PROJECTIVE SPACES AS ORTHOGONAL MODULAR VARIETIES

HAOWU WANG AND BRANDON WILLIAMS

Abstract

We construct 16 reflection groups Γ acting on symmetric domains \mathcal{D} of Cartan type IV, for which the graded algebras of modular forms are freely generated by forms of the same weight, and in particular the Satake-Baily-Borel compactification of \mathcal{D} / Γ is isomorphic to a projective space. Four of these are previously known results of Freitag-Salvati Manni, Matsumoto, Perna and Runge. In addition we find several new modular groups of orthogonal type whose algebras of modular forms are freely generated.

1. Introduction

In this paper we realize the projective spaces $\mathbb{P}^{3}(\mathbb{C})$ and $\mathbb{P}^{4}(\mathbb{C})$ in several ways as orthogonal modular varieties using the theory of Borcherds products. Let \mathcal{D}_{n} be a type IV Hermitian symmetric domain of dimension n with $n \geq 3$, i.e. $\mathcal{D}_{n} \cong \mathrm{O}_{n, 2}^{+} /\left(\mathrm{SO}_{n} \times \mathrm{O}_{2}\right)$ where $\mathrm{O}_{n, 2}^{+}$is the orthogonal group that preserves \mathcal{D}_{n}, and let Γ be an arithmetic subgroup of $\mathrm{O}_{n, 2}^{+}$. Then Γ acts properly discontinuously on \mathcal{D}_{n} and the quotient \mathcal{D}_{n} / Γ is a quasi-projective variety of dimension n. Orthogonal modular forms, i.e. automorphic forms on \mathcal{D}_{n} for Γ, are a powerful tool in the study of these varieties. An orthogonal modular form of weight k is a holomorphic function on the affine cone over \mathcal{D}_{n} which has homogenous degree $-k$ and is invariant under Γ. Orthogonal modular forms of all weights for Γ form a graded algebra $M_{*}(\Gamma)$. By [2] the graded algebra $M_{*}(\Gamma)$ is finitely generated over \mathbb{C} and the Satake-Baily-Borel compactification $\left(\mathcal{D}_{n} / \Gamma\right)^{*}$ of the modular variety \mathcal{D} / Γ is a projective variety isomorphic to $\operatorname{Proj}\left(M_{*}(\Gamma)\right)$. In particular, if $M_{*}(\Gamma)$ is freely generated by $n+1$ forms of weights $k_{1}, k_{2}, \ldots, k_{n+1}$, then $\left(\mathcal{D}_{n} / \Gamma\right)^{*}=\operatorname{Proj}\left(M_{*}(\Gamma)\right)$ is a weighted projective space with weights $k_{1}, k_{2}, \ldots, k_{n+1}$.

Free algebras of modular forms are rare. Many of the known examples are related to irreducible root systems as in [21]. It is known that the group Γ must be generated by reflections if $M_{*}(\Gamma)$ is free (see [16]). (This immediately rules out any modular groups Γ except subgroups of $\mathrm{U}(n, 1)$ and of $\mathrm{O}(n, 2)$. In this paper Γ is always an arithmetic subgroup of $\mathrm{O}(n, 2)$.) The first named author found a necessary and sufficient condition for $M_{*}(\Gamma)$ to be free in [19] and used it to construct 16 new free algebras of modular forms in [20]. This condition is essentially the existence of a distinguished modular form which vanishes precisely on all mirrors of reflections in Γ with multiplicity one and equals the Jacobian of the $n+1$ generators. In this paper, we use that criterion to find reflection groups Γ such that $M_{*}(\Gamma)$ is freely generated by some forms of the same weight. For any such Γ the Satake-Baily-Borel compactification of \mathcal{D}_{n} / Γ is a projective space.

Modular varieties isomorphic to projective spaces are very exceptional. The authors are aware of only four examples of dimension $n \geq 3$ in the literature. The first was found by Runge in 1993 [17]. Runge's theorem states that the algebra of Siegel modular forms of genus 2 on the level 4 subgroup $\Gamma_{2}[2,4]$ is the polynomial algebra in 4 theta constants of second order, which implies that the corresponding modular variety is isomorphic to $\mathbb{P}^{3}(\mathbb{C})$. The second example was found

[^0]by Matsumoto [13] in the same year. Matsumoto proved that the algebra of symmetric Hermitian modular forms of degree 2 over the Gaussian numbers for the principal congruence group of level $1+i$ is freely generated by five forms of weight 2 , which implies that the corresponding modular variety is isomorphic to $\mathbb{P}^{4}(\mathbb{C})$. A different proof of this was given by Hermann [10]. The third example was constructed by Freitag and Salvati Manni in 2006. They proved in [7] that the algebra of symmetric Hermitian modular forms of degree 2 over the Eisenstein integers for the congruence group of level $\sqrt{-3}$ is freely generated by five forms of weight 1 and therefore the modular variety is also isomorphic to $\mathbb{P}^{4}(\mathbb{C})$. Finally, Perna [15] proved that the algebra of Siegel modular forms for a certain congruence subgroup containing $\Gamma_{2}[2,4]$ is freely generated by the squares of 4 theta constants of second order.

We will give a simple and largely uniform proof of the above results in the context of orthogonal modular forms. Runge's and Perna's theorems can be interpreted in terms of orthogonal modular forms for the lattice $2 U(4) \oplus A_{1}$. (Here and below, U is an even unimodular lattice of signature $(1,1)$, and A_{1}, A_{2} denote the lattice generated by the root system of the same name.) Matsumoto's theorem is treated using the lattice model $2 U(2) \oplus 2 A_{1}$, and for this lattice we also find two new free algebra of modular forms for smaller groups. The first of these is freely generated by five forms of weight 1 and the second is freely generated by four forms of weight 2 and one form of weight 1 , such that the modular varieties associated to both of these groups are isomorphic to $\mathbb{P}^{4}(\mathbb{C})$. The theorem of Freitag-Salvati Manni corresponds to the lattice $2 U(3) \oplus A_{2}$, and we also find two new free algebras of modular forms for larger groups related to this lattice. The first of these is freely generated by five forms of weight 2 and the second is freely generated by four forms of weight 2 and one form of weight 1. The modular varieties associated to the two groups are then isomorphic to $\mathbb{P}^{4}(\mathbb{C})$. In addition, we determine eight new reflection groups whose associated modular varieties are isomorphic to $\mathbb{P}^{3}(\mathbb{C})$. Three of them are related to $2 U(2) \oplus A_{1}$ and the weights of generators of the three algebras are $\{2,2,2,2\},\{1,1,1,1\}$ and $\{1,2,2,2\}$ respectively. Also we determine an algebra related to $2 U(3) \oplus A_{1}$ which is generated by four forms of weight 1 , and two algebras related to $U(2) \oplus U(4) \oplus A_{1}$ which are generated by four forms of weight 1 and four forms of weight $1 / 2$ respectively. Finally we obtain two algebras related to $U \oplus U(2) \oplus A_{1}(2)$ generated by modular forms of weights $\{2,2,2,2\}$ and $\{1,2,2,2\}$ respectively.

Altogether, we will realize $\mathbb{P}^{3}(\mathbb{C})$ and $\mathbb{P}^{4}(\mathbb{C})$ in sixteen ways as orthogonal modular varieties associated to seven lattices in Theorems 3.6, 3.7, 4.3, 4.6, 4.7, 5.4, 5.5, 5.6, 6.2, 6.4, 6.5, 7.2, 8.2, 8.4, 9.2, 9.3. The generators of these algebras of modular forms are all constructed as Borcherds products [3], with one exception where we require an additive theta lift. Along the way we find a simple proof of the famous theorem of Igusa [11] that the algebra of Siegel modular forms of genus 2 on the level 8 subgroup $\Gamma_{2}[4,8]$ is generated by the ten theta constants (Theorem 3.8), as well as its analogue for Hermitian modular forms over the Gaussian integers (Theorem 4.5). We also find several other interesting free algebras of modular forms; for example, we will find a tower of eight congruence subgroups of $\mathrm{Sp}_{4}(\mathbb{Z})$, all of whose algebras of modular forms are described explicitly and six of which are free.

The layout of this paper is as follows. In $\S 2$ we recall the necessary and sufficient condition for free algebras mentioned above (and a straightforward generalization to half-integral weight modular forms). In §3-9 we study the algebras of modular forms attached to the seven lattices respectively. In the appendices we give some data related to the input forms for certain Borcherds products; the Fourier expansions of the Borcherds products, and the products themselves as SAGE objects, are available in the ancillary material.

At several points in this paper, we work directly with the Fourier expansions of Borcherds products and therefore need a significant number of coefficients of their input forms. These were computed in SAGE [18] using the algorithm outlined in [22], an implementation of which is available
on GitHub. We also used SAGE for certain graph computations, including much of the data in the appendices.

2. Preliminaries

Let M be an even lattice of signature $(n, 2)$ with $n \geq 3$ and dual lattice M^{\vee}. The type IV symmetric domain $\mathcal{D}_{n}=\mathcal{D}(M)$ is one of the two connected components of the space

$$
\{[\mathcal{Z}] \in \mathbb{P}(M \otimes \mathbb{C}):(\mathcal{Z}, \mathcal{Z})=0,(\mathcal{Z}, \overline{\mathcal{Z}})<0\}
$$

We define the affine cone over $\mathcal{D}(M)$ as

$$
\mathcal{A}(M)=\{\mathcal{Z} \in M \otimes \mathbb{C}:[\mathcal{Z}] \in \mathcal{D}(M)\} .
$$

Let us denote by $\mathrm{O}^{+}(M)$ the integral orthogonal group of M preserving the connected component $\mathcal{D}(M)$. The discriminant kernel $\widetilde{\mathrm{O}}^{+}(M)$ is the subgroup of $\mathrm{O}^{+}(M)$ which acts trivially on the discriminant form of M. Fix a finite index subgroup Γ of $\mathrm{O}^{+}(M)$.

Definition 2.1. Let k be a non-negative integer. A modular form of weight k and character $\chi: \Gamma \rightarrow \mathbb{C}^{*}$ for Γ is a holomorphic function $F: \mathcal{A}(M) \rightarrow \mathbb{C}$ satisfying

$$
\begin{aligned}
& F(t \mathcal{Z})=t^{-k} F(\mathcal{Z}), \quad \forall t \in \mathbb{C}^{*}, \\
& F(g \mathcal{Z})=\chi(g) F(\mathcal{Z}), \quad \forall g \in \Gamma .
\end{aligned}
$$

The graded algebra of modular forms of integral weight is denoted by

$$
M_{*}(\Gamma)=\bigoplus_{k=0}^{\infty} M_{k}(\Gamma) .
$$

One can realize the symmetric domain $\mathcal{D}(M)$ as a tube domain at a zero-dimensional cusp. The above modular form can be viewed as an automorphic form on a tube domain for Γ with respect to an automorphy factor. Using the tube domain model one can define modular forms of half-integral weight with a multiplier system. We refer to $[4, \S 3.3]$ for more details.

For any $r \in M^{\vee}$ of positive norm, the hyperplane

$$
\mathcal{D}_{r}(M)=r^{\perp} \cap \mathcal{D}(M)=\{[\mathcal{Z}] \in \mathcal{D}(M):(\mathcal{Z}, r)=0\}
$$

is called the rational quadratic divisor associated to r. The reflection fixing $\mathcal{D}_{r}(M)$ is

$$
\sigma_{r}(x)=x-\frac{2(r, x)}{(r, r)} r, \quad x \in M .
$$

The hyperplane $\mathcal{D}_{r}(M)$ is called the mirror of σ_{r}. For a non-zero vector $r \in M^{\vee}$ we denote its order in M^{\vee} / M by ord (r). A primitive vector $r \in M^{\vee}$ of positive norm is called reflective if $\sigma_{r} \in \mathrm{O}^{+}(M)$, or equivalently, if there exists a positive integer d such that $(r, r)=\frac{2}{d}$ and ord $(r)=d$ or $\frac{d}{2}$. In this case we call $\mathcal{D}_{r}(M)$ a reflective divisor. A modular form F for $\Gamma<\mathrm{O}^{+}(M)$ is called reflective if its divisor is a sum of reflective divisors. F is called 2-reflective if its divisor is a sum of divisors $\mathcal{D}_{r}(M)$ for $r \in M$ with $(r, r)=2$. We remark that if $r \in M$ is primitive then the reflection σ_{r} belongs to $\widetilde{\mathrm{O}}^{+}(M)$ if and only if $(r, r)=2$.

For convenience, we recall some results of [19] which will be used in this paper. The modular Jacobian, or Rankin-Cohen-Ibukiyama differential operator, was first introduced in [1] for Siegel modular forms.

Theorem 2.2 (Theorem 2.5 in [19]). Let M be an even lattice of signature ($n, 2$) with $n \geq 3$, and let $\Gamma<\mathrm{O}^{+}(M)$ be a finite index subgroup. Let $f_{i} \in M_{k_{i}}(\Gamma)$ for $1 \leq i \leq n+1$. We view f_{i}
as modular forms on the tube domain at a given zero-dimensional cusp and let $z_{i}, 1 \leq i \leq n$, be coordinates on the tube domain. We define

$$
J:=J\left(f_{1}, \ldots, f_{n+1}\right)=\left|\begin{array}{cccc}
k_{1} f_{1} & k_{2} f_{2} & \cdots & k_{n+1} f_{n+1} \\
\frac{\partial f_{1}}{\partial z_{1}} & \frac{\partial f_{2}}{\partial z_{1}} & \cdots & \frac{\partial f_{n+1}}{\partial z_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{1}}{\partial z_{n}} & \frac{\partial f_{2}}{\partial z_{n}} & \cdots & \frac{\partial f_{n+1}}{\partial z_{n}}
\end{array}\right| .
$$

(1) J is a cusp form of weight $n+\sum_{i=1}^{n+1} k_{i}$ for Γ with the determinant character det.
(2) J is not identically zero if and only if the $n+1$ modular forms f_{i} are algebraically independent over \mathbb{C}.
(3) Let $r \in M$. If the reflection σ_{r} belongs to Γ, then J vanishes on the hyperplane $\mathcal{D}_{r}(M)$.

If $M_{*}(\Gamma)$ is a free algebra then the Jacobian of its generators satisfies some remarkable properties:
Theorem 2.3 (Theorem 3.5 in [19]). Assume that $M_{*}(\Gamma)$ is a free algebra with generators f_{1}, \ldots, f_{n+1} of weights k_{1}, \ldots, k_{n+1}.
(1) The Jacobian $J=J\left(f_{1}, \ldots, f_{n+1}\right)$ is not identically zero and it is a cusp form of weight $n+\sum_{i=1}^{n+1} k_{i}$ for Γ with the character det.
(2) The divisor of J is the sum of all mirrors of reflections in Γ, each with multiplicity 1 . In particular, J is a reflective cusp form.
(3) Let $\left\{\Gamma \pi_{1}, \ldots, \Gamma \pi_{s}\right\}$ denote the Γ-equivalence classes of mirrors of reflections in Γ. Then for each $1 \leq i \leq s$ there exists a modular form J_{i} for Γ with trivial character and divisor $\operatorname{div}\left(J_{i}\right)=2 \Gamma \pi_{i}$, and $J^{2}=\prod_{i=1}^{s} J_{i}$. The forms J_{i} are irreducible in $M_{*}(\Gamma)$.
(4) There exist polynomials $P, P_{i}, 1 \leq i \leq s$, in $n+1$ variables over \mathbb{C} such that $J^{2}=$ $P\left(f_{1}, \ldots, f_{n+1}\right)$ and $J_{i}=P_{i}\left(f_{1}, \ldots, f_{n+1}\right)$. Thus $P=\prod_{i=1}^{s} P_{i}$ and these P_{i} are irreducible.
The following sufficient condition for a graded algebra of modular forms to be free will play a vital role in this paper.

Theorem 2.4 (Theorem 5.1 in [19]). Let $\Gamma<\mathrm{O}^{+}(M)$ be a finite index subgroup. Suppose there exist modular forms f_{1}, \ldots, f_{n+1} with trivial character whose Jacobian

$$
J=J\left(f_{1}, \ldots, f_{n+1}\right)
$$

vanishes exactly on the mirrors of reflections in Γ with multiplicity one. Then the graded algebra $M_{*}(\Gamma)$ is freely generated by f_{1}, \ldots, f_{n+1} and Γ is generated by the reflections whose mirrors lie in the divisor of J.

This theorem also holds for modular forms of half-integral weight and the proof is nearly the same. We replace $M_{*}(\Gamma)$ with the graded algebra of half-integral weight modular forms with respect to a fixed multiplier system v of weight $1 / 2$:

$$
M_{*}(\Gamma, v)=\bigoplus_{k=0}^{\infty} M_{\frac{k}{2}}\left(\Gamma, v^{k}\right) .
$$

Theorem 2.5. Suppose there exist modular forms $f_{1}, \ldots, f_{n+1} \in M_{*}(\Gamma, v)$ whose Jacobian $J=$ $J\left(f_{1}, \ldots, f_{n+1}\right)$ vanishes exactly on the mirrors $\mathcal{D}_{r}(M)$ of reflections σ_{r} in Γ that satisfy $v\left(\sigma_{r}\right)=1$ with multiplicity one. Then $M_{*}(\Gamma, v)$ is freely generated by f_{i}.
Proof. Suppose that $M_{*}(\Gamma, v)$ is not generated by f_{i}. Then $\mathbb{C}\left[f_{1}, \ldots, f_{n+1}\right] \neq M_{*}(\Gamma, v)$, and we choose a modular form $f_{n+2} \in M_{k_{n+2}}\left(\Gamma, v^{2 k_{n+2}}\right)$ of minimal weight such that $f_{n+2} \notin \mathbb{C}\left[f_{1}, \ldots, f_{n+1}\right]$. For $1 \leq t \leq n+2$ we define

$$
J_{t}=J\left(f_{1}, \ldots, \hat{f}_{t}, \ldots, f_{n+2}\right)
$$

as the Jacobian of the $n+1$ modular forms f_{i} omitting f_{t} (so in particular $J=J_{n+2}$). Similarly to Theorem 2.2, one can show that the Jacobian J_{t} is a modular form of weight $k=n+\sum_{i \neq t} k_{i}$ and multiplier system $v^{2 k}$ det on Γ, and that J_{t} vanishes on all mirrors of reflections in Γ satisfying $v\left(\sigma_{r}\right)=1$. Therefore the quotient $g_{t}:=J_{t} / J$ is a holomorphic modular form in $M_{*}(\Gamma, v)$.

We compute

$$
0=\operatorname{det}\left(\begin{array}{llll}
k_{1} f_{1} & k_{2} f_{2} & \cdots & k_{n+2} f_{n+2} \\
k_{1} f_{1} & k_{2} f_{2} & \ldots & k_{n+2} f_{n+2} \\
\nabla_{z} f_{1} & \nabla_{z} f_{2} & \ldots & \nabla_{z} f_{n+2}
\end{array}\right)=\sum_{t=1}^{n+2}(-1)^{t} k_{t} f_{t} J_{t}=\left(\sum_{t=1}^{n+2}(-1)^{t} k_{t} f_{t} g_{t}\right) \cdot J,
$$

and therefore

$$
(-1)^{n+1} k_{n+2} f_{n+2}=\sum_{t=1}^{n+1}(-1)^{t} k_{t} f_{t} g_{t}
$$

because $g_{n+2}=1$. In particular, each g_{t} has weight strictly less than that of f_{n+2}. By construction of f_{n+2}, this implies $g_{t} \in \mathbb{C}\left[f_{1}, \ldots, f_{n+1}\right]$, and therefore $f_{n+2} \in \mathbb{C}\left[f_{1}, \ldots, f_{n+1}\right]$, a contradiction. Therefore $M_{*}(\Gamma, v)$ is generated by the f_{i}. Since $M_{*}(\Gamma, v)$ has Krull dimension $n+1$, these generators are algebraically independent.

Unlike the integral-weight case, we cannot conclude in general that Γ is generated by the reflections whose mirrors are contained in the divisor of the Jacobian. However, this does hold if $v\left(\sigma_{r}\right)=1$ for all reflections $\sigma_{r} \in \Gamma$.

We can investigate the modular variety \mathcal{D}_{n} / Γ using algebras of half-integral weight modular forms because the Proj is unchanged under Veronese embeddings:

$$
\operatorname{Proj}\left(M_{*}(\Gamma, v)^{(d)}\right)=\operatorname{Proj}\left(M_{*}(\Gamma, v)\right)=\operatorname{Proj}\left(M_{*}(\Gamma)^{(d)}\right)=\operatorname{Proj}\left(M_{*}(\Gamma)\right)=\left(\mathcal{D}_{n} / \Gamma\right)^{*},
$$

for any $d \in \mathbb{N}$, where

$$
M_{*}(\Gamma, v)^{(d)}=\bigoplus_{k \in \mathbb{N}} M_{\frac{d k}{2}}\left(\Gamma, v^{d k}\right), \quad M_{*}(\Gamma)^{(d)}=\bigoplus_{k \in \mathbb{N}} M_{d k}(\Gamma) .
$$

3. The $2 U(4) \oplus A_{1}$ Lattice

In this section we recover Runge's theorem and Perna's theorem mentioned in the introduction. Runge's theorem asserts that the algebra of Siegel modular forms of genus 2 on the level 4 subgroup $\Gamma_{2}[2,4]$ is freely generated by 4 theta constants of second order. We will find that the Jacobian of four theta constants of second order is exactly Igusa's cusp form $\Phi_{5, A_{1}}$ up to a multiple, where $\Phi_{5, A_{1}}$ is the product of ten even theta constants. The Igusa cusp form $\Phi_{5, A_{1}}$ is a reflective modular form of weight 5 for $\mathrm{O}^{+}\left(2 U \oplus A_{1}\right)$ whose divisor is the sum of all \mathcal{D}_{r} for primitive vectors $r \in 2 U \oplus A_{1}^{\vee}$ with $(r, r)=\frac{1}{2}$ and $\operatorname{ord}(r)=2$, each with multiplicity one. In view of the isomorphisms

$$
\begin{equation*}
\mathrm{O}^{+}(M)=\mathrm{O}^{+}\left(M^{\vee}\right)=\mathrm{O}^{+}\left(M^{\vee}(m)\right) \tag{3.1}
\end{equation*}
$$

we have $\mathrm{O}^{+}\left(2 U \oplus A_{1}\right)=\mathrm{O}^{+}\left(2 U(4) \oplus A_{1}\right)$ and the function $\Phi_{5, A_{1}}$ can also be viewed as a 2-reflective modular form of weight 5 for $2 U(4) \oplus A_{1}$ whose divisor is the sum of \mathcal{D}_{s} with multiplicity one for primitive vectors $s \in 2 U\left(\frac{1}{4}\right) \oplus A_{1}^{\vee}$ with $(s, s)=\frac{1}{2}$ and $\operatorname{ord}(s)=2$. Unlike $\widetilde{\mathrm{O}}^{+}\left(2 U \oplus A_{1}\right)$, these account for all 2-reflections in $\widetilde{\mathrm{O}}^{+}\left(2 U(4) \oplus A_{1}\right)$. Moreover, the discriminant kernel $\widetilde{\mathrm{O}}^{+}\left(2 U(4) \oplus A_{1}\right)$ is a subgroup of $\widetilde{\mathrm{O}}^{+}\left(2 U \oplus A_{1}\right)$, and there are many more Borcherds products on $\widetilde{\mathrm{O}}^{+}\left(2 U(4) \oplus A_{1}\right)$. For these reasons it is natural to work with the lattice $2 U(4) \oplus A_{1}$.

We will first recall the Borcherds products of singular weight on $2 U(4) \oplus A_{1}$.

Lemma 3.1.

(1) There are 70 holomorphic Borcherds products of singular weight $1 / 2$ on $2 U(4) \oplus A_{1}$. Their product is the Igusa cusp form of weight 35.
(2) Ten of the singular weight products have inputs with principal part $q^{-1 / 4}\left(e_{v}+e_{w}\right)$ where v and w have order 2 in M^{\vee} / M. These are the ten theta constants and their product is $\Phi_{5, A_{1}}$. We call them the Type I products and denote them $\theta_{i}, i=1,2, \ldots, 10$.
(3) The remaining 60 singular weight products have inputs with principal part $q^{-1 / 4}\left(e_{u}+e_{-u}\right)$, where u has order 4. We call them the Type II products.

Proof. These facts can be read off of the Fourier coefficients of a weight $5 / 2$ Eisenstein series. This is carried out in detail in section 4 of [14]. With respect to the table of section 4 of [14], the principal parts of the input into the Type I products consist of one of ten vectors v from the 7th orbit and one of six vectors w from the 8th orbit. The vector-valued modular forms with principal part $q^{-1 / 4} e_{v}$ alone have non-integral Fourier coefficients so they are, strictly speaking, not valid inputs into the Borcherds lift. However, the $q^{-1 / 4} e_{w}$ term does not contribute to their divisor.

Let $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$ be the subgroup of $\mathrm{O}^{+}\left(2 U(4) \oplus A_{1}\right)$ generated by all reflections associated to the divisor of $\Phi_{5, A_{1}}$. It is obvious that $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$ is contained in the discriminant kernel $\widetilde{\mathrm{O}}^{+}\left(2 U(4) \oplus A_{1}\right)$. The 70 products satisfy the following basic properties.

Lemma 3.2.

(1) The 10 Type I products θ_{i} are linearly independent over \mathbb{C}.
(2) The 55 forms $\theta_{i} \theta_{j}$ are linearly independent over \mathbb{C}.
(3) The 60 Type II products are modular forms of weight 1/2 for $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$, all of which have the same multiplier system which we denote v_{Θ}. Moreover, $v_{\Theta}=1$ for all reflections in $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$.
Proof. (1) The Type I products are modular forms on $\widetilde{\mathrm{O}}^{+}\left(2 U(4) \oplus A_{1}\right)$. Let σ_{i} be a reflection associated to the divisor of some θ_{i}. Since $\sigma_{i} \in \widetilde{\mathrm{O}}^{+}\left(2 U(4) \oplus A_{1}\right)$, we obtain $\sigma_{i}\left(\theta_{i}\right)=-\theta_{i}$ and $\sigma_{i}\left(\theta_{j}\right)=\theta_{j}$ for $j \neq i$. This implies the linear independence of the 10 products.
(2) Using the argument in (1), the linear independence of the 55 functions $\theta_{i} \theta_{j}$ reduces to the linear independence of the 10 squares θ_{i}^{2}, which can be shown by computing Fourier coefficients.
(3) Consider the quotient of any two products of type II. This is a weight zero meromorphic modular form on $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$. Since it does not vanish on any divisors contained in div $\Phi_{5, A_{1}}$, it has trivial character on $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$, so the type II products have the same multiplier system. From the principal parts of their input forms we see that no type II product vanishes on the divisor \mathcal{D}_{r} for any reflection $\sigma_{r} \in \mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$, which forces $v_{\Theta}\left(\sigma_{r}\right)=1$. We remark that $v_{\Theta}^{2}=1$ on $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$.

Throughout this section we will consider sets of four type II products $\Theta_{1}, \Theta_{2}, \Theta_{3}, \Theta_{4}$ that transform under larger modular groups than $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$. For this the following definition is useful.
Definition 3.3. A *-set (of type $2 U(4) \oplus A_{1}$) is a set of four Type II products, each of whose input forms is invariant under all reflections associated to the divisors of the three other products.

In other words, if the type II product Θ_{i} has input with principal part $q^{-1 / 4}\left(e_{u_{i}}+e_{-u_{i}}\right)$ then $\left\{\Theta_{1}, \Theta_{2}, \Theta_{3}, \Theta_{4}\right\}$ forms a $*$-set if and only if $\sigma_{u_{i}}\left(u_{j}\right) \in \pm u_{j}+\left(2 U(4) \oplus A_{1}\right)$ for $1 \leq i, j \leq 4$.
*-sets have several interesting properties.

Lemma 3.4.

(1) There are exactly 105 *-sets.
(2) Every product of type II belongs to exactly seven *-sets.
(3) There are 1320 pairs of type II products that do not belong to a *-set; there are 360 pairs that belong to exactly one $*$-set; and the remaining 90 pairs belong to exactly three $*$-sets.
(4) Any four type II products that form $a *$-set are linearly independent over \mathbb{C}.

Proof. Parts (1)-(3) were checked by computer. We constructed a graph with the Type II products as vertices and an edge between two products if and only if their input forms are invariant under the reflections associated to each other's divisors. (See Appendix A for an image.) The $*$-sets are the maximal cliques in this graph.
(4) Let $f_{j}, 1 \leq j \leq 4$, be a $*$-set and let Γ_{*} be the group generated by $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$ and the reflections associated to the divisors of the four products, such that these products are modular forms on Γ_{*}. Let σ_{i} be a reflection associated to the divisor of f_{i}. Then $\sigma_{i}\left(f_{i}\right)=-f_{i}$ and $\sigma_{i}\left(f_{j}\right)=f_{j}$ for $j \neq i$, which implies the linear independence.

The extra structure given by the 90 pairs of type II products in part (3) will be useful later in this section.

Lemma 3.5. There is a *-set $\left\{\Theta_{1}, \Theta_{2}, \Theta_{3}, \Theta_{4}\right\}$ for which the Jacobian $J\left(\Theta_{1}, \Theta_{2}, \Theta_{3}, \Theta_{4}\right)$ equals Igusa's cusp form $\Phi_{5, A_{1}}$ up to a nonzero constant multiple.

Proof. In the notation of Appendix A we took the products labelled $\Theta_{1}, \Theta_{2}, \Theta_{26}, \Theta_{55}$. By computing their Fourier expansions it is straightforward to show that their Jacobian is not identically zero. Since these products are modular forms of weight $1 / 2$ and multiplier system v_{Θ} on $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$, and $v_{\Theta}=1$ for all reflections in $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$, we conclude from Theorem 2.2 (4) that their Jacobian J vanishes on the mirrors of all reflections in $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$. It follows that $J / \Phi_{5, A_{1}}$ is a holomorphic modular form of weight 0 and therefore constant.

By applying Theorem 2.5, we obtain Runge's theorem in the context of orthogonal groups.
Theorem 3.6. The type II products span a four-dimensional space over \mathbb{C}. If $\Theta_{1}, \Theta_{2}, \Theta_{3}, \Theta_{4}$ are any linearly independent Type II products, then they are algebraically independent and generate the algebra of modular forms:

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right), v_{\Theta}\right) & =\mathbb{C}\left[\Theta_{1}, \Theta_{2}, \Theta_{3}, \Theta_{4}\right], \\
\left(\mathcal{D}_{3} / \mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)\right)^{*} & \cong \mathbb{P}^{3}(\mathbb{C}) .
\end{aligned}
$$

Perna's theorem can be phrased in terms of a larger modular group associated to a $*$-set.
Theorem 3.7. Let $\left\{\Theta_{1}, \Theta_{2}, \Theta_{3}, \Theta_{4}\right\}$ be a *-set and let $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$ be the subgroup generated by $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$ and the reflections with mirrors in the divisor of $\prod_{j=1}^{4} \Theta_{j}$. Then

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)\right) & =\mathbb{C}\left[\Theta_{1}^{2}, \Theta_{2}^{2}, \Theta_{3}^{2}, \Theta_{4}^{2}\right], \\
\left(\mathcal{D}_{3} / \mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)\right)^{*} & \cong \mathbb{P}^{3}(\mathbb{C}) .
\end{aligned}
$$

Proof. By definition of $*$-sets, the forms Θ_{j}^{2} are modular forms of weight 1 with trivial character on $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$. By Lemma 3.5 their Jacobian equals $\Phi_{5, A_{1}} \prod_{j=1}^{4} \Theta_{j}$ up to a non-zero multiple. By Theorem 2.4, the graded algebra of modular forms on $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$ is freely generated by the four squares.

As another application, we determine an algebra of modular forms generated by ten theta constants and reprove a well-known theorem of Igusa.

The Jacobian $\Phi_{5, A_{1}}$ factors as $\prod_{i=1}^{10} \theta_{i}$ in $M_{*}\left(\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right), v_{\Theta}\right)$. By Theorem 2.3, this decomposition determines the character group of $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$. For $1 \leq i \leq 10$, let χ_{i} be the character of $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$ defined as the quotient of the multiplier system of θ_{i} by v_{Θ}. These ten basic characters generate the 1024 characters of $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$. Let $\mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right)$ be the commutator
subgroup of $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$. Then we have

$$
\begin{aligned}
M_{\frac{k}{2}}\left(\mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right), v_{\Theta}^{k}\right) & =\bigoplus_{\chi} M_{\frac{k}{2}}\left(\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right), v_{\Theta}^{k} \chi\right), \\
M_{\frac{k}{2}}\left(\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right), v_{\Theta}^{k} \chi_{i}\right) & =M_{\frac{k-1}{2}}\left(\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right), v_{\Theta}^{k-1}\right) \theta_{i}, \quad 1 \leq i \leq 10,
\end{aligned}
$$

the first sum taken over the character group of $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$.
Since each θ_{i}^{2} lies in $M_{1}\left(\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)\right)$ and the ten squares θ_{i}^{2} are linearly independent, we conclude from Theorem 3.6 that the ten θ_{i}^{2} form a basis of $M_{1}\left(\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)\right)$. We define O_{0} as the subgroup on which the basic characters coincide:

$$
\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right)=\left\{\gamma \in \mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right): \chi_{1}(\gamma)=\cdots=\chi_{10}(\gamma)\right\}
$$

The group $\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right)$ properly contains $\mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right)$ because $\sigma_{1} \cdots \sigma_{10} \in \mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right)$ where σ_{i} is any reflection associated to the divisor of θ_{i} for $1 \leq i \leq 10$. We note that

$$
\theta_{i} \in M_{\frac{1}{2}}\left(\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right), v_{\Theta} \chi_{i}\right), \quad 1 \leq i \leq 10
$$

Let χ be the common restriction of the χ_{i} to $\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right)$. We define a multiplier system v_{ϑ} of weight $1 / 2$ on $\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right)$ by

$$
v_{\vartheta}=v_{\Theta} \chi .
$$

Then

$$
\begin{equation*}
\theta_{i} \in M_{\frac{1}{2}}\left(\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right), v_{\vartheta}\right), \quad 1 \leq i \leq 10 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta_{j} \in M_{\frac{1}{2}}\left(\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right), v_{\vartheta} \chi\right), \quad 1 \leq j \leq 4 . \tag{3.3}
\end{equation*}
$$

Since the quotient group $\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right) / \mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right)$ is abelian, we obtain an eigenspace decomposition

$$
\begin{equation*}
M_{\frac{k}{2}}\left(\mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right), v_{\vartheta}^{k}\right)=\bigoplus_{\epsilon} M_{\frac{k}{2}}\left(\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right), v_{\vartheta}^{k} \epsilon\right), \tag{3.4}
\end{equation*}
$$

the direct sum taken over the characters of $\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right) / \mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right)$. Note that $v_{\vartheta}=v_{\Theta}$ on $\mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right)$. Therefore, every modular form in $M_{\frac{k}{2}}\left(\mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right), v_{\vartheta}^{k}\right)$ can be decomposed as a sum

$$
P_{0}+\sum_{i=1}^{4} P_{i} \Theta_{i}
$$

where P_{0} is a modular form of weight $k / 2$, and $P_{1}, P_{2}, P_{3}, P_{4}$ are modular forms of weight $(k-1) / 2$, and

$$
P_{0}, \ldots, P_{4} \in \mathbb{C}\left[\theta_{i}, 1 \leq i \leq 10\right] .
$$

Combining (3.2), (3.3) and (3.4), we obtain

$$
M_{*}\left(\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right), v_{\vartheta}\right)=\mathbb{C}\left[\theta_{i}, 1 \leq i \leq 10\right]
$$

and we see that χ is the unique non-trivial character of $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right) / \mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right)$. Altogether, we obtain the generators found by Igusa in [11]:

Theorem 3.8.

$$
\begin{aligned}
& M_{*}\left(\mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right), v_{\vartheta}\right)=\mathbb{C}\left[\theta_{i}, 1 \leq i \leq 10\right] \\
& M_{*}\left(\mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right), v_{\Theta}\right)=\mathbb{C}\left[\Theta_{1}, \Theta_{2}, \Theta_{3}, \Theta_{4}, \theta_{i}, 1 \leq i \leq 10\right] .
\end{aligned}
$$

Remark 3.9. The ten theta constants θ_{i} are not all modular on $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$. In fact, $\Phi_{5, A_{1}}$ factors as the product of five forms of weights $1 / 2,1 / 2,1,1$ and 2 on $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$, which are products of some theta constants.

We can now construct some new free algebras of Siegel modular forms associated to $*$-sets. Let $\Theta_{1}, \ldots, \Theta_{4}$ be a $*$-set and let $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$ be the group generated by its reflections and by $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$.
Theorem 3.10. For $1 \leq i \leq 4$ let v_{i} be the multiplier system of Θ_{i} on $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$. Then

$$
M_{*}\left(\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right), v_{i}\right)=\mathbb{C}\left[\Theta_{i}, \Theta_{j}^{2}, 1 \leq j \leq 4, j \neq i\right], \quad 1 \leq i \leq 4
$$

This includes Theorem 3.7 which describes the subring of integer-weight forms.
Proof. Without loss of generality we take $i=1$. It is clear that $v_{1}=1$ for all reflections associated to the divisor of $\prod_{j=2}^{4} \Theta_{j}$ and $v_{1}=-1$ for reflections associated to the divisor of Θ_{1}. By Lemma 3.5 the Jacobian of $\Theta_{1}, \Theta_{j}^{2}$ for $2 \leq j \leq 4$ equals $\Phi_{5, A_{1}} \prod_{j=2}^{4} \Theta_{j}$ up to a non-zero multiple. The claim follows from Theorem 2.5.

Let $\mathrm{O}_{1,1}\left(2 U(4) \oplus A_{1}\right), \mathrm{O}_{1,12}\left(2 U(4) \oplus A_{1}\right)$ and $\mathrm{O}_{1,123}\left(2 U(4) \oplus A_{1}\right)$ denote the subgroups generated by reflections associated to the divisor of $\Phi_{5, A_{1}} \Theta_{1}, \Phi_{5, A_{1}} \Theta_{1} \Theta_{2}$ and $\Phi_{5, A_{1}} \Theta_{1} \Theta_{2} \Theta_{3}$, respectively. By a similar argument, we can prove the following results using Theorem 2.5:

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1,1}\left(2 U(4) \oplus A_{1}\right), v_{4}\right) & =\mathbb{C}\left[\Theta_{1}^{2}, \Theta_{2}, \Theta_{3}, \Theta_{4}\right], \\
M_{*}\left(\mathrm{O}_{1,12}\left(2 U(4) \oplus A_{1}\right), v_{4}\right) & =\mathbb{C}\left[\Theta_{1}^{2}, \Theta_{2}^{2}, \Theta_{3}, \Theta_{4}\right], \\
M_{*}\left(\mathrm{O}_{1,123}\left(2 U(4) \oplus A_{1}\right), v_{4}\right) & =\mathbb{C}\left[\Theta_{1}^{2}, \Theta_{2}^{2}, \Theta_{3}^{2}, \Theta_{4}\right] .
\end{aligned}
$$

We remark that $\mathrm{O}_{1,1}\left(2 U(4) \oplus A_{1}\right)$ does not contain any reflections associated to the divisor of $\Theta_{2} \Theta_{3} \Theta_{4}$. Indeed, the multiplier systems v_{2}, v_{3} and v_{4} coincide on $\mathrm{O}_{1,1}\left(2 U(4) \oplus A_{1}\right)$ because the quotient of any two of them defines a character whose values on generators are always 1 . If $\mathrm{O}_{1,1}\left(2 U(4) \oplus A_{1}\right)$ contained a reflection σ associated to the divisor of Θ_{2} then we would find $v_{2}(\sigma)=-1$ but $v_{3}(\sigma)=v_{4}(\sigma)=1$, a contradiction. Similarly, $\mathrm{O}_{1,12}\left(2 U(4) \oplus A_{1}\right)$ does not contain any reflections associated to the divisor of $\Theta_{3} \Theta_{4}$.

On the other hand, $\mathrm{O}_{1,123}\left(2 U(4) \oplus A_{1}\right)$ does contain reflections associated to the divisor of Θ_{4}. In fact,

$$
\begin{equation*}
\mathrm{O}_{1,123}\left(2 U(4) \oplus A_{1}\right)=\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right) . \tag{3.5}
\end{equation*}
$$

(Of course, this agrees with Theorem 3.10.) If this was not true, then the only alternative would be $M_{*}\left(\mathrm{O}_{1,123}\left(2 U(4) \oplus A_{1}\right), v_{4}^{2}\right)=\mathbb{C}\left[\Theta_{i}^{2}, i=1,2,3,4\right]$, contradicting the decomposition of the Jacobian in Theorem 2.3.

Finally we obtain some larger groups generated by reflections and free algebras of modular forms associated to triples of $*$-sets. Suppose Θ_{1}, Θ_{2} is one of the 90 pairs of type II products that can be extended to three distinct $*$-sets, denoted

$$
\left\{\Theta_{1}, \Theta_{2}, \Theta_{3}, \Theta_{4}\right\}, \quad\left\{\Theta_{1}, \Theta_{2}, \Theta_{5}, \Theta_{6}\right\}, \quad\left\{\Theta_{1}, \Theta_{2}, \Theta_{7}, \Theta_{8}\right\}
$$

The principal part into the input function to Θ_{i} will be denoted $q^{-1 / 4}\left(e_{u_{i}}+e_{-u_{i}}\right)$.
In this situation the reflection $\sigma_{u_{5}}$ fixes the set $\left\{ \pm u_{1}, \pm u_{2}, \pm u_{3}, \pm u_{4}\right\}$ and has u_{1} and u_{2} as eigenvectors. It cannot have u_{3} and u_{4} as eigenvectors as otherwise the proof of Lemma 3.4 yields five linearly independent type II products. Therefore it maps u_{3} to $\pm u_{4}$ and u_{4} to $\pm u_{3}$. Taking Borcherds lifts and using the fact that all type II products have Fourier coefficients in $\mathbb{Z}[i]$, this implies $\sigma_{u_{5}}\left(\Theta_{3}\right)=i^{k} \Theta_{4}$ for some $k \in\{0,1,2,3\}$. The same statements hold for the reflections $\sigma_{u_{i}}$, $i=6,7,8$.

Let $\mathrm{O}_{2,56}\left(2 U(4) \oplus A_{1}\right)$ be the group generated by $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$ and the reflections associated to the divisor of Θ_{5}. Since $\sigma_{u_{3}}$ swaps u_{5} and u_{6} (up to multiples), $\mathrm{O}_{2,56}\left(2 U(4) \oplus A_{1}\right)$ also contains the reflections associated to the divisor of Θ_{6}. It is clear that $\Theta_{3}^{2} \Theta_{4}^{2} \in M_{2}\left(\mathrm{O}_{2,56}\left(2 U(4) \oplus A_{1}\right)\right)$. From the previous paragraph it follows that $\sigma_{u_{5}}\left(\Theta_{3}^{2}\right)=c \Theta_{4}^{2}$ where $c \in\{ \pm 1\}$. Then $\sigma_{u_{5}}\left(\Theta_{4}^{2}\right)=c \Theta_{3}^{2}$ and therefore $\Theta_{3}^{2}+c \Theta_{4}^{2} \in M_{1}\left(\mathrm{O}_{2,56}\left(2 U(4) \oplus A_{1}\right)\right)$.

On the other hand, $\Theta_{5} \Theta_{6} \in M_{1}\left(\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)\right)$ is a \mathbb{C}-linear combination of Θ_{i}^{2} for $i=1,2,3,4$. By considering the action of $\sigma_{u_{5}}$ on these functions, we find that $\Theta_{5} \Theta_{6}$ is equal to $\Theta_{3}^{2}-c \Theta_{4}^{2}$ up to a non-zero constant multiple. Using Lemma 3.5, we see that the Jacobian of $\Theta_{1}^{2}, \Theta_{2}^{2}, \Theta_{3}^{2}+c \Theta_{4}^{2}$ and $\Theta_{3}^{2} \Theta_{4}^{2}$ is equal to $\Phi_{5, A_{1}} \prod_{i=1}^{6} \Theta_{i}$ up to a non-zero multiple. We have therefore proved the following:

$$
M_{*}\left(\mathrm{O}_{2,56}\left(2 U(4) \oplus A_{1}\right)\right)=\mathbb{C}\left[\Theta_{1}^{2}, \Theta_{2}^{2}, \Theta_{3}^{2}+c \Theta_{4}^{2}, \Theta_{3}^{2} \Theta_{4}^{2}\right] .
$$

Similarly, since $\Theta_{7} \Theta_{8} \in M_{1}\left(\mathrm{O}_{2,56}\left(2 U(4) \oplus A_{1}\right)\right)$, it is equal to $\Theta_{3}^{2}+c \Theta_{4}^{2}$ up to a non-zero constant by considering the action of $\sigma_{u_{7}}$. Letting $\mathrm{O}_{2,78}\left(2 U(4) \oplus A_{1}\right)$ be the group generated by $\mathrm{O}_{2}(2 U(4) \oplus$ A_{1}) and the reflections associated to the divisor of Θ_{7}, we obtain by the same argument

$$
M_{*}\left(\mathrm{O}_{2,78}\left(2 U(4) \oplus A_{1}\right)\right)=\mathbb{C}\left[\Theta_{1}^{2}, \Theta_{2}^{2}, \Theta_{3}^{2}-c \Theta_{4}^{2}, \Theta_{3}^{2} \Theta_{4}^{2}\right] .
$$

Finally, let $\mathrm{O}_{2,5678}\left(2 U(4) \oplus A_{1}\right)$ be the group generated by $\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$ and reflections associated to the divisor of $\Theta_{5} \Theta_{7}$. Then this group also contains the reflections associated to the divisor of $\Theta_{6} \Theta_{8}$. Using Lemma 3.5 we derive that the Jacobian of $\Theta_{1}^{2}, \Theta_{2}^{2}, \Theta_{3}^{2} \Theta_{4}^{2}, \Theta_{5}^{2} \Theta_{6}^{2}$ equals $\Phi_{5, A_{1}} \prod_{i=1}^{8} \Theta_{i}$ up to a non-zero constant multiple, and have proved the following:

$$
M_{*}\left(\mathrm{O}_{2,5678}\left(2 U(4) \oplus A_{1}\right)\right)=\mathbb{C}\left[\Theta_{1}^{2}, \Theta_{2}^{2}, \Theta_{3}^{2} \Theta_{4}^{2}, \Theta_{5}^{2} \Theta_{6}^{2}\right]
$$

Altogether we have computed the algebras of modular forms for eight subgroups of $\mathrm{O}^{+}\left(2 U \oplus A_{1}\right)$:

$$
\begin{aligned}
& \mathrm{O}_{1}^{\prime}\left(2 U(4) \oplus A_{1}\right) \subsetneq \mathrm{O}_{0}\left(2 U(4) \oplus A_{1}\right) \subsetneq \mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right) \subsetneq \mathrm{O}_{1,1}\left(2 U(4) \oplus A_{1}\right) \subsetneq \\
& \subsetneq \mathrm{O}_{1,12}\left(2 U(4) \oplus A_{1}\right) \subsetneq \mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right) \subsetneq \mathrm{O}_{2,56}\left(2 U(4) \oplus A_{1}\right) \subsetneq \mathrm{O}_{2,5678}\left(2 U(4) \oplus A_{1}\right) .
\end{aligned}
$$

Remark 3.11. There is no multiplier system v of $\mathrm{O}_{2}\left(U(4) \oplus A_{1}\right)$ which equals 1 on all reflections. If such a v existed, then v_{4} / v would define a character of $\mathrm{O}_{2}\left(U(4) \oplus A_{1}\right)$ which equals 1 on all reflections associated to the divisor of $\Theta_{1} \Theta_{2} \Theta_{3}$ but is -1 on all reflections associated to the divisor of Θ_{4}, which contradicts (3.5).

Remark 3.12. The Baily-Borel compactification of the modular variety $\mathcal{D}_{3} / \mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$ is a projective space, but the algebra $M_{*}\left(\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)\right)$ of modular forms of integral weight is not free. It is well-known that if $M_{*}(\Gamma)$ is free then $(\mathcal{D} / \Gamma)^{*}$ is a weighted projective space (see [2]), but the above example shows that the converse does not hold. Eberhard Freitag suggested to the authors that the following statement may hold.

Conjecture 3.13. If the modular variety $(\mathcal{D} / \Gamma)^{*}$ is a weighted projective space, then there exists a weight k_{0} and a multiplier system v_{0} of weight k_{0} such that the graded algebra

$$
M_{*}\left(\Gamma,\left(k_{0}, v_{0}\right)\right):=\bigoplus_{k \in \mathbb{N}} M_{k k_{0}}\left(\Gamma, v_{0}^{k}\right)
$$

is freely generated.
Remark 3.14. There are twenty linearly independent modular forms of weight $1 / 2$ for the Weil representation attached to $2 U(4) \oplus A_{1}$, and their images under the additive theta lift ([3], Theorem 14.3) span the 10 -dimensional space of modular forms of weight one for $\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$.

4. The $2 U(2) \oplus 2 A_{1}$ LATtice

In this section we prove Matsumoto's theorem in the context of modular forms on $2 U(2) \oplus 2 A_{1}$. We first work out some Borcherds products on $2 U(2) \oplus 2 A_{1}$.

Lemma 4.1.

(1) There are 10 holomorphic Borcherds products of singular weight 1. Their inputs have principal parts of the form

$$
q^{-1 / 4}\left(e_{v_{1}}+e_{v_{2}}\right)+2 e_{0}, \quad\left(v_{1}, v_{1}\right)=\left(v_{2}, v_{2}\right)=1 / 2, \quad \operatorname{ord}\left(v_{1}\right)=\operatorname{ord}\left(v_{2}\right)=2
$$

where v_{1} and v_{2} are images of each other under swapping the two A_{1} components. In particular they are 2-reflective modular forms. We label the ten forms $F_{i}, 1 \leq i \leq 10$ such that with respect to the Gram matrix

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

their principal parts are as follows:

$$
\begin{array}{ll}
F_{1}: q^{-1 / 4}\left(e_{(0,1 / 2,1 / 2,0,0,0)}+e_{(0,1 / 2,0,1 / 2,0,0)}\right) ; & F_{2}: q^{-1 / 4}\left(e_{(1 / 2,0,1 / 2,0,0,0}+e_{(1 / 2,0,0,1 / 2,0,0)}\right) ; \\
F_{3}: q^{-1 / 4}\left(e_{(1 / 2,1 / 2,1 / 2,0,1 / 2,1 / 2)}+e_{(1 / 2,1 / 2,0,1 / 2,1 / 2,1 / 2)}\right) ; & F_{4}: q^{-1 / 4}\left(e_{(1 / 2,0,1 / 2,0,1 / 2,0)}+e_{(1 / 2,0,0,1 / 2,1 / 2,0)}\right) ; \\
F_{5}: q^{-1 / 4}\left(e_{(0,1 / 2,1 / 2,0,0,1 / 2)}+e_{(0,1 / 2,0,1 / 2,0,1 / 2)}\right) ; & F_{6}: q^{-1 / 4}\left(e_{(1 / 2,1 / 2,1 / 2,0,0,0)}+e_{(1 / 2,1 / 2,0,1 / 2,0,0)}\right) ; \\
F_{7}: q^{-1 / 4}\left(e_{(0,0,1 / 2,0,1 / 2,1 / 2)}+e_{(0,0,0,1 / 2,1 / 2,1 / 2)}\right) ; & F_{8}: q^{-1 / 4}\left(e_{(0,0,1 / 2,0,1 / 2,0)}+e_{(0,0,0,1 / 2,1 / 2,0)}\right) ; \\
F_{9}: q^{-1 / 4}\left(e_{(0,0,1 / 2,0,0,1 / 2)}+e_{(0,0,0,1 / 2,0,1 / 2)}\right) ; & F_{10}: q^{-1 / 4}\left(e_{(0,0,1 / 2,0,0,0)}+e_{(0,0,0,1 / 2,0,0)}\right) .
\end{array}
$$

The ten F_{i} are linearly independent over \mathbb{C}. We define $\Phi_{10,2 A_{1}}:=\prod_{j=1}^{10} F_{j}$.
(2) There are 15 reflective Borcherds products of weight 2 with principal parts of the form $q^{-1 / 2} e_{u}$, where $(u, u)=1$, $\operatorname{ord}(u)=2$ and u is invariant under the swapping of two A_{1} components.
(3) There is a holomorphic Borcherds product of weight 4, which we denote $\Phi_{4,2 A_{1}}$, whose input has the principal part $q^{-1 / 2} e_{(0,0,1 / 2,1 / 2,0,0)}$. The reflection σ_{1} associated to the vector ($0,0,1 / 2,1 / 2,0,0$) swaps the two A_{1} components.
Let $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$ be the subgroup of $\mathrm{O}^{+}\left(2 U(2) \oplus 2 A_{1}\right)$ generated by all reflections associated to the divisors of $\Phi_{10,2 A_{1}}$ and $\Phi_{4,2 A_{1}}$. The inputs of all F_{i} and of $\Phi_{4,2 A_{1}}$ are invariant under the reflection σ_{1}, so F_{i} and $\Phi_{4,2 A_{1}}$ are modular forms for $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$. Each F_{i} has a quadratic character on $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$ so their squares F_{i}^{2} have trivial character.
Lemma 4.2. The Jacobian of $F_{i}^{2}, 1 \leq i \leq 5$ equals $\Phi_{10,2 A_{1}} \Phi_{4,2 A_{1}}$ up to a non-zero constant multiple. In particular, the forms F_{i} for $1 \leq i \leq 5$ are algebraically independent over \mathbb{C}.
Proof. By computing the first few terms of the Fourier expansion we find that $J=J\left(F_{i}^{2}, 1 \leq i \leq 5\right)$ is not identically zero. By Theorem $2.2, J$ is a modular form of weight 14 and vanishes on mirrors of all reflections in $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$. In particular $J /\left(\Phi_{10,2 A_{1}} \Phi_{4,2 A_{1}}\right)$ is a holomorphic modular form of weight 0 and therefore constant.

By Theorem 2.4, we obtain the following result which is equivalent to Matsumoto's theorem.

Theorem 4.3.

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)\right) & =\mathbb{C}\left[F_{i}^{2}, 1 \leq i \leq 5\right], \\
\left(\mathcal{D}_{4} / \mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)\right)^{*} & \cong \mathbb{P}^{4}(\mathbb{C}) . \\
11 &
\end{aligned}
$$

Corollary 4.4. The squares F_{i}^{2} span a five-dimensional space over \mathbb{C} and they satisfy the four-term relations

$$
\begin{array}{r}
F_{1}^{2}-F_{5}^{2}+F_{6}^{2}-F_{10}^{2}=0, \\
F_{2}^{2}-F_{5}^{2}-F_{8}^{2}-F_{9}^{2}=0, \\
F_{3}^{2}-F_{5}^{2}+F_{6}^{2}-F_{9}^{2}=0, \\
F_{4}^{2}-F_{6}^{2}-F_{8}^{2}+F_{10}^{2}=0, \\
F_{7}^{2}-F_{8}^{2}-F_{9}^{2}+F_{10}^{2}=0 .
\end{array}
$$

The vector space spanned by the 15 weight two products in Lemma 4.1 and the ten squares F_{i}^{2} has dimension 5.

Proof. The exact form of the relations among the F_{i}^{2} can be read off of their Fourier expansions. The 15 weight two products have trivial character on $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$ and therefore lie in the span of $F_{1}^{2}, \ldots, F_{5}^{2}$.

We will now obtain an analogue of Igusa's theorem for Hermitian modular forms of degree 2 over the Gaussian numbers. The Jacobian $J=J\left(F_{i}^{2}, 1 \leq i \leq 5\right)$ is the product of the ten F_{i} and $\Phi_{4,2 A_{1}}$. To apply Theorem 2.3 we have to show that $\Phi_{4,2 A_{1}}$ is irreducible as a modular form on $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$, i.e. it is not a product of two non-constant modular forms with characters (or multiplier systems) on $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$. Since $\Phi_{4,2 A_{1}}^{2} \in M_{8}\left(\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)\right)$, it can be expressed as a polynomial P in terms of the five F_{i}^{2}. We computed this polynomial and found that it is irreducible. From Theorem 2.3, it follows that $\Phi_{4,2 A_{1}}$ is irreducible on $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$.

By Theorem 2.3, there are exactly 2048 characters of $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$ and they are generated by the basic characters χ_{i} of F_{i} and the character of $\Phi_{4,2 A_{1}}$. Let $\mathrm{O}_{1}^{\prime}\left(2 U(2) \oplus 2 A_{1}\right)$ be the commutator subgroup of $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$. Then

$$
M_{*}\left(\mathrm{O}_{1}^{\prime}\left(2 U(2) \oplus 2 A_{1}\right)\right)=\mathbb{C}\left[\Phi_{4,2 A_{1}}, F_{i}, 1 \leq i \leq 10\right] .
$$

Let O_{0} be the subgroup

$$
\mathrm{O}_{0}\left(2 U(2) \oplus 2 A_{1}\right)=\left\{\gamma \in \mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right): \chi_{i}(\gamma)=1,1 \leq i \leq 10\right\} .
$$

We have the following result immediately.

Theorem 4.5.

$$
M_{*}\left(\mathrm{O}_{0}\left(2 U(2) \oplus 2 A_{1}\right)\right)=\mathbb{C}\left[F_{i}, 1 \leq i \leq 10\right] .
$$

Similarly, we define another subgroup of $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$ via

$$
\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus 2 A_{1}\right)=\left\{\gamma \in \mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right): \chi_{i}(\gamma)=1,1 \leq i \leq 5\right\} .
$$

The group $\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus 2 A_{1}\right)$ contains all reflections associated to the divisor of $\Phi_{4,2 A_{1}} \prod_{j=6}^{10} F_{j}$. The forms $F_{i}, 1 \leq i \leq 5$, are modular with trivial character on $\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus 2 A_{1}\right)$ and their Jacobian equals $\Phi_{4,2 A_{1}} \prod_{j=6}^{10} F_{j}$ up to a non-zero constant multiple by Lemma 4.2. Therefore we obtain the following result.

Theorem 4.6.

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus 2 A_{1}\right)\right) & =\mathbb{C}\left[F_{i}, 1 \leq i \leq 5\right], \\
\left(\mathcal{D}_{4} / \mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus 2 A_{1}\right)\right)^{*} & \cong \mathbb{P}^{4}(\mathbb{C}) .
\end{aligned}
$$

The above theorem also implies that $\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus 2 A_{1}\right)$ is generated by all reflections associated to the divisor of $\Phi_{4,2 A_{1}} \prod_{j=6}^{10} F_{j}$. (Note that the same argument applies with F_{1}, \ldots, F_{5} replaced by
any of the 162 linearly independent sets of five squares of products F_{i}^{2}. These sets can be read off of the four-term relations of Corollary 4.4.)

We define a larger subgroup of $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$ via

$$
\mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus 2 A_{1}\right)=\left\{\gamma \in \mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right): \chi_{1}(\gamma)=1\right\},
$$

i.e. the subgroup generated by all reflections associated to the divisor of $\Phi_{4,2 A_{1}} \prod_{j=2}^{10} F_{j}$. A similar argument to the above theorem yields the following result.

Theorem 4.7.

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus 2 A_{1}\right)\right) & =\mathbb{C}\left[F_{1}, F_{2}^{2}, F_{3}^{2}, F_{4}^{2}, F_{5}^{2}\right] \\
\left(\mathcal{D}_{4} / \mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus 2 A_{1}\right)\right)^{*} & \cong \mathbb{P}(1,2,2,2,2) \cong \mathbb{P}^{4}(\mathbb{C})
\end{aligned}
$$

The ring of even-weight modular forms for $\mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus 2 A_{1}\right)$ is freely generated in weight two (and indeed is exactly the ring from Theorem 4.3):

$$
M_{2 *}\left(\mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus 2 A_{1}\right)\right)^{\mathrm{even}}=\mathbb{C}\left[F_{1}^{2}, F_{2}^{2}, F_{3}^{2}, F_{4}^{2}, F_{5}^{2}\right] .
$$

Remark 4.8. There is a six-dimensional space of modular forms of weight 1 for the Weil representation attached to $2 U(2) \oplus 2 A_{1}$, and these map to a five-dimensional space of modular forms of weight 2 with trivial character on the discriminant kernel $\widetilde{\mathrm{O}}^{+}\left(2 U(2) \oplus 2 A_{1}\right)$ under the additive theta lift. Applying Theorem 2.4 to $\widetilde{\mathrm{O}}^{+}\left(2 U(2) \oplus 2 A_{1}\right)$, we find that $M_{*}\left(\widetilde{\mathrm{O}}^{+}\left(2 U(2) \oplus 2 A_{1}\right)\right)$ is freely generated by the five additive lifts. Moreover, $\widetilde{\mathrm{O}}^{+}\left(2 U(2) \oplus 2 A_{1}\right)$ is generated by all 2-reflections and then

$$
\widetilde{\mathrm{O}}^{+}\left(2 U(2) \oplus 2 A_{1}\right)=\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right) .
$$

By the Eichler criterion (cf. Proposition 3.3 of $[9])$, the divisor of $\Phi_{4,2 A_{1}}$ is irreducible on $\widetilde{\mathrm{O}}^{+}(2 U(2) \oplus$ $\left.2 A_{1}\right)$. In this way we obtain a different proof that $\Phi_{4,2 A_{1}}$ is irreducible on $\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$. We also see that the square of each of the singular weight products is an additive lift.

Remark 4.9. By [8, Lemma 6.1], we have

$$
\mathrm{O}^{+}\left(2 U(2) \oplus 2 A_{1}\right) \cong \mathrm{O}^{+}\left(2 U \oplus 2 A_{1}\right) .
$$

Thus $\Phi_{10,2 A_{1}}$ can be regarded as a modular form on $2 U \oplus 2 A_{1}$. In the interpretation as Hermitian modular forms this is the Borcherds product ϕ_{10} in [5, Corollary 4], which was realized earlier by Freitag [6] as the product of ten theta constants. Indeed, our F_{i} are exactly the ten theta constants when interpreted as Hermitian modular forms.

5. The $2 U(3) \oplus A_{2}$ Lattice

In this section we reprove the theorem of Freitag and Salvati Manni in the context of modular forms on $2 U(3) \oplus A_{2}$. We first work out some Borcherds products on $2 U(3) \oplus A_{2}$:
(1) There are 45 holomorphic Borcherds products of singular weight 1. Their inputs have principal parts of the form

$$
q^{-1 / 3}\left(e_{v}+e_{-v}\right)+2 e_{0}, \quad(v, v)=2 / 3, \operatorname{ord}(v)=3
$$

The product of these 45 forms is a reflective modular form $\Phi_{45, A_{2}}$ of weight 45 which can be viewed as a 2 -reflective modular form for $\mathrm{O}^{+}\left(2 U \oplus A_{2}\right)$.
(2) There is a holomorphic Borcherds product of weight 9 whose input has principal part

$$
\left(q^{-1}+18\right) e_{0} .
$$

We label this form $\Phi_{9, A_{2}}$. It is a 2-reflective modular form on $\mathrm{O}^{+}\left(2 U(3) \oplus A_{2}\right)$ and can be regarded as a reflective modular form for $\mathrm{O}^{+}\left(2 U \oplus A_{2}\right)$.

Let $\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)$ be the subgroup of $\mathrm{O}^{+}\left(2 U(3) \oplus A_{2}\right)$ generated by all 2-reflections, i.e. reflections associated to the divisor of $\Phi_{9, A_{2}}$. It is clear that $\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)$ is a subgroup of $\widetilde{\mathrm{O}}^{+}\left(2 U(3) \oplus A_{2}\right)$. By considering their divisors, we see that the 45 weight 1 products have trivial character on $\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)$.

It will again be convenient to use the notion of $*$-sets.
Definition 5.1. A $*$-set (of type $2 U(3) \oplus A_{2}$) is a set of five products of weight 1 on $2 U(3) \oplus A_{2}$ whose inputs are invariant under all reflections associated to the divisors of any of the five products.
*-sets of type $2 U(3) \oplus A_{2}$ satisfy properties analogous to Lemma 3.4:

Lemma 5.2.

(1) There are exactly 27 *-sets.
(2) Every product of weight 1 belongs to exactly three $*$-sets.
(3) There are 720 pairs of weight 1 products that do not belong to $a *$-set. The remaining 270 pairs belong to a unique $*$-set.
(4) The five elements of any $*$-set are linearly independent over \mathbb{C}.

Lemma 5.3. There is a*-set $\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}\right\}$ whose Jacobian equals $\Phi_{9, A_{2}}$ up to a non-zero constant multiple.

Proof. In the notation of Appendix B, we used the forms $G_{1}, G_{14}, G_{15}, G_{23}, G_{27}$ which form a *-set. We computed their Jacobian to precision 10 and found that it is not identically zero (and indeed agrees with the Fourier expansion of $\Phi_{9, A_{2}}$). By the same argument as Lemma 3.5, the quotient $J / \Phi_{9, A_{2}}$ is holomorphic of weight zero and therefore constant.

By applying Theorem 2.4 we obtain the theorem of Freitag and Salvati Manni in the context of orthogonal groups.

Theorem 5.4. The 45 singular-weight products on $2 U(3) \oplus A_{2}$ span a five-dimensional space over \mathbb{C}. Any five linearly independent products G_{1}, \ldots, G_{5} are algebraically independent and generate the algebra of modular forms:

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)\right) & =\mathbb{C}\left[G_{1}, G_{2}, G_{3}, G_{4}, G_{5}\right], \\
\left(\mathcal{D}_{4} / \mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)\right)^{*} & \cong \mathbb{P}^{4}(\mathbb{C}) .
\end{aligned}
$$

We also have the following analogue of Perna's theorem.
Theorem 5.5. Let $\left\{G_{1}, \ldots, G_{5}\right\}$ be a *-set and let $\mathrm{O}_{2}\left(2 U(3) \oplus A_{2}\right)$ be the subgroup generated by $\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)$ and the reflections associated to the divisor of $\prod_{j=1}^{5} G_{j}$. Then

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{2}\left(2 U(3) \oplus A_{2}\right)\right) & =\mathbb{C}\left[G_{1}^{2}, G_{2}^{2}, G_{3}^{2}, G_{4}^{2}, G_{5}^{2}\right], \\
\left(\mathcal{D}_{4} / \mathrm{O}_{2}\left(2 U(3) \oplus A_{2}\right)\right)^{*} & \cong \mathbb{P}^{4}(\mathbb{C}) .
\end{aligned}
$$

In Remark 5.7 below, we will see that the squared Jacobian $\Phi_{9, A_{2}}^{2}$ is irreducible in $M_{*}\left(\mathrm{O}_{1}(2 U(3) \oplus\right.$ $\left.A_{2}\right)$). From Theorem 2.3 it follows that det is the only non-trivial character of $\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)$. Let $\mathrm{O}_{1}^{\prime}\left(2 U(3) \oplus A_{2}\right)$ be the commutator subgroup of $\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)$. Then

$$
M_{*}\left(\mathrm{O}_{1}^{\prime}\left(2 U(3) \oplus A_{2}\right)\right)=\mathbb{C}\left[\Phi_{9, A_{2}}, G_{i}, 1 \leq i \leq 5\right] .
$$

As in $\S 3$ we can construct a tower of free algebras of modular forms. We fix a $*$-set $\left\{G_{1}, \ldots, G_{5}\right\}$. Let $\mathrm{O}_{1,1}\left(2 U(3) \oplus A_{2}\right), \mathrm{O}_{1,12}\left(2 U(3) \oplus A_{2}\right), \mathrm{O}_{1,123}\left(2 U(3) \oplus A_{2}\right)$ and $\mathrm{O}_{1,1234}\left(2 U(3) \oplus A_{2}\right)$ be the subgroups generated by reflections associated to the divisors of $\Phi_{9, A_{2}} G_{1}, \Phi_{9, A_{2}} \prod_{j=1}^{2} G_{j}, \Phi_{9, A_{2}} \prod_{j=1}^{3} G_{j}$
and $\Phi_{9, A_{2}} \prod_{j=1}^{4} G_{j}$ respectively. It is easy to derive the following structure results:

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1,1}\left(2 U(3) \oplus A_{2}\right)\right) & =\mathbb{C}\left[G_{1}^{2}, G_{2}, G_{3}, G_{4}, G_{5}\right], \\
M_{*}\left(\mathrm{O}_{1,12}\left(2 U(3) \oplus A_{2}\right)\right) & =\mathbb{C}\left[G_{1}^{2}, G_{2}^{2}, G_{3}, G_{4}, G_{5}\right], \\
M_{*}\left(\mathrm{O}_{1,123}\left(2 U(3) \oplus A_{2}\right)\right) & =\mathbb{C}\left[G_{1}^{2}, G_{2}^{2}, G_{3}^{2}, G_{4}, G_{5}\right], \\
M_{*}\left(\mathrm{O}_{1,1234}\left(2 U(3) \oplus A_{2}\right)\right) & =\mathbb{C}\left[G_{1}^{2}, G_{2}^{2}, G_{3}^{2}, G_{4}^{2}, G_{5}\right] .
\end{aligned}
$$

From the last of these we obtain another realization of $\mathbb{P}^{4}(\mathbb{C})$ as an orthogonal modular variety:

Theorem 5.6.

$$
\left(\mathcal{D}_{4} / \mathrm{O}_{1,1234}\left(2 U(3) \oplus A_{2}\right)\right)^{*} \cong \mathbb{P}(1,2,2,2,2) \cong \mathbb{P}^{4}(\mathbb{C}) .
$$

Remark 5.7. The space of invariants of the Weil representation attached to $2 U(3) \oplus A_{2}$ is tendimensional, and these are mapped to a five-dimensional space of modular forms of weight one with trivial character on the full discriminant kernel $\widetilde{\mathrm{O}}^{+}\left(2 U(3) \oplus A_{2}\right)$ under the additive theta lift. In particular the 45 singular weight products are all additive lifts. Using the argument in Remark 4.8 we conclude that $M_{*}\left(\widetilde{\mathrm{O}}^{+}\left(2 U(3) \oplus A_{2}\right)\right)$ is freely generated by the five additive lifts and that

$$
\widetilde{\mathrm{O}}^{+}\left(2 U(3) \oplus A_{2}\right)=\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right),
$$

and the Eichler criterion implies that $\Phi_{9, A_{2}}$ is irreducible in $M_{*}\left(\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)\right)$.

6. The $2 U(2) \oplus A_{1}$ Lattice

In this section we will find three interesting free algebras of modular forms associated to the lattice $2 U(2) \oplus A_{1}$. We first describe some Borcherds products on $2 U(2) \oplus A_{1}$ of small weight.
(1) There are nine holomorphic Borcherds products of weight 1 and one holomorphic product of weight 2 on $2 U(2) \oplus A_{1}$. All have principal parts of the form

$$
q^{-1 / 4} e_{v}, \quad(v, v)=1 / 2, \quad \operatorname{ord}(v)=2 .
$$

The product of these ten forms, which we denote $\Phi_{11, A_{1}(2)}$, is a 2 -reflective modular form of weight 11 on $2 U(2) \oplus A_{1}$. This can also be viewed as a modular form on $2 U \oplus A_{1}(2)$ by [8, Lemma 6.1] because

$$
\mathrm{O}^{+}\left(2 U(2) \oplus A_{1}\right) \cong \mathrm{O}^{+}\left(2 U \oplus A_{1}(2)\right) .
$$

(2) There are six holomorphic Borcherds products f_{1}, \ldots, f_{6} of weight 2 with principal parts

$$
q^{-1 / 2} e_{v}, \quad(v, v)=1, \operatorname{ord}(v)=2
$$

We fix the Gram matrix $\left(\begin{array}{ccccc}0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & 0\end{array}\right)$ and label the six products f_{1}, \ldots, f_{6} above such that their principal parts are as follows:

$$
\begin{array}{ll}
f_{1}: v=(0,1 / 2,0,1 / 2,0) ; & f_{2}: v=(0,1 / 2,0,1 / 2,1 / 2) ; \\
f_{3}: v=(1 / 2,0,0,1 / 2,1 / 2) ; & f_{4}: v=(1 / 2,0,0,0,1 / 2) ; \\
f_{5}: v=(1 / 2,1 / 2,0,0,1 / 2) ; & f_{6}: v=(1 / 2,1 / 2,0,1 / 2,0) .
\end{array}
$$

Let $\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)$ be the subgroup of $\mathrm{O}^{+}\left(2 U(2) \oplus A_{1}\right)$ generated by all reflections associated to the divisor of $\Phi_{11, A_{1}(2)}$.

Lemma 6.1.

(1) The six products f_{i} are modular forms with trivial character on $\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)$.
(2) The Jacobian $J\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ equals $\Phi_{11, A_{1}(2)}$ up to a non-zero multiple.

Proof. (1) This can be seen from the divisor of the f_{i}.
(2) We checked by computer that $J=J\left(f_{1}, \ldots, f_{4}\right)$ is nonzero (and indeed equals $768 \Phi_{11, A_{1}(2)}$ up to precision $\left.O(q, s)^{10}\right)$. Applying Theorem $2.2(4)$ as in the earlier sections shows that $J / \Phi_{11, A_{1}(2)}$ is holomorphic of weight zero and therefore a constant.

Therefore we can apply Theorem 2.4 to this situation. This yields another realization of $\mathbb{P}^{3}(\mathbb{C})$ as a modular variety.

Theorem 6.2. The six products f_{1}, \ldots, f_{6} span a four-dimensional space and satisfy the relations

$$
f_{1}+f_{3}+f_{5}=f_{2}+f_{4}+f_{6}=0
$$

Any four that are linearly independent are algebraically independent and generate the ring of modular forms for $\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)$:

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)\right) & =\mathbb{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right] \\
\left(\mathcal{D}_{3} / \mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)\right)^{*} & \cong \mathbb{P}^{3}(\mathbb{C})
\end{aligned}
$$

Proof. Theorem 2.4 implies everything except the exact form of the relations among the f_{i}, which can be determined from their Fourier expansions.

Remark 6.3. The squares of the nine Borcherds products b_{i} of weight one are modular forms without character for $\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)$ and therefore lie in the span of f_{1}, \ldots, f_{4}. Indeed they also span this space and they satisfy five three-term linear relations of the form $b_{i}^{2}+b_{j}^{2}=b_{k}^{2}$ as one can check from their Fourier expansions.

Choose any linearly independent squares of weight one Borcherds products $b_{1}^{2}, b_{2}^{2}, b_{3}^{2}$ and b_{4}^{2} as in the remark. Let $\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus A_{1}\right)$ be the subgroup of $\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)$ generated by all reflections associated to the divisor of $\Phi_{11, A_{1}(2)} /\left(\prod_{j=1}^{4} b_{j}\right)$. Similarly to the case of $2 U(2) \oplus 2 A_{1}$, the four forms b_{j} are modular with trivial character on $\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus A_{1}\right)$ and their Jacobian equals $\Phi_{11, A_{1}(2)} /\left(\prod_{j=1}^{4} b_{j}\right)$ up to a nonzero multiple. From this we obtain another realization of $\mathbb{P}^{3}(\mathbb{C})$ as a modular variety:

Theorem 6.4.

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus A_{1}\right)\right) & =\mathbb{C}\left[b_{1}, b_{2}, b_{3}, b_{4}\right] \\
\left(\mathcal{D}_{3} / \mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus A_{1}\right)\right)^{*} & \cong \mathbb{P}^{3}(\mathbb{C})
\end{aligned}
$$

Furthermore, we define $\mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus A_{1}\right)$ as the subgroup of $\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)$ generated by all reflections associated to the divisor of $\Phi_{11, A_{1}(2)} / b_{1}$. Then

Theorem 6.5.

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus A_{1}\right)\right) & =\mathbb{C}\left[b_{1}, b_{2}^{2}, b_{3}^{2}, b_{4}^{2}\right] \\
\left(\mathcal{D}_{3} / \mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus A_{1}\right)\right)^{*} & \cong \mathbb{P}(1,2,2,2) \cong \mathbb{P}^{3}(\mathbb{C})
\end{aligned}
$$

Remark 6.6. The space of modular forms of weight $3 / 2$ for the Weil representation attached to $2 U(2) \oplus A_{1}$ is five-dimensional, and these forms map to a four-dimensional space of modular forms of weight 2 under the additive theta lift. In particular, every modular form in $M_{2}\left(\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)\right)$ is an additive lift and therefore has trivial character on the full discriminant kernel. Similarly to Remark 4.8, we find that $M_{*}\left(\widetilde{\mathrm{O}}^{+}\left(2 U(2) \oplus A_{1}\right)\right)$ is freely generated by the four additive lifts and that

$$
\widetilde{\mathrm{O}}^{+}\left(2 U(2) \oplus A_{1}\right)=\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)
$$

Similarly to the previous sections, the decomposition of the Jacobian $\Phi_{11, A_{1}(2)}$ determines the structure of the algebra of modular forms for the commutator group $\mathrm{O}_{1}^{\prime}\left(2 U(2) \oplus A_{1}\right)$ and some related groups. We omit the details.

7. The $2 U(3) \oplus A_{1}$ Lattice

In this section we determine an interesting free algebra of modular forms on $2 U(3) \oplus A_{1}$. We first work out Borcherds products on $2 U(3) \oplus A_{1}$:
(1) There are 29 holomorphic Borcherds products of weight 1 on $2 U(3) \oplus A_{1}$. Sixteen of them have principal parts of the form

$$
q^{-1 / 4}\left(e_{v}+e_{-v}\right), \quad(v, v)=1 / 2, \operatorname{ord}(v)=6
$$

and they are not reflective modular forms. Twelve of them have principal parts

$$
q^{-1 / 3}\left(e_{v}+e_{-v}\right), \quad(v, v)=2 / 3, \quad \operatorname{ord}(v)=3
$$

and they are reflective modular forms. The last one is a 2 -reflective modular form denoted by Δ_{1} with principal part

$$
q^{-1 / 4} e_{(0,0,1 / 2,0,0)}
$$

with respect to the Gram matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
3 & 3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

(2) There is a holomorphic Borcherds product of weight 7 with principal part $q^{-1} e_{0}$. We label this 2-reflective form $\Phi_{7, A_{1}(3)}$.

Let $\mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right)$ be the subgroup of $\mathrm{O}^{+}\left(2 U(3) \oplus A_{1}\right)$ generated by all reflections associated to the divisor of $\Phi_{7, A_{1}(3)}$. The 28 products of weight 1 other than Δ_{1} are modular forms of trivial character on $\mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right)$.
Lemma 7.1. There are four products g_{1}, \ldots, g_{4} of weight 1 whose Jacobian $J\left(g_{1}, g_{2}, g_{3}, g_{4}\right)$ equals $\Phi_{7, A_{1}(3)}$ up to a non-zero multiple.

Proof. We used the products g_{i} whose inputs have principal parts $q^{-1 / 3}\left(e_{v_{i}}+e_{-v_{i}}\right)$, where

$$
\begin{array}{ll}
v_{1}=(1 / 3,2 / 3,0,2 / 3,0), & v_{2}=(1 / 3,2 / 3,0,1 / 3,2 / 3), \\
v_{3}=(1 / 3,1 / 3,0,2 / 3,2 / 3), & v_{4}=(1 / 3,1 / 3,0,1 / 3,0),
\end{array}
$$

(although it will turn out that any four linearly independent forms not including Δ_{1} will do) and using Fourier series computed that their Jacobian J is nonzero (and equals $\left(12 \zeta_{3}+6\right) \Phi_{7, A_{1}(3)}$ up to precision $\left.O(q, s)^{10}\right)$. As in the previous sections $J / \Phi_{7, A_{1}(3)}$ is holomorphic of weight zero and therefore constant.

By applying Theorem 2.4 we obtain the following theorem.
Theorem 7.2. Every linearly independent set g_{1}, \ldots, g_{4} of weight one products that does not include Δ_{1} is algebraically independent and generates the ring of modular forms for $\mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right)$:

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right)\right) & =\mathbb{C}\left[g_{1}, g_{2}, g_{3}, g_{4}\right], \\
\left(\mathcal{D}_{3} / \mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right)\right)^{*} & \cong \mathbb{P}^{3}(\mathbb{C}) .
\end{aligned}
$$

In particular, the 28 products of weight 1 other than Δ_{1} span a 4 -dimensional space. (Δ_{1} has a nontrivial character on $\mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right)$ and in particular does not lie in their span.)

Remark 7.3. The space of modular forms of weight $1 / 2$ for the Weil representation attached to $2 U(3) \oplus A_{1}$ is 8-dimensional, and these map to a four-dimensional space of modular forms of weight one under the additive theta lift. It follows that all of the 28 products of weight 1 other than Δ_{1} are additive lifts. Similarly to $2 U(2) \oplus 2 A_{1}$, we conclude that $M_{*}\left(\widetilde{\mathrm{O}}^{+}\left(2 U(3) \oplus A_{1}\right)\right)$ is freely generated by the four additive lifts and that

$$
\widetilde{\mathrm{O}}^{+}\left(2 U(3) \oplus A_{1}\right)=\mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right)
$$

By the Eichler criterion, the forms Δ_{1} and $\Phi_{7, A_{1}(3)} / \Delta_{1}$ are irreducible on $\mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right)$.

$$
\text { 8. The } U(4) \oplus U(2) \oplus A_{1} \text { LATTICE }
$$

In this section we determine two interesting free algebras of modular forms on $U(4) \oplus U(2) \oplus A_{1}$. We first work out Borcherds products on $U(4) \oplus U(2) \oplus A_{1}$:
(1) There are 8 holomorphic Borcherds products of weight $1 / 2$ and 3 holomorphic products of weight 1 on $U(4) \oplus U(2) \oplus A_{1}$, all with principal parts of the form

$$
q^{-1 / 4} e_{v}, \quad(v, v)=1 / 2, \operatorname{ord}(v)=2
$$

Their product is a 2-reflective modular form of weight 7 which we label $\Phi_{7, A_{1}(4)}$.
(2) There are 16 other holomorphic Borcherds products of weight 1. They are all reflective. Twelve of them have input forms with principal parts

$$
q^{-1 / 4}\left(e_{v}+e_{-v}\right), \quad(v, v)=1 / 2, \text { ord }(v)=4
$$

The remaining four have input forms with principal parts

$$
q^{-1 / 2} e_{v}, \quad(v, v)=1, \operatorname{ord}(v)=2
$$

Let $\mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right)$ be the subgroup of $\mathrm{O}^{+}\left(U(4) \oplus U(2) \oplus A_{1}\right)$ generated by all reflections associated to the divisor of $\Phi_{7, A_{1}(4)}$. Then the 16 products of weight 1 in (2) are modular forms of trivial character on $\mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right)$.

Let h_{1}, \ldots, h_{4} denote the four products in (2) whose input forms have principal part $q^{-1 / 2} e_{v}$ with v of order two.

Lemma 8.1. The Jacobian $J=J\left(h_{1}, h_{2}, h_{3}, h_{4}\right)$ is equals $\Phi_{7, A_{1}(4)}$ up to a non-zero constant multiple. The four forms h_{1}, h_{2}, h_{3} and h_{4} are algebraically independent over \mathbb{C}.

Proof. As in the previous sections the quotient $J / \Phi_{7, A_{1}(4)}$ is holomorphic of weight zero and therefore constant. We checked by computer that this constant is not zero.

Theorem 2.4 yields the following structure theorem:

Theorem 8.2.

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right)\right) & =\mathbb{C}\left[h_{1}, h_{2}, h_{3}, h_{4}\right] \\
\left(\mathcal{D}_{3} / \mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right)\right)^{*} & \cong \mathbb{P}^{3}(\mathbb{C})
\end{aligned}
$$

Corollary 8.3. The 16 products of weight one in (2) span a 4-dimensional space. The 8 squares of weight $1 / 2$ products also span this space.

We label the 8 weight $1 / 2$ products $d_{i}, 1 \leq i \leq 8$. Let v_{i} be the multiplier system of d_{i} on $\mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right)$. Assume that d_{i}^{2} for $1 \leq i \leq 4$ are linearly independent over \mathbb{C}. Let $\mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right)$ be the subgroup of $\mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right)$ generated by all reflections associated to the divisor of $\Phi_{7, A_{1}(4)} /\left(\prod_{j=1}^{4} d_{j}\right)$. The four multiplier systems v_{i} for $1 \leq i \leq 4$ coincide on $\mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right)$ because the quotient of any two of them is a character of $\mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right)$ which equals one on the generator reflections of that group. Their common
restriction defines a multiplier system of $\mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right)$ and we denote it by v. This implies that $\mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right)$ does not contain reflections associated to the divisor of $\prod_{j=1}^{4} d_{j}$, and that $v=1$ for all reflections in $\mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right)$. We obtain the following result:

Theorem 8.4.

$$
\begin{aligned}
& M_{*}\left(\mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right), v\right)=\mathbb{C}\left[d_{1}, d_{2}, d_{3}, d_{4}\right] \\
& \left(\mathcal{D}_{3} / \mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right)\right)^{*} \cong \mathbb{P}^{3}(\mathbb{C})
\end{aligned}
$$

Remark 8.5. There are four linearly independent additive theta lifts of weight 1 for the Weil representation attached to $U(4) \oplus U(2) \oplus A_{1}$. This implies that every weight 1 modular form of trivial character on $\mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right)$ is an additive lift and therefore is modular under the full discriminant kernel. Similarly to Remark 4.8, we conclude that $M_{*}\left(\widetilde{\mathrm{O}}^{+}\left(U(4) \oplus U(2) \oplus A_{1}\right)\right)$ is freely generated by the four additive lifts and that

$$
\begin{gathered}
\widetilde{\mathrm{O}}^{+}\left(U(4) \oplus U(2) \oplus A_{1}\right)=\mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right) . \\
\text { 9. ThE } U \oplus U(2) \oplus A_{1}(2) \text { LATTICE }
\end{gathered}
$$

In this section we find two interesting free algebras of modular forms for the $U \oplus U(2) \oplus A_{1}(2)$ lattice. We first describe some Borcherds products:
(1) There are 3 holomorphic Borcherds products t_{1}, t_{2}, t_{3} of weight 1 . They have principal parts of the form

$$
q^{-1 / 8}\left(e_{v}+e_{-v}\right), \quad(v, v)=1 / 4, \quad \operatorname{ord}(v)=4 .
$$

(2) There is a holomorphic Borcherds product $\Psi_{8, A_{1}(2)}$ of weight 8 whose principal part with respect to the Gram matrix

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 4 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

is

$$
\begin{aligned}
& -q^{-1 / 8}\left(e_{(0,0,1 / 4,0,0)}+e_{(0,0,3 / 4,0,0)}+e_{(0,0,1 / 4,1 / 2,0)}\right. \\
& \left.\quad \quad+e_{(0,0,3 / 4,1 / 2,0)}+e_{(0,1 / 2,1 / 4,0,0)}+e_{(0,1 / 2,3 / 4,0,0)}\right) \\
& +q^{-1 / 2} e_{(0,0,1 / 2,0,0)}+q^{-1} e_{(0,0,0,0,0)} .
\end{aligned}
$$

In addition, we let m_{2} be the additive theta lift of the (unique) modular form of weight $3 / 2$ for the Weil representation attached to $U \oplus U(2) \oplus A_{1}(2)$ with constant term $1 \mathfrak{e}_{0}$; in particular, m_{2} has weight two.

Let $\mathrm{O}_{1}\left(U \oplus U(2) \oplus A_{1}(2)\right)$ and $\mathrm{O}_{2}\left(U \oplus U(2) \oplus A_{1}(2)\right)$ be the subgroups of $\mathrm{O}^{+}\left(U \oplus U(2) \oplus A_{1}(2)\right)$ generated by the reflections associated to the divisors of $\Psi_{8, A_{1}(2)}$ and $\Psi_{8, A_{1}(2)} t_{1} t_{2} t_{3}$ respectively. By considering the actions of these reflections on the input forms, we see that t_{1}, t_{2}, t_{3} are modular forms with a character of order two on $\mathrm{O}_{2}\left(U \oplus U(2) \oplus A_{1}(2)\right)$, and m_{2} is modular on $\mathrm{O}_{2}\left(U \oplus U(2) \oplus A_{1}(2)\right)$ without character. Moreover, t_{1}, t_{2}, t_{3} have trivial character on $\mathrm{O}_{1}\left(U \oplus U(2) \oplus A_{1}(2)\right)$.

Lemma 9.1. The Jacobian $J=J\left(t_{1}, t_{2}, t_{3}, m_{2}\right)$ equals $\Psi_{8, A_{1}(2)}$ up to a nonzero multiple.
Proof. Using Fourier series we computed that J is not identically zero (and equals $(-1 / 3) \Psi_{8, A_{1}(2)}$ up to precision $\left.O(q, s)^{10}\right)$. As in the previous sections $J / \Psi_{8, A_{1}(2)}$ is holomorphic of weight zero and therefore constant.

Therefore, we can apply Theorem 2.4:

Theorem 9.2.

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{1}\left(U \oplus U(2) \oplus A_{1}(2)\right)\right) & =\mathbb{C}\left[t_{1}, t_{2}, t_{3}, m_{2}\right] \\
M_{*}\left(\mathrm{O}_{2}\left(U \oplus U(2) \oplus A_{1}(2)\right)\right) & =\mathbb{C}\left[t_{1}^{2}, t_{2}^{2}, t_{3}^{2}, m_{2}\right] \\
\left(\mathcal{D}_{3} / \mathrm{O}_{2}\left(U \oplus U(2) \oplus A_{1}(2)\right)\right)^{*} & \cong \mathbb{P}^{3}(\mathbb{C})
\end{aligned}
$$

Furthermore, let $\mathrm{O}_{2^{\prime}}\left(U \oplus U(2) \oplus A_{1}(2)\right)$ be the subgroup of $\mathrm{O}^{+}\left(U \oplus U(2) \oplus A_{1}(2)\right)$ generated by the reflections associated to the divisor of $\Psi_{8, A_{1}(2)} t_{2} t_{3}$. We then have another realization of $\mathbb{P}^{3}(\mathbb{C})$.

Theorem 9.3.

$$
\begin{aligned}
M_{*}\left(\mathrm{O}_{2^{\prime}}\left(U \oplus U(2) \oplus A_{1}(2)\right)\right) & =\mathbb{C}\left[t_{1}, t_{2}^{2}, t_{3}^{2}, m_{2}\right] \\
\left(\mathcal{D}_{3} / \mathrm{O}_{2^{\prime}}\left(U \oplus U(2) \oplus A_{1}(2)\right)\right)^{*} & \cong \mathbb{P}(1,2,2,2) \cong \mathbb{P}^{3}(\mathbb{C})
\end{aligned}
$$

Remark 9.4. The following eight groups constructed in the paper are all subgroups of $\mathrm{O}^{+}\left(2 U \oplus A_{1}\right)$:

$$
\begin{array}{llll}
\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right), & \mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right), & \mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right), & \mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus A_{1}\right) \\
\mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus A_{1}\right), & \mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right), & \mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right), & \mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right)
\end{array}
$$

For any of them, the Satake-Baily-Borel compactification of modular variety is isomorphic to \mathbb{P}^{3}. The decomposition into irreducibles of the square of the Jacobian of any generators corresponds to the Γ-equivalence classes of mirrors of reflections in Γ (see Theorem 2.3). In particular, this decomposition is an invariant of the groups up to conjugacy. We give the decomposition for the 16 reflection groups in Table 1, which shows that the eight subgroups above are pairwise non-conjugate except for the possible cases

$$
\mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right) \quad \text { and } \quad \mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus A_{1}\right)
$$

and

$$
\mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right) \quad \text { and } \quad \mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)
$$

Remark 9.5. The groups of type $\mathrm{O}_{1}(M)$ in our paper are finite index subgroups of the full integral orthogonal group $\mathrm{O}^{+}(M)$. This follows easily from the Margulis normal subgroup theorem [12]. It can also be proved using the basic argument in the proof of [20, Theorem 3.1].

Remark 9.6. Many examples in this paper support Conjecture 5.2 in [19] which states that if $M_{*}(\Gamma)$ is a free algebra for a finite index subgroup Γ of $\mathrm{O}^{+}(M)$ then $M_{*}\left(\Gamma_{1}\right)$ is also free for any other reflection subgroup Γ_{1} satisfying $\Gamma<\Gamma_{1}<\mathrm{O}^{+}(M)$.

Acknowledgements The authors would like to thank Eberhard Freitag and Riccardo Salvati Manni for proposing this topic and for helpful discussions. H. Wang is grateful to Max Planck Institute for Mathematics in Bonn for its hospitality and financial support. B. Williams is supported by a fellowship of the LOEWE research group Uniformized Structures in Algebra and Geometry.

Table 1. 16 reflection groups Γ for which $(\mathcal{D} / \Gamma)^{*}$ is a projective space. The symbol $k(J)$ stands for the weight of the Jacobian J. For a group Γ, the entry $\mathbf{a}_{1} \times x_{1}+\cdots+$ $\mathbf{a}_{\mathbf{t}} \times x_{t}$ in the rightmost column means that the decomposition of J^{2} into irreducibles in $M_{*}(\Gamma)$ consists of x_{i} forms of weight $\mathbf{a}_{\mathbf{i}}, 1 \leq i \leq t$.

group	$k(J)$	weights of generators	decomposition of J^{2}
$\mathrm{O}_{1}\left(2 U(4) \oplus A_{1}\right)$	5	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\mathbf{1} \times 10$
$\mathrm{O}_{2}\left(2 U(4) \oplus A_{1}\right)$	7	$1,1,1,1$	$\mathbf{1} \times 6+\mathbf{2} \times 2+\mathbf{4}$
$\mathrm{O}_{1}\left(2 U(2) \oplus A_{1}\right)$	11	$2,2,2,2$	$\mathbf{2} \times 9+\mathbf{4}$
$\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus A_{1}\right)$	7	$1,1,1,1$	$\mathbf{1} \times 8+\mathbf{2} \times 3$
$\mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus A_{1}\right)$	10	$1,2,2,2$	$\mathbf{2} \times 8+\mathbf{4}$
$\mathrm{O}_{1}\left(2 U(3) \oplus A_{1}\right)$	7	$1,1,1,1$	$\mathbf{2}+\mathbf{1 2}$
$\mathrm{O}_{1}\left(U(4) \oplus U(2) \oplus A_{1}\right)$	7	$1,1,1,1$	$\mathbf{1} \times 8+\mathbf{2} \times 3$
$\mathrm{O}_{1^{\prime}}\left(U(4) \oplus U(2) \oplus A_{1}\right)$	5	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\mathbf{1} \times 10$
$\mathrm{O}_{2}\left(U \oplus U(2) \oplus A_{1}(2)\right)$	11	$2,2,2,2$	$\mathbf{2} \times 7+\mathbf{8}$
$\mathrm{O}_{2^{\prime}}\left(U \oplus U(2) \oplus A_{1}(2)\right)$	10	$1,2,2,2$	$\mathbf{2} \times 6+\mathbf{8}$
$\mathrm{O}_{1}\left(2 U(2) \oplus 2 A_{1}\right)$	14	$2,2,2,2,2$	$\mathbf{2} \times 10+\mathbf{8}$
$\mathrm{O}_{1^{\prime}}\left(2 U(2) \oplus 2 A_{1}\right)$	9	$1,1,1,1,1$	$\mathbf{2} \times 5+\mathbf{8}$
$\mathrm{O}_{1^{\prime \prime}}\left(2 U(2) \oplus 2 A_{1}\right)$	13	$1,2,2,2,2$	$\mathbf{2} \times 9+\mathbf{8}$
$\mathrm{O}_{1}\left(2 U(3) \oplus A_{2}\right)$	9	$1,1,1,1,1$	$\mathbf{1 8}$
$\mathrm{O}_{1,1234}\left(2 U(3) \oplus A_{2}\right)$	13	$1,2,2,2,2$	$\mathbf{2} \times 4+\mathbf{1 8}$
$\mathrm{O}_{2}\left(2 U(3) \oplus A_{2}\right)$	14	$2,2,2,2,2$	$\mathbf{2} \times 5+\mathbf{1 8}$

Appendix A: Type II products and $*$-Sets of type $2 U(4) \oplus A_{1}$
The sixty type II singular-weight products attached to the lattice $M=2 U(4) \oplus A_{1}$ have input forms with principal part $q^{-1 / 4}\left(e_{v}+e_{-v}\right)$ for certain cosets $v \in M^{\vee} / M$ of order 4. In the table below, we list one coset representative v for each product Θ_{i}, with respect to the Gram matrix

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
4 & 0 & 0 & 0 & 0
\end{array}\right):
$$

Θ_{1}	$(1 / 4,1 / 2,0,1 / 2,1 / 4)$	Θ_{2}	$(1 / 4,0,0,0,1 / 4)$
Θ_{3}	$(0,0,1 / 2,1 / 4,1 / 4)$	Θ_{4}	$(1 / 2,1 / 2,1 / 2,1 / 4,1 / 4)$
Θ_{5}	$(1 / 4,0,0,1 / 4,1 / 4)$	Θ_{6}	$(1 / 4,1 / 2,0,1 / 4,3 / 4)$
Θ_{7}	$(1 / 2,0,1 / 2,1 / 4,0)$	Θ_{8}	$(0,0,1 / 2,1 / 4,1 / 2)$
Θ_{9}	$(0,1 / 4,1 / 2,0,1 / 4)$	Θ_{10}	$(1 / 2,1 / 4,1 / 2,1 / 2,3 / 4)$
Θ_{11}	$(1 / 4,1 / 2,1 / 2,0,0)$	Θ_{12}	$(1 / 4,0,1 / 2,0,0)$
Θ_{13}	$(1 / 4,1 / 2,1 / 2,1 / 4,1 / 2)$	Θ_{14}	$(1 / 4,1 / 2,1 / 2,3 / 4,1 / 2)$
Θ_{15}	$(1 / 4,3 / 4,1 / 2,0,0)$	Θ_{16}	$(1 / 4,1 / 4,1 / 2,0,0)$
Θ_{17}	$(1 / 4,3 / 4,0,1 / 2,3 / 4)$	Θ_{18}	$(1 / 4,3 / 4,0,0,1 / 4)$
Θ_{19}	$(0,1 / 4,0,1 / 4,1 / 4)$	Θ_{20}	$(1 / 2,1 / 4,0,3 / 4,1 / 4)$
Θ_{21}	$(1 / 4,3 / 4,0,1 / 4,1 / 2)$	Θ_{22}	$(1 / 4,3 / 4,0,3 / 4,0)$
Θ_{23}	$(0,1 / 2,1 / 2,1 / 2,1 / 4)$	Θ_{24}	$(0,0,1 / 2,1 / 2,1 / 4)$
Θ_{25}	$(1 / 2,1 / 4,0,1 / 4,0)$	Θ_{26}	$(1 / 2,1 / 4,0,1 / 4,1 / 2)$
Θ_{27}	$(1 / 2,1 / 4,1 / 2,0,0)$	Θ_{28}	$(1 / 2,1 / 4,1 / 2,0,1 / 2)$
Θ_{29}	$(1 / 4,1 / 4,1 / 2,1 / 4,3 / 4)$	Θ_{30}	$(1 / 4,1 / 4,1 / 2,3 / 4,1 / 4)$
Θ_{31}	$(1 / 4,0,0,1 / 2,1 / 4)$	Θ_{32}	$(1 / 4,1 / 2,0,0,1 / 4)$
Θ_{33}	$(0,0,1 / 2,1 / 4,3 / 4)$	Θ_{34}	$(1 / 2,1 / 2,1 / 2,1 / 4,3 / 4)$
Θ_{35}	$(1 / 4,1 / 2,0,3 / 4,3 / 4)$	Θ_{36}	$(1 / 4,0,0,3 / 4,1 / 4)$
Θ_{37}	$(1 / 2,0,1 / 2,1 / 4,1 / 2)$	Θ_{38}	$(0,0,1 / 2,1 / 4,0)$
Θ_{39}	$(1 / 2,1 / 4,1 / 2,1 / 2,1 / 4)$	Θ_{40}	$(0,1 / 4,1 / 2,0,3 / 4)$
Θ_{41}	$(1 / 4,0,1 / 2,1 / 2,0)$	Θ_{42}	$(1 / 4,1 / 2,1 / 2,1 / 2,0)$
Θ_{43}	$(1 / 4,0,1 / 2,1 / 4,0)$	Θ_{44}	$(1 / 4,0,1 / 2,3 / 4,0)$
Θ_{45}	$(1 / 4,1 / 4,1 / 2,1 / 2,1 / 2)$	Θ_{46}	$(1 / 4,3 / 4,1 / 2,1 / 2,1 / 2)$
Θ_{47}	$(1 / 4,1 / 4,0,1 / 2,3 / 4)$	Θ_{48}	$(1 / 4,1 / 4,0,0,1 / 4)$
Θ_{49}	$(1 / 2,1 / 4,0,3 / 4,3 / 4)$	Θ_{50}	$(0,1 / 4,0,1 / 4,3 / 4)$
Θ_{51}	$(1 / 4,1 / 4,0,3 / 4,1 / 2)$	Θ_{52}	$(1 / 4,1 / 4,0,1 / 4,0)$
Θ_{53}	$(0,1 / 2,1 / 2,0,1 / 4)$	Θ_{54}	$(0,0,1 / 2,0,1 / 4)$
Θ_{55}	$(0,1 / 4,0,1 / 4,0)$	Θ_{56}	$(0,1 / 4,0,1 / 4,1 / 2)$
Θ_{57}	$(0,1 / 4,1 / 2,0,1 / 2)$	Θ_{58}	$(0,1 / 4,1 / 2,0,0)$
Θ_{59}	$(1 / 4,3 / 4,1 / 2,1 / 4,1 / 4)$	Θ_{60}	$(1 / 4,3 / 4,1 / 2,3 / 4,3 / 4)$

The $*$-sets are the maximum cliques in the graph formed by connecting products Θ_{i} and Θ_{j} by an edge if the reflections associated to the divisor of Θ_{j} also preserve the divisor of Θ_{i}. With respect to the ordering above, the $105 *$-sets are $\left\{\Theta_{i_{1}}, \Theta_{i_{2}}, \Theta_{i_{3}}, \Theta_{i_{4}}\right\}$ where $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)$ is one of the following:

```
(1,2, 26,55), (3, 17, 18, 34), (6, 19, 36, 49), (10, 14, 40, 44), (13, 19, 20, 44), (17, 27, 47, 57), (23, 24, 53, 54),
(1, 2, 29, 60), (3, 21, 22, 34), (7, 8, 37, 38), (10, 30, 40, 60), (13, 30, 43, 60), (17, 48, 49, 50), (23, 24, 57, 58),
(1,2,31,32), (3, 23, 33,53), (7,11,38, 42), (10, 39, 53, 54), (14, 18, 43, 47), (18, 19, 20, 47), (23, 54, 55, 56),
(1, 5, 32, 36), (4, 8, 34, 38), (7, 13, 14, 38), (10, 39, 57, 58), (14, 29, 44, 59), (18, 28, 48, 58), (24, 25, 26, 53),


Figure 1. There is an edge between the type II products \(\Theta_{i}\) and \(\Theta_{j}\) if \(\Theta_{i}\) is modular under the reflections associated to the divisor of \(\Theta_{j}\). This is a 15 -regular graph with 23,040 automorphisms. The edge between \(\Theta_{i}\) and \(\Theta_{j}\) is colored red, green or blue depending on \(i+j \bmod 3\).
\((1,7,8,32),(4,24,34,54),(7,24,37,54),(11,12,28,57),(14,43,49,50),(19,20,49,50),(25,26,55,56)\), \((1,18,31,48),(4,33,47,48),(8,12,37,41),(11,12,41,42),(15,16,28,57),(19,23,50,54),(25,29,56,60)\), \((1,27,31,57),(4,33,51,52),(8,23,38,53),(11,12,45,46),(15,16,41,42),(19,25,26,50),(25,31,32,56)\), \((2,6,31,35),(5,6,22,51),(8,37,43,44),(11,21,41,51),(15,16,45,46),(20,24,49,53),(26,30,55,59)\), \((2,17,32,47),(5,6,35,36),(9,10,22,51),(11,26,41,56),(15,19,45,49),(20,49,55,56),(27,28,53,54)\), \((2,28,32,58),(5,6,39,40),(9,10,35,36),(11,42,43,44),(15,29,30,46),(21,22,47,48),(27,28,57,58)\), \((2,31,37,38),(5,15,35,45),(9,10,39,40),(12,13,14,41),(15,33,34,46),(21,22,51,52),(27,41,42,58)\), \((3,4,16,45),(5,20,35,50),(9,13,39,43),(12,22,42,52),(16,20,46,50),(21,25,51,55),(27,45,46,58)\), \((3,4,29,30),(5,36,37,38),(9,23,24,40),(12,25,42,55),(16,45,59,60),(21,35,36,52),(29,30,59,60)\), \((3,4,33,34),(6,7,8,35),(9,27,28,40),(13,14,43,44),(17,18,47,48),(21,39,40,52),(30,31,32,59)\), \((3,7,33,37),(6,16,36,46),(9,29,39,59),(13,17,44,48),(17,18,51,52),(22,26,52,56),(33,34,59,60)\).

The ordering is chosen such that the 90 exceptional pairs of type II forms that extend in three ways to \(*\)-sets are precisely those of the form \(\left(\Theta_{i+j}, \Theta_{i+k}\right)\) where \(i<30\) is odd and \(j, k \in\{0,1,30,31\}\) are distinct.


Figure 2. Contracting the 90 exceptional pairs in Figure 1 yields the strongly regular graph \(\operatorname{srg}(15,6,1,3)\) on 15 vertices. The edges are colored red, green, blue by the same rule as Figure 1.

\section*{Appendix B: Singular-weight products and \(*\)-Sets of type \(2 U(3) \oplus A_{2}\)}

The 45 singular-weight products attached to the lattice \(M=2 U(3) \oplus A_{2}\) have input forms with principal part \(q^{-1 / 3}\left(e_{v}+e_{-v}\right)\) for cosets \(v \in M^{\vee} / M\) of order 3. In the table below, for each product \(G_{i}\) we list one coset representative \(v\) with respect to the Gram matrix
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\[
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 3 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0
\end{array}\right):
\]} \\
\hline \(G_{1}\) & ( \(0,0,2 / 3,2 / 3,0,1 / 3\) ) & \(G_{2}\) & ( \(0,0,2 / 3,2 / 3,1 / 3,1 / 3)\) \\
\hline \(G_{3}\) & ( \(0,1 / 3,2 / 3,2 / 3,0,0)\) & \(G_{4}\) & ( \(1 / 3,2 / 3,1 / 3,1 / 3,1 / 3,1 / 3)\) \\
\hline \(G_{5}\) & ( \(0,1 / 3,1 / 3,1 / 3,0,1 / 3)\) & \(G_{6}\) & ( \(0,0,2 / 3,2 / 3,2 / 3,1 / 3\) ) \\
\hline \(G_{7}\) & ( \(0,1 / 3,1 / 3,1 / 3,0,0)\) & \(G_{8}\) & (1/3, \(0,1 / 3,1 / 3,2 / 3,0)\) \\
\hline \(G_{9}\) & ( \(1 / 3,1 / 3,1 / 3,1 / 3,0,0)\) & \(G_{10}\) & ( \(1 / 3,1 / 3,0,0,0,1 / 3\) ) \\
\hline \(G_{11}\) & ( \(0,0,2 / 3,2 / 3,0,2 / 3)\) & \(G_{12}\) & (1/3, \(2 / 3,1 / 3,1 / 3,2 / 3,2 / 3)\) \\
\hline \(G_{13}\) & (1/3, \(2 / 3,0,0,1 / 3,2 / 3)\) & \(G_{14}\) & (1/3, \(0,2 / 3,2 / 3,1 / 3,0)\) \\
\hline \(G_{15}\) & (1/3, 1/3, 2/3, 2/3, 0, 0 ) & \(G_{16}\) & ( \(0,0,2 / 3,2 / 3,2 / 3,2 / 3)\) \\
\hline \(G_{17}\) & ( \(1 / 3,1 / 3,0,0,1 / 3,0)\) & \(G_{18}\) & (1/3, 2/3, 1/3, 1/3, 0,0\()\) \\
\hline \(G_{19}\) & ( \(0,1 / 3,1 / 3,1 / 3,0,2 / 3)\) & \(G_{20}\) & ( \(0,1 / 3,2 / 3,2 / 3,0,2 / 3)\) \\
\hline \(G_{21}\) & ( \(0,0,2 / 3,2 / 3,1 / 3,0)\) & \(G_{22}\) & ( \(0,1 / 3,0,0,1 / 3,1 / 3\) ) \\
\hline \(G_{23}\) & (0,1/3, \(0,0,1 / 3,2 / 3)\) & \(G_{24}\) & ( \(0,0,2 / 3,2 / 3,0,0)\) \\
\hline \(G_{25}\) & (1/3, 2/3, 0, 0, 0, 1/3) & \(G_{26}\) & (0,1/3,2/3, 2/3, 0, 1/3) \\
\hline \(G_{27}\) & (1/3,2/3, 2/3, 2/3, 2/3,2/3) & \(G_{28}\) & (1/3, \(0,0,0,2 / 3,1 / 3)\) \\
\hline \(G_{29}\) & (1/3, 1/3, 1/3, 1/3, 1/3,2/3) & \(G_{30}\) & (1/3, \(0,0,0,0,1 / 3)\) \\
\hline \(G_{31}\) & ( \(0,0,2 / 3,2 / 3,1 / 3,2 / 3)\) & \(G_{32}\) & ( \(1 / 3,0,0,0,1 / 3,1 / 3\) ) \\
\hline \(G_{33}\) & ( \(1 / 3,2 / 3,2 / 3,2 / 3,0,0)\) & \(G_{34}\) & (1/3, \(0,1 / 3,1 / 3,1 / 3,0)\) \\
\hline \(G_{35}\) & ( \(0,1 / 3,0,0,1 / 3,0)\) & \(G_{36}\) & ( \(1 / 3,2 / 3,0,0,2 / 3,0)\) \\
\hline \(G_{37}\) & ( \(1 / 3,1 / 3,0,0,2 / 3,2 / 3\) ) & \(G_{38}\) & ( \(1 / 3,0,1 / 3,1 / 3,0,0)\) \\
\hline \(G_{39}\) & (1/3, 1/3, 2/3, \(2 / 3,1 / 3,2 / 3)\) & \(G_{40}\) & (1/3, \(0,2 / 3,2 / 3,0,0)\) \\
\hline \(G_{41}\) & ( \(0,0,2 / 3,2 / 3,2 / 3,0)\) & \(G_{42}\) & (1/3, \(2 / 3,2 / 3,2 / 3,1 / 3,1 / 3)\) \\
\hline \(G_{43}\) & (1/3, 1/3, 2/3, \(2 / 3,2 / 3,1 / 3)\) & \(G_{44}\) & (1/3, \(0,2 / 3,2 / 3,2 / 3,0)\) \\
\hline \(G_{45}\) & (1/3, 1/3, 1/3, 1/3, 2/3, 1/3) & & \\
\hline
\end{tabular}

With respect to this ordering the \(27 *\)-sets are the sets \(\left\{G_{i}, i \in I\right\}\) where \(I\) is one of the index sets:
\[
\begin{aligned}
& (1,14,15,23,27),(1,22,33,39,44),(1,35,40,42,43),(2,3,14,25,45),(2,9,13,20,44), \\
& (2,26,29,36,40),(3,8,10,31,42),(3,12,21,30,39),(4,6,7,10,44),(4,11,35,38,45), \\
& (4,15,21,26,28),(5,6,14,18,37),(5,9,28,41,42),(5,16,36,38,39),(6,12,17,19,40), \\
& (7,16,25,34,43),(7,27,29,30,41),(8,11,18,22,29),(8,13,15,16,19),(9,11,12,23,34), \\
& (10,23,24,32,36),(13,24,30,35,37),(17,20,27,31,38),(17,22,24,25,28),(18,20,21,32,43), \\
& (19,32,33,41,45),(26,31,33,34,37) .
\end{aligned}
\]

These can be computed as the maximal cliques in the graph depicted in Figure 3.


Figure 3. There is an edge between the singular-weight products \(G_{i}\) and \(G_{j}\) if \(G_{i}\) is modular under the reflections associated to the divisor of \(G_{j}\). This is a strongly regular graph with parameters \((45,12,3,3)\) and has 51,840 automorphisms.

\section*{References}
[1] Hiroki Aoki and Tomoyoshi Ibukiyama. Simple graded rings of Siegel modular forms, differential operators and Borcherds products. Internat. J. Math., 16(3):249-279, 2005.
[2] Walter Baily and Armand Borel. Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math. (2), 84:442-528, 1966.
[3] Richard Borcherds. Automorphic forms with singularities on Grassmannians. Invent. Math., 132(3):491-562, 1998.
[4] Jan Hendrik Bruinier. Borcherds products on O(2, l) and Chern classes of Heegner divisors, volume 1780 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
[5] Tobias Dern and Aloys Krieg. Graded rings of Hermitian modular forms of degree 2. Manuscripta Math., 110 (2):251-272, 2003.
[6] Eberhard Freitag. Modulformen zweiten Grades zum rationalen und Gaußschen Zahlkörper. S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl., 1967:3-49, 1967.
[7] Eberhard Freitag and Riccardo Salvati Manni. Hermitian modular forms and the Burkhardt quartic. Manuscripta Math., 119(1):57-59, 2006.
[8] Valery Gritsenko and Viacheslav Nikulin. Lorentzian Kac-Moody algebras with Weyl groups of 2-reflections. Proc. Lond. Math. Soc. (3), 116(3):485-533, 2018.
[9] Valery Gritsenko, Klaus Hulek, and Gregory Sankaran. Abelianisation of orthogonal groups and the fundamental group of modular varieties. J. Algebra, 322(2):463-478, 2009.
[10] Carl Friedrich Hermann. Some modular varieties related to \(\mathbf{P}^{4}\). In Abelian varieties (Egloffstein, 1993), pages 105-129. de Gruyter, Berlin, 1995.
[11] Jun-ichi Igusa. On Siegel modular forms genus two. II. Amer. J. Math., 86:392-412, 1964.
[12] Grigory Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991.
[13] Keiji Matsumoto. Theta functions on the bounded symmetric domain of type \(I_{2,2}\) and the period map of a 4-parameter family of K3 surfaces. Math. Ann., 295(3):383-409, 1993.
[14] Sebastian Opitz and Markus Schwagenscheidt. Holomorphic Borcherds products of singular weight for simple lattices of arbitrary level. Proc. Amer. Math. Soc., 147, 2019.
[15] Sara Perna. On isomorphisms between Siegel modular threefolds. Abh. Math. Semin. Univ. Hambg., 86(1):55-68, 2016.
[16] Vladimir Popov and Ernest Vinberg. Invariant theory. In Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, pages 137-314, 315. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989.
[17] Bernhard Runge. On Siegel modular forms. I. J. Reine Angew. Math., 436:57-85, 1993.
[18] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1), 2020. https://www.sagemath.org.
[19] Haowu Wang. The classification of free algebras of orthogonal modular forms. 2020. URL arXiv:2006.02291.
[20] Haowu Wang. On some free algebras of orthogonal modular forms II. 2020. URL arXiv:2006.02680.
[21] Haowu Wang and Brandon Williams. On some free algebras of orthogonal modular forms. Adv. Math., 373, 2020. URL arXiv:2003.05374. To appear.
[22] Brandon Williams. Poincaré square series for the Weil representation. Ramanujan J., 47(3):605-650, 2018.
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
Email address: haowu.wangmath@gmail.com
Fachbereich Mathematik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
Email address: bwilliams@mathematik.tu-darmstadt.de```


[^0]:    Date: August 19, 2020.
    2010 Mathematics Subject Classification. 11F55, 51F15, 32N15.
    Key words and phrases. Symmetric domains of type IV, modular forms on orthogonal groups, projective spaces, reflection groups, Borcherds products.

