . And L and M belong to
the same genus if there are isometries up : Vp → Wp over every localization with the
property up(Lp) =Mp.

Spinor genera of lattices fit somewhere between the notions of genus and equivalence
class. In practice, the genus of a lattice almost always consists of a single spinor genus
(more on this later).

Definition 6.31. L and M belong to the same spinor genus if there are isome-
tries u : V → W and vp ∈ SO(Vp), p ≤ ∞ with the property:
(i) uvp(Lp) =Mp for every p ≤ ∞;
(ii) vp has trivial spinor norm.

Similarly to the usual notion of genus, if L ⊆ V is an integral lattice then all classes
of lattices in the spinor genus of L are represented by other lattices in V .

Recall that the (p-adic) spinor norm is a homomorphism

N : SO(Vp) −→ Q×
p /(Q×

p )
2

with the property that, if u ∈ SO(Vp) is written as a product of reflections σx1 ...σxn ,
then

N(u) =
∏
i

Q(xi) · (Q×
p )

2.

The most important property of the spinor genus is that, for indefinite lattices, it
very often consists of a single equivalence class. This follows from strong approximation
for the orthogonal and spin groups, which we cite without proof.4

4See Satz 24.1, 24.2, 24.6 of Kneser.
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Theorem 6.32 (Strong approximation for orthogonal groups). Let L ⊆ V be an
integral lattice in a regular quadratic space over Q with dim(V ) ≥ 3. Let T be a
set consisting of {∞} and a finite number of primes, and let ℓ ∈ T be a place for
which Vℓ is isotropic. Let

SO′(V ) := {u ∈ SO(V ) : N(u) = 1}

be the spinor kernel and let Spin(V ) be the spin group. Define the subgroups

O(L;T ) = {u ∈ O(V ) : uLp = Lp for every p /∈ T};
SO′(L;T ) = O(L;T ) ∩ SO′(V );

Spin(L;T ) = {u ∈ Spin(V ) : u ∈ C0(Lp) for every p /∈ T}.

Then the images of the embeddings

Spin(L;T ) −→
∏

p∈T\{ℓ}

Spin(Vp)

and
SO′(L;T ) −→

∏
T\{ℓ}

SO′(Vp)

are dense.

So: any family of finitely many transformations up ∈ SO′(Vp), p ∈ T\{ℓ}, all of
trivial spinor norm, can simultaneously be approximated arbitrarily well by a single
u ∈ SO′(V ) which “almost” preserves L, and the same is true for the spin cover.

Theorem 6.33. Let L be an indefinite integral lattice of rank at least three. Then
all lattices in the spinor genus of L are equivalent over Z.

Proof. Let V = L⊗Q and let M ⊆ V be another lattice in the spinor genus of L. Let
u ∈ O(V ) be an isometry such that uvp(Lp) = Mp for all p ≤ ∞ and vp has trivial
spinor norm. By Proposition 6.25 we have vp = id for all but finitely many primes; let
T be the set {∞} together with all primes p with vp ̸= id. Using strong approximation
with the exceptional place ℓ = ∞, construct v ∈ SO′(L;T ) such that

v(Lp) = vp(Lp) for every p ∈ T\{∞}

and
v(Lp) = Lp for every p /∈ T.

Then uvLp = Mp for every p < ∞ and therefore uv is an integral equivalence from L
to M .
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Remark 6.34. By the same argument, if L ⊆ V is a definite integral lattice of rank at
least three and ℓ is any prime with ℓ ∤ det(L), then every class in the spinor genus of L
is represented by a lattice M ⊆ V with Lp =Mp for all p except p = ℓ. Unfortunately
we really need an exceptional prime ℓ: there are generally many equivalence classes in
a spinor genus of definite lattices.

Remark 6.35. The condition that the rank is at least three is necessary - equivalence
of indefinite binary quadratic forms behaves differently. This is related to the problem
of computing class numbers of orders in real-quadratic fields. As an example, consider
the genus of indefinite binary quadratic forms of discriminant p = 229 (a prime). These
really form a single genus: they are all equivalent over R because they have the same
signature (1, 1); over Q2 because they are type II unimodular with the same determi-
nant; and they have Hasse invariant −1 over Qp by Hilbert reciprocity, hence p-adic
genus symbol 1−1p−1. They also happen to form a single spinor genus. However, there
are three distinct Z-equivalence classes of such quadratic forms, represented by

X2 + 15XY − Y 2, 3X2 + 13XY − 5Y 2, 5X2 + 13XY − 3Y 2.

We will now show that a genus “usually” contains only a single spinor genus - more
precisely, as long as the determinant does not contain primes to very high powers. The
difficulty consists essentially in determining which numbers can be realized as spinor
norms.

Lemma 6.36. Let (V,Q) be a regular quadratic space over Q with dim(V ) ≥ 3.
Let a ∈ Q×, (and if V is definite then suppose a > 0). Then there exists an
isometry u ∈ SO(V ) with spinor norm

N(u) = a · (Q×)2.

Proof. We have to show that Q represents two numbers (or an even number of
numbers) whose product is a.
If dim(V ) ≥ 4, then Q represents every rational number (if V is indefinite) or it
represents exactly the positive or negative rational numbers (if V is positive or negative
definite) as a consequence of the Hasse–Minkowski theorem. Then the result easily
follows.

Suppose dim(V ) = 3 and let d ∈ Q× represent disc(V ) modulo (Q×)2. Then there
is a finite set S of primes such that if p /∈ S, then Q represents every p-adic number.
(More precisely, Vp is isotropic whenever νp(d) is even, which is the case for all but
finitely many primes.) If Q does not represent a number c ∈ Qp for some prime p
then Vp ⊥ ⟨−c⟩ is the four-dimensional anisotropic quadratic space over Qp so it has
discriminant 1, and therefore

c ∈ −d · (Q×
p )

2.
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Now at every p ∈ S, choose a number bp ∈ Q×
p for which

bp ̸= −d,−ad mod (Q×
p )

2.

By construction there exist vectors xp ∈ Vp such that Q(xp) = bp. Choose a vector
x ∈ V that approximates the elements xp closely enough that

Q(x) ≡ Q(xp) mod (Q×
p )

2 for all p ∈ S ∪ {∞},

(where as usual we write Q∞ := R).
By construction, a/Q(x) ̸= −d mod (Q×

p )
2 for each exceptional prime p ∈ S, so

Q represents a/Q(x) locally at all p ∈ S. Also, a/Q(x) is represented at any p /∈ S
anyway (including ∞, because if V is definite then a/Q(x) has the correct sign). By
the Hasse–Minkowski theorem, there exists y ∈ V such that a/Q(x) = Q(y). Therefore

a = Q(x)Q(y) = N(σxσy)

is the spinor norm of σxσy ∈ SO(V ).

Theorem 6.37. Let L ⊆ V be an integral lattice in a regular quadratic space
over Q with dim(V ) ≥ 3. Suppose that for every prime p <∞ and every a ∈ Z×

p

there exists γp ∈ SO(Lp) such that

N(γ) = a · (Q×
p )

2.

Then the genus of L contains only one spinor genus.

A number a ∈ Z×
p that can be realized as the spinor norm of γp ∈ SO(Lp) is also

called a p-adically automorphous number for L.

Proof. LetM ⊆ V be any lattice in the genus of L. For each p <∞, writeMp = up(Lp)
with up ∈ SO(Vp), where up = id for all but finitely many primes p ∈ S. (There is
no loss of generality in assuming det(up) = 1, since every p-adic lattice Lp admits
automorphisms of determinant −1: if Lp is rescaled such that the vectors of minimal
length are units, then the reflection along any such vector will work.) For p ∈ S, write
the spinor norm of up as

N(up) = pαp · bp mod (Q×
p )

2

where bp ∈ Zp. By the lemma, there exists u ∈ SO(V ) with

N(u) =
∏
p∈S

pαp mod (Q×)2,

such that N(u−1up) = bp mod (Q×
p )

2. By assumption, bp can be realized as the spinor
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norm of γp ∈ SO(Lp). Then
Mp = uu−1upγp · Lp

where u ∈ SO(V ) and u−1upγp has trivial spinor norm, so M and L belong to the same
spinor genus.

Suppose p ̸= 2 and L has been put in normal form as

Lp =⊥
i≥0

Li(p
i), Li unimodular.

Then the condition
Z×

p · (Q×
p )

2 ⊆ N(SO(Lp))

is satisfied as long as any Li has rank at least two: in this case, Li represents every
number over Qp and therefore also over Zp, and we already have

Z×
p · (Q×

p )
2 ⊆ N(SO(Li)) = N(SO(Li(p))).

This works similarly over p = 2 if L contains a regular two-dimensional summand in its
orthogonal decomposition over Z2. Suppose it does not, i.e. L2 is diagonalizable, and
write

L =⊥
i

⟨2αibi⟩, αi ∈ N0, bi ∈ Z×
2 .

If any three exponents αi = αj = αk are equal for pairwise distinct i, j, k, so there are
orthogonal ei, ej, ek ∈ L2 with

⟨ei, ei⟩ = 2αibi, ⟨ej, ej⟩ = 2αjbj, ⟨ek, ek⟩ = 2αkbk,

then we can decompose

Z2ei ⊥ Z2ej ⊥ Z2ek = Z2(ei + ej + ek) ⊥ N

with a regular two-dimensional summandN and apply the earlier argument. Also, if any
three exponents differ by at most one, say αi = αj = αk−1 (the case αi = αj = αk+1 is
analogous), and choose orthogonal ei, ej, ek as before, then O(L2) contains the reflections
through the vectors

ei, ei + 2ej, ei + ek

of norms

Q(ei) = 2αibi, Q(ei + 2ej) = 2αi(bi + 4bj), Q(ei + ek) = 2αi(bi + 2bk).

So the image of the spinor group contains elements of norm

N = Q(ei + 2ej)/Q(ei) = 1 + 4(bj/bi) ≡ 5mod 8

and
N = Q(ei + ek)/Q(ei) = 1 + 2(bk/bi) ≡ 3mod 4,
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and therefore all of Z×
2 · (Q×

2 )
2.

We summarize this below:

Theorem 6.38. Let L be an integral lattice with rank(L) ≥ 3. Suppose:
(i) Over any odd prime p, the normal form

Lp =⊥
i≥0

Li(p
i), Li unimodular

contains at least one summand with rank(Li) ≥ 2;
(ii) Over p = 2, either L2 is not diagonalizable or L2 is diagonalizable, and in

L2 =⊥
i

⟨2αibi⟩

there are three exponents αi, αj, αk that belong to a set of the form {n, n+ 1}.
Then the genus of L consists of a single spinor genus.

Corollary 6.39. Suppose L and M are integral lattices that belong to the same genus.
Then

L ⊥ H ∼= M ⊥ H

are Z-equivalent.

The converse is also true: if L ⊥ H ∼= M ⊥ H over Z, then Lp ⊥ H ∼= Mp ⊥ H at
every p ≤ ∞, and the Witt cancellation theorem over Zp or R implies that Lp

∼= Mp,
hence L and M belong to the same genus.

Proof. Certainly L ⊥ H and M ⊥ H also belong to the same genus. That genus
consists of a single spinor genus because L ⊥ H splits a regular direct summand of
rank two over Z, (namely H), and therefore over every prime p. The spinor genus
consists of a single Z-equivalence class because L ⊥ H is indefinite.

Corollary 6.40. Let L be an even integral lattice with n = rank(L) ≥ 3. Suppose:
(i) det(L) is not divisible by 2m, where m = ⌊(n2 + 1)/2⌋, and
(ii) det(L) is not divisible by pn(n−1)/2 for any odd prime p.
Then the genus of L consists of a single spinor genus.

For odd integral lattices the condition (i) is weakened to m = ⌊(n2 + 1)/2⌋ − n,
while condition (ii) stays the same.

Proof. Let p be an odd prime and suppose the normal form of Lp fails to contain a
summand of rank ≥ 2. Then Lp must split in the form

Lp =⊥
i≥0

⟨pαibi⟩, bi ∈ Z×
p
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where all αi are pairwise distinct. So we have

α0 ≥ 0, α1 ≥ 1, α2 ≥ 2, ...

and therefore

νp(det(Lp)) ≥ 0 + 1 + 2 + ...+ (n− 1) = n(n− 1)/2.

For p = 2, if L2 is diagonalizable and fails to contain three exponents belonging to any
set {n, n+ 1}, then after ordering the exponents we have

α2n ≥ α2n−1 ≥ 2n− 1

and therefore

ν2(det(L2)) ≥ 1 + 1 + 3 + 3 + 5 + 5 + ... = ⌊(n2 + 1)/2⌋.

If L is odd then we can only deduce

ν2(det(L2)) ≥ 0 + 0 + 2 + 2 + 4 + 4 + ... = ⌊(n2 + 1)/2⌋ − n.

Corollary 6.41. (i) Suppose m,n ≥ 1. Then the genus Im,n of odd indefinite lattices
consists of a single equivalence class.
(ii) Suppose m,n ≥ 1 and m ≡ n mod 8. Then the genus IIm,n of even indefinite lattices
consists of a single equivalence class.

Proof. Except for the cases I1,1, II1,1 of rank two, both claims follow from the above
discussion: since Im,n and IIm,n are unimodular, the bound on the discriminant is
satisfied and each genus consists of a single spinor genus. Since these lattices are
unimodular, the spinor genus consists of a single Z-equivalence class.

The genera I1,1 and II1,1 can be treated directly. Any lattice in either genus is

isotropic, and therefore represented by the Gram matrix

(
0 a
a b

)
where a, b ∈ Z; and

by substituting (e1, e2) 7→ (±e1, e2 + λe1) with a suitably chosen λ, one can assume
modulo Z-equivalence that 0 ≤ |b| ≤ a. Such a lattice is unimodular only if a = 1 and
b ∈ {−1, 0, 1}. The case b = 0 is then the unique class in II1,1, while the cases b = ±1
are equivalent and represent the unique class in I1,1.

Corollary 6.42. All members of the genus of any lattice of the form L ⊥ H(N),
(N ∈ N, L an integral lattice) are equivalent over Z.
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Proof. For rank(L) ≥ 1, this follows from Theorem 6.38 because the normal form
decomposition of L ⊥ H(N) at any prime contains a rank two rescaled unimodular
direct summand. If L = {0} one can show directly that H(N) is alone in its genus.

Example 6.43. For an example5 of quadratic forms in the same genus that belong to
distinct spinor genera, consider the even lattice L with quadratic form

Q(X, Y, Z) = X2 + Y 2 + 16Z2.

After reducing Q mod 8 we find that Q represents only numbers that are 0, 1, 2, 4, 5
modulo 8, and no products of these numbers land in the cosets of 3 or 7 modulo (Q×

2 )
2.

Therefore 3 and 7 are not 2-adically automorphous: the square classes of 3 and 7 are
not realized as spinor norms of any γ ∈ SO(L2).
If we define Mp = Lp for p ̸= 2 and M2 = uL2 for any u ∈ SO(L⊗Q2) of spinor norm
3 (which exists as Q does represent 3 over Q2) then we get a representative

M =
⋂

p prime

(Mp ∩ V )

of the second spinor genus. To be explicit one can take the Gram matrix

4 0 2
0 4 2
2 2 10

.

6.6. Indecomposable lattices

Definition 6.44. An integral lattice L is decomposable if it can be written as
an orthogonal direct sum of two proper sublattices:

L =M ⊥ N, rank(M), rank(N) ≥ 1.

L is indecomposable if it is not decomposable.

Any integral lattice can be decomposed as

L =⊥
i

Li

where each Li is indecomposable. The natural question is: to what extent are the
sublattices Li unique?

Call a vector x ∈ L indecomposable if it cannot be written as a sum

x = y + z, y, z ̸= 0, y · z = 0.

5from Will Jagy on mathoverflow: https://mathoverflow.net/questions/83989/spin-representation
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We define an equivalence relation ∼ on the indecomposable vectors x ∈ L as follows:
say x ∼ y if there is a chain of indecomposable vectors x = x0, x1, ..., xr−1, xr = y with
the property

xi · xi+1 ̸= 0.

Lemma 6.45. Let L be an integral lattice. Suppose L can be generated by a set
x1, ..., xn of indecomposable vectors, all of which belong to the same ∼ equivalence
class: xi ∼ xj. Then L is indecomposable.

Proof. Suppose we can split L =M ⊥ N . Write

xi = yi + zi, yi ∈M, zi ∈ N.

Since yi · zi = 0 and each xi is indecomposable, one of yi and zi must be zero; so each
xi belongs either to M or to N . Without loss of generality, say x1 ∈M .
But if x ∼ y and x belongs to M , then y also belongs to M . So all xi belong to M .
Since the xi generate L, it follows that L =M and N = {0}.

Example 6.46. Suppose R is a simple root system of ADE type, and L is the Z-span
of the roots. (These are the An root lattices, the Dn root lattices with n ≥ 4, and the
exceptional lattices E6, E7, E8.) The roots are indecomposable vectors of L by virtue
of having the smallest possible norm. Since the root system is simple, all roots belong
to a single ∼-equivalence class. So L is indecomposable.

Theorem 6.47 (Lattice decomposition). (i) Let L be a positive-definite integral
lattice. Then L can be written

L =⊥
i

Li

as an orthogonal direct sum of indecomposable lattices Li, and the lattices Li are
unique up to relabelling the indices i.
(ii) The indecomposable summands Li ≤ L are exactly the spans of equivalence
classes of indecomposable vectors of L.

The uniqueness of this decomposition is completely false for indefinite lattices! Con-
sider the examples in the prior section.

Proof. It is clear that a decomposition into indecomposable lattices exists; we need to
show that it is unique.
Let L =⊥i Li be such a decomposition and write x ∈ L is written in the form x =

∑
i xi

with xi ∈ Li. If any two components xi are nonzero, then x is decomposable. Hence
any indecomposable vector lies entirely in one of the components Li; moreover, any
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two indecomposable vectors x, y ∈ L with x ∼ y belong to the same component. Let
Mi ⊆ Li be the sublattice spanned by the indecomposable vectors; then Mi is itself
indecomposable. Moreover, we have

L =⊥
i

Mi,

because any vector x ∈ L can be written as a sum of indecomposable vectors. (If x is
not already indecomposable, then we can write x = y + z with y · z = 0 and y, z ̸= 0,
such that 0 < Q(y), Q(z) < 0. Therefore, the process of repeatedly decomposing the
summands y and z will terminate after finitely many steps. Here is where we use the
fact that L is definite.) It follows that Li =Mi for all i, which proves (ii) and also the
uniqueness of (i).

Corollary 6.48 (Cancellation for definite lattices). Suppose L,M,N are positive-
definite integral lattices with

L ⊥M ∼= L ⊥ N.

Then M ∼= N .

Proof. This follows from the uniqueness of the decomposition into indecomposables of
M,N and L ⊥M,L ⊥ N .

6.7. Lattice neighbors

Kneser’s method of lattice neighbors is a powerful method of computing the equivalence
classes in a (spinor) genus of lattices.

Let V be a fixed positive-definite rational quadratic space over Q.

Definition 6.49. Let p be a prime. Integral lattices L,M ⊆ V are called p-
neighbors if

[L : L ∩M ] = [M : L ∩M ] = p.

We write L ∼p M if L and M are p-neighbors. Note that ∼p is not generally an
equivalence relation (it is usually not transitive).

If L ∼p M then since

det(L) · p2 = det(L ∩M) = det(M) · p2,

it follows that lattices that are p-neighbors have the same determinant.
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If L and M are p-neighbors then there is a rational change-of-basis matrix, whose
denominator only contains powers of p, from L to M . In particular Lq and Mq are
equal for all q ̸= p (including ∞).

If p ∤ det(L) and p ̸= 2, then we have Lp
∼= Mp because Lp and Mp are unimodular,

with the same determinant, and by Hilbert reciprocity the same Hasse invariant; so L
and M belong to the same genus. This also holds for p = 2 if we additionally assume
that L and M have the same type; i.e. they are both even or both odd, as that infor-
mation forces L2

∼= M2.
The condition p ∤ det(L) is usually assumed in practice.

Conversely, suppose L and M belong to the same spinor genus. Using strong
approximation for the spinor kernel, with the exceptional place chosen to be ℓ = p (as
in Remark 6.34), we find that M is equivalent to a lattice with Mq = Lq for all q ̸= p.
Then

[L : L ∩M ] = [Lp : Lp ∩Mp]

is a power of p. Using the following description of p-neighbors, which is of its own
interest, we will show that L and M are “connected” by a chain of p-neighbors as long
as p ∤ det(L).

Lemma 6.50. Let p be a prime and let L be an integral lattice that is maximal
at p; that is, Lp = L ⊗ Zp is not properly contained in any Zp-integral lattice in
L⊗Qp. (This holds automatically if p ∤ det(L).)
(i) Let x ∈ L\(p · L) be a vector with x · x ∈ p2Z. Then

L(x) := Z
x

p
+ Lx, Lx := {y ∈ L : x · y ∈ pZ}

is an integral lattice and a p-neighbor of L.
(ii) Every p-neighbor of L is of the form L(x).
(iii) If p ̸= 2, then the p-neighbors of L are in bijection with the isotropic lines
in L⊗ Fp.

In the case p = 2 in (iii) one can show that if L is even then its even 2-neighbors
can still be identified with isotropic lines of L⊗ F2.

Proof. (i) By construction, L(x) is integral: x
p
· x
p
∈ Z, and x

p
· y ∈ Z for any y ∈ Lx.

If Lx were already all of L, then L(x) would be a proper p-adic integral overlattice of
L. This is impossible because L is maximal at p. Therefore the map

L −→ Z/pZ, y 7→ x · y mod p

is surjective, with kernel Lx = L ∩ L(x), hence

[L : L ∩ L(x)] = [L(x) : L ∩ L(x)] = p
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and L and L(x) are p-neighbors.
(ii) Let M be a p-neighbor of L and choose an element x ∈ pM with x /∈ pL. Since
pM ⊆ L, we have x ∈ L\pL and we can construct the p-neighbor L(x) by (i). But
L ∩M ⊆ Lx because x/p ∈M , so we have

L ∩M ⊆ Lx ⊊ L.

Since the index [L : L ∩M ] is prime, it follows that L ∩M = Lx. From x/p ∈ M and
Lx ⊆M we obtain

L(x) ⊆M,

with equality because both L(x) and M have the same determinant det(L).
(iii) Given a p-neighbor L(x), such that Lx = L ∩ L(x), we recover the isotropic line
Fpx ⊆ L⊗Fp as the orthogonal complement of Lx⊗Fp. Conversely, given any isotropic
line Fpx, we can always find a representative x+py ∈ L\(pL) with (x+py)·(x+py) ∈ p2Z
using the above argument that the map L → Z/pZ, y 7→ x · y mod p is surjective.
Then the p-neighbor L(x+ py) is well-defined and depends only on the line Fpx.

Theorem 6.51. Let L ⊆ V be an integral lattice and p a prime with p ∤ det(L).
LetM be any lattice in the spinor genus of L. Then there is a chain of p-neighbors

L = L1 ∼p L2 ∼p ... ∼p Lr =M

that connects L to M .

Proof. Using strong approximation for the spinor kernel, we may assume without loss
of generality that Lq =Mq for every q ̸= p. Write

[L : L ∩M ] = [M : L ∩M ] = ps, s ∈ N0.

Now use induction on s:
(i) If s = 1, then M is already a p-neighbor of L.
(ii) In the general case, choose x ∈ M such that x ∈ M/(L ∩M) has order p; that is,
x /∈ L but px ∈ L. Then the element y := px satisfies y /∈ pL and y · y ∈ p2Z, so the
p-neighbor L(y) is well-defined. Since z · y = p(z · x) ∈ pZ for any z ∈ L ∩M , we have

L ∩M = Ly ∩M ⊆ L(y) ∩M,

where Ly = {z ∈ L : z · y ∈ pZ}. The inclusion is proper because x ∈ L(y) ∩M . So

[L(y) : L(y) ∩M ] = [M : L(y) ∩M ] < ps,

and the fact that L(y) is connected to M via p-neighbors follows from the induction
hypothesis.
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Lemma 6.52. Let L ⊆ V be an integral lattice and p a prime with p ∤ det(L).
Suppose x ∈ L\(p · L) is a vector with x · x ∈ p2Z, such that the p-neighbor L(x)
is well-defined.
(i) Let y ∈ pL satisfy x · y ∈ p2Z. Then the p-neighbors L(x) and L(x + y)
coincide.
(ii) Let φ ∈ O(L). Then φ defines an isometry

φ : L(x)
∼−→ L(φx).

(i) says that the p-neighbor L(x) depends only on the coset of x modulo pLx.

Proof. (i) Denoting
Lx = {z ∈ L : x · z ∈ pZ},

we have Lx = Lx+y and therefore

L(x+ y) = Lx+y + Z
1

p
(x+ y) = Lx + Z

1

p
x = L(x).

(ii) is easy.

We will apply the neighbor method to positive-definite, unimodular lattices of small
rank, using the prime p = 2. Denote by In the lattice Zn with the Euclidean inner
product.

Lemma 6.53. The 2-neighbors of In are (up to isometry) exactly the lattices
D+

m ⊥ In−m where m ≤ n, m ≡ 0 mod 4.

HereD+
m is the unimodular lattice spanned byDm = {

∑
xiei ∈ Zn :

∑
xi ≡ 0 (mod 2)}

and (1/2, ..., 1/2). Note that D+
4 is isometric to I4 via the map

(1/2, 1/2, 1/2, 1/2) 7→ e1, (−1/2,−1/2, 1/2, 1/2) 7→ e2,

(−1/2, 1/2,−1/2, 1/2) 7→ e3, (−1/2, 1/2, 1/2,−1/2) 7→ e4.

For m > 4, the lattice D+
m is indecomposable. So the lattices D+

m ⊥ In−m where m ̸= 4
are inequivalent.

Proof. Let x =
∑n

i=1 xiei ∈ Zn be a vector with x · x ∈ 4Z but not all xi ∈ 2Z, such
that the 2-neighbor In(x) is well-defined.
If any xi ∈ 2Z, then by Lemma 6.52 we can replace x by x − xiei without changing
the neighbor. So we can assume that xi = 0. Similarly, if xi is an odd integer, say
xi = 4yi ± 1, then we can replace x by x − 4yiei without changing the neighbor to
assume that xi = ±1; up to a reflection (which does not change the isometry type of
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the neighbor lattice) we can even assume that xi = 1.
So up to permutation, x = (1, ..., 1, 0, ..., 0) with m ones and n − m zeros. We have
m ≡ 0 mod 4 because x · x ∈ 4Z. The 2-neighbor In(x) is D+

m ⊥ In−m essentially by
definition.

For n ≤ 7, it immediately follows that In is the unique (up to isometry) positive-
definite unimodular lattice of rank n.

For n = 8, we see that the only 2-neighbors of I8 are E8 (= D+
8 ) and I8 itself. To

compute all unimodular lattices of rank 8, we have to compute the 2-neighbors of E8

also.

Note that E8 is an even integral lattice. It contains 240 roots (vectors v with
v · v = 2): namely, the 112 = 4 · 8·7

2
roots ±ei ± ej from D8, and the 128 = 27 roots

(±1/2, ...± 1/2) that have an even number of + signs. The 120 pairs ±v of roots and
their negatives all define distinct cosets in E8/2E8.

Lemma 6.54. All 2-neighbors of E8 are isometric to either I8 or to E8 itself.

Proof. Let x ∈ E8 be a vector with x · x ∈ 4Z but x /∈ 2E8, such that the 2-neighbor
E8(x) is well-defined. By Lemma 6.52 the 2-neighbor E8(x) depends only on the coset
of x in

E8/2E8
∼= E8 ⊗ F2(∼= H ⊥ H ⊥ H ⊥ H).

The orthogonal group of E8/2E8 acts transitively on the classes of even norm and of odd
norm by Witt’s theorem on extension of isometries; it is generated by 120 reflections
through the 120 classes of odd norm, which are represented exactly by the ± pairs of
roots of E8, each of which comes with a reflection defined over Z. Hence the map

O(E8) −→ O(E8/2E8)

is surjective, and O(E8) also acts transitively on the cosets of E8/2E8 of even and odd
norm.

Modulo O(E8), we may therefore assume that x ∈ (2, 0, ..., 0) + 2E8. Then

(E8)x = {y ∈ E8 : y · x ∈ 2Z} = E8 ∩ Z8 = D8,

and the neighbor E8(x) depends only on the class of x+2D8. Since [E8 : D8] = 2, there
are exactly two possibilities for x: either x ∈ 2D8 already, or

x ∈ (2, 0, ..., 0) + 2(1/2, ..., 1/2) + 2D8.

In the first case, E8(x) contains the vector x/2 with (x/2) ·(x/2) = 1; then x/2 splits off
orthogonally with the complement being unimodular of rank 7 and therefore isometric
to I7, hence E8(x) ∼= I8. In the second case, we have E8(x) = D8 + Zx

2
= E8.
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It follows that the only unimodular positive-definite lattices of rank 8 (up to isom-
etry) are I8 and E8.

With similar arguments one can show that there are exactly two isometry classes of
positive-definite unimodular lattices of ranks n = 9, 10, 11. Namely

In and L := In−8 ⊥ E8.

To prove this it will be enough to determine the 2-neighbors L(x) of L. If x belongs to
the sublattice In−8 or E8 then we have L(x) = In−8(x) ⊥ E8 or L(x) = In−8 ⊥ E8(x),
respectively, so suppose x = x1 + x2 with x1 ∈ In−8, x2 ∈ E8 and neither x1 nor x2
is identically zero mod 2. Since x · x ∈ 4Z, we have x1 · x1 ∈ 2Z, which already rules
out the case n = 9. In the cases n = 10 and n = 11, exactly two of the components
in x1 must be odd, so (modulo 2L and modulo reflections) we have x1 = e1 + e2. Now
x2 · x2 ≡ 2 mod 4. Since O(E8) acts transitively on the even-norm cosets of E8/2E8,
we may assume (modulo 2E8) that x2 is also e1 + e2.
The coset of x ∈ L/2L is now uniquely determined. By Lemma 6.52, there are at most
two 2-neighbors, namely L(x) and L(y) where y ≡ x mod 2L but y ̸≡ x mod 2Lx; one
can take y = (e1 + e2, e1 − e2). But these yield isometric 2-neighbors.
The 2-neighbor L(x) contains the vector x/2 of norm 1, which therefore splits off or-
thogonally: L(x) ∼= I1 ⊥ M with unimodular M . Using an induction argument on n
we obtain M ∼= In−9 ⊥ E8 or M ∼= In−1.

The unimodular lattices in a few higher ranks6 have also been completely enumer-
ated. For example, for 12 ≤ n ≤ 16 we have the following class representatives:

n = 12 : I12, I4 ⊥ E8, D
+
12;

n = 13 : I13, I5 ⊥ E8, I1 ⊥ D+
12;

n = 14 : I14, I6 ⊥ E8, I2 ⊥ D+
12, (2E7)

+;

n = 15 : I15, I7 ⊥ E8, I3 ⊥ D+
12, I1 ⊥ (2E7)

+, A+
15;

n = 16 : I16, I8 ⊥ E8, I4 ⊥ D+
12, I2 ⊥ (2E7)

+, I1 ⊥ A+
15, 2E8, D

+
16;

where L+ means a maximal integral overlattice obtained from the root lattice L by
“gluing” to it certain cosets of L′/L in a way that is similar to the construction of D+

n .
In principle, the 2-neighbor algorithm computes the unimodular lattices of any rank,
but in practice the calculations become too difficult (and the number of classes grows
extremely quickly).

For large rank, a lower bound for the number of lattices is given by the Siegel–
Minkowski–Smith mass formula (which we do not have time to formulate, let alone
prove; see Kneser’s Chapter X for details). In the case of even unimodular lattices, the

6Up to rank 27. The lattices in rank 26 and 27 were very recently (as of 2025) classified by
Chenevier. For odd lattices of rank 24, 25 the classification is due to Borcherds. The even rank 24
even unimodular lattices were identified in a famous paper of Niemeier.
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statement of the theorem is:

∑
rank(L)=8n

1

#O(L)
=

|B4n|
8n

·
4n−1∏
j=1

|B2j|
4j

,

where Bn are the Bernoulli numbers, defined by the generating function

∞∑
n=0

Bn

n!
xn =

x

ex − 1
.

Here L runs through the inequivalent classes of even unimodular positive-definite lat-
tices of rank 8n.

For n = 1, we have already shown that E8 is the unique even unimodular positive-
definite lattice in rank 8, and the mass formula becomes

1

#O(E8)
=

|B4|
8

· |B2|
4

· |B4|
8

· |B6|
12

=
1

240
· 1

12
· 1

240
· 1

252
=

1

696729600
.

The mass of rank 16 unimodular lattices is smaller than this, but after 16 it grows
extremely quickly: in rank 32 the mass is already about 4 · 107, in rank 40 it is about
4.4 · 1051 and in rank 48 it is already greater than 10121. The lower bound

1

#O(L)
≤ 1

2
,

which is less than sharp (it comes from observing that O(L) contains ±id) shows that
the number of inequivalent lattices is at least twice the mass.

As for odd unimodular lattices L in rank 8n, note that L has at most two even
2-neighbors up to isometry: if L(x) is even, then Lx = L ∩ L(x) must be exactly the
sublattice

L0 = {x ∈ L : x · x ∈ 2Z}

of even-norm vectors in L, and is uniquely determined. L0 has determinant four, so
L′
0/L0 splits into four cosets (say L0, L1, L2, L3), and for exactly one of these cosets we

have L = L0∪L1 (say); then the other two L0∪L2, L0∪L3 are the even neighbors. They
can be isometric to each other (this is true for I8n, for example, where we observed that
its only even 2-neighbor is D+

8n) but in all cases they are each others’ 2-neighbors. So
the classes of odd unimodular lattices are roughly in correspondence with neighboring
pairs of classes of even unimodular lattices – their number is much larger.
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