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Abstract. We construct 16 reflection groups Γ acting on symmetric domains D of Cartan type IV,
for which the graded algebras of modular forms are freely generated by forms of the same weight,
and in particular the Satake–Baily–Borel compactification of D/Γ is isomorphic to a projective
space. Four of these are previously known results of Freitag–Salvati Manni, Matsumoto, Perna
and Runge. In addition we find several new modular groups of orthogonal type whose algebras of
modular forms are freely generated.

1. Introduction

In this paper we realize the projective spaces P3(C) and P4(C) in several ways as orthogonal
modular varieties using the theory of Borcherds products. Let Dn be a type IV Hermitian symmet-
ric domain of dimension n with n ≥ 3, i.e. Dn ∼= O+

n,2 /(SOn×O2) where O+
n,2 is the orthogonal

group that preserves Dn, and let Γ be an arithmetic subgroup of O+
n,2. Then Γ acts properly discon-

tinuously on Dn and the quotient Dn/Γ is a quasi-projective variety of dimension n. Orthogonal
modular forms, i.e. automorphic forms on Dn for Γ, are a powerful tool in the study of these
varieties. An orthogonal modular form of weight k is a holomorphic function on the affine cone
over Dn which has homogenous degree −k and is invariant under Γ. Orthogonal modular forms
of all weights for Γ form a graded algebra M∗(Γ). By [2] the graded algebra M∗(Γ) is finitely
generated over C and the Satake-Baily-Borel compactification (Dn/Γ)∗ of the modular variety D/Γ
is a projective variety isomorphic to Proj(M∗(Γ)). In particular, if M∗(Γ) is freely generated by
n+ 1 forms of weights k1, k2,..., kn+1, then (Dn/Γ)∗ = Proj(M∗(Γ)) is a weighted projective space
with weights k1, k2,..., kn+1.

Free algebras of modular forms are rare. Many of the known examples are related to irreducible
root systems as in [21]. It is known that the group Γ must be generated by reflections if M∗(Γ) is free
(see [16]). (This immediately rules out any modular groups Γ except subgroups of U(n, 1) and of
O(n, 2). In this paper Γ is always an arithmetic subgroup of O(n, 2).) The first named author found
a necessary and sufficient condition for M∗(Γ) to be free in [19] and used it to construct 16 new
free algebras of modular forms in [20]. This condition is essentially the existence of a distinguished
modular form which vanishes precisely on all mirrors of reflections in Γ with multiplicity one and
equals the Jacobian of the n + 1 generators. In this paper, we use that criterion to find reflection
groups Γ such that M∗(Γ) is freely generated by some forms of the same weight. For any such Γ
the Satake-Baily-Borel compactification of Dn/Γ is a projective space.

Modular varieties isomorphic to projective spaces are very exceptional. The authors are aware
of only four examples of dimension n ≥ 3 in the literature. The first was found by Runge in 1993
[17]. Runge’s theorem states that the algebra of Siegel modular forms of genus 2 on the level 4
subgroup Γ2[2, 4] is the polynomial algebra in 4 theta constants of second order, which implies
that the corresponding modular variety is isomorphic to P3(C). The second example was found

Date: August 19, 2020.
2010 Mathematics Subject Classification. 11F55, 51F15, 32N15.
Key words and phrases. Symmetric domains of type IV, modular forms on orthogonal groups, projective spaces,

reflection groups, Borcherds products.

1



by Matsumoto [13] in the same year. Matsumoto proved that the algebra of symmetric Hermitian
modular forms of degree 2 over the Gaussian numbers for the principal congruence group of level
1 + i is freely generated by five forms of weight 2, which implies that the corresponding modular
variety is isomorphic to P4(C). A different proof of this was given by Hermann [10]. The third
example was constructed by Freitag and Salvati Manni in 2006. They proved in [7] that the algebra
of symmetric Hermitian modular forms of degree 2 over the Eisenstein integers for the congruence
group of level

√
−3 is freely generated by five forms of weight 1 and therefore the modular variety

is also isomorphic to P4(C). Finally, Perna [15] proved that the algebra of Siegel modular forms
for a certain congruence subgroup containing Γ2[2, 4] is freely generated by the squares of 4 theta
constants of second order.

We will give a simple and largely uniform proof of the above results in the context of orthogonal
modular forms. Runge’s and Perna’s theorems can be interpreted in terms of orthogonal modular
forms for the lattice 2U(4) ⊕ A1. (Here and below, U is an even unimodular lattice of signature
(1, 1), and A1, A2 denote the lattice generated by the root system of the same name.) Matsumoto’s
theorem is treated using the lattice model 2U(2) ⊕ 2A1, and for this lattice we also find two new
free algebra of modular forms for smaller groups. The first of these is freely generated by five forms
of weight 1 and the second is freely generated by four forms of weight 2 and one form of weight 1,
such that the modular varieties associated to both of these groups are isomorphic to P4(C). The
theorem of Freitag–Salvati Manni corresponds to the lattice 2U(3)⊕A2, and we also find two new
free algebras of modular forms for larger groups related to this lattice. The first of these is freely
generated by five forms of weight 2 and the second is freely generated by four forms of weight 2 and
one form of weight 1. The modular varieties associated to the two groups are then isomorphic to
P4(C). In addition, we determine eight new reflection groups whose associated modular varieties
are isomorphic to P3(C). Three of them are related to 2U(2) ⊕ A1 and the weights of generators
of the three algebras are {2, 2, 2, 2}, {1, 1, 1, 1} and {1, 2, 2, 2} respectively. Also we determine an
algebra related to 2U(3)⊕A1 which is generated by four forms of weight 1, and two algebras related
to U(2) ⊕ U(4) ⊕ A1 which are generated by four forms of weight 1 and four forms of weight 1/2
respectively. Finally we obtain two algebras related to U ⊕ U(2) ⊕ A1(2) generated by modular
forms of weights {2, 2, 2, 2} and {1, 2, 2, 2} respectively.

Altogether, we will realize P3(C) and P4(C) in sixteen ways as orthogonal modular varieties
associated to seven lattices in Theorems 3.6, 3.7, 4.3, 4.6, 4.7, 5.4, 5.5, 5.6, 6.2, 6.4, 6.5, 7.2, 8.2,
8.4, 9.2, 9.3. The generators of these algebras of modular forms are all constructed as Borcherds
products [3], with one exception where we require an additive theta lift. Along the way we find a
simple proof of the famous theorem of Igusa [11] that the algebra of Siegel modular forms of genus
2 on the level 8 subgroup Γ2[4, 8] is generated by the ten theta constants (Theorem 3.8), as well as
its analogue for Hermitian modular forms over the Gaussian integers (Theorem 4.5). We also find
several other interesting free algebras of modular forms; for example, we will find a tower of eight
congruence subgroups of Sp4(Z), all of whose algebras of modular forms are described explicitly
and six of which are free.

The layout of this paper is as follows. In §2 we recall the necessary and sufficient condition for
free algebras mentioned above (and a straightforward generalization to half-integral weight modular
forms). In §3–9 we study the algebras of modular forms attached to the seven lattices respectively.
In the appendices we give some data related to the input forms for certain Borcherds products; the
Fourier expansions of the Borcherds products, and the products themselves as SAGE objects, are
available in the ancillary material.

At several points in this paper, we work directly with the Fourier expansions of Borcherds
products and therefore need a significant number of coefficients of their input forms. These were
computed in SAGE [18] using the algorithm outlined in [22], an implementation of which is available
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on GitHub. We also used SAGE for certain graph computations, including much of the data in the
appendices.

2. Preliminaries

Let M be an even lattice of signature (n, 2) with n ≥ 3 and dual lattice M∨. The type IV
symmetric domain Dn = D(M) is one of the two connected components of the space

{[Z] ∈ P(M ⊗ C) : (Z,Z) = 0, (Z, Z̄) < 0}.

We define the affine cone over D(M) as

A(M) = {Z ∈M ⊗ C : [Z] ∈ D(M)}.

Let us denote by O+(M) the integral orthogonal group of M preserving the connected component

D(M). The discriminant kernel Õ
+

(M) is the subgroup of O+(M) which acts trivially on the
discriminant form of M . Fix a finite index subgroup Γ of O+(M).

Definition 2.1. Let k be a non-negative integer. A modular form of weight k and character
χ : Γ→ C∗ for Γ is a holomorphic function F : A(M)→ C satisfying

F (tZ) = t−kF (Z), ∀t ∈ C∗,
F (gZ) = χ(g)F (Z), ∀g ∈ Γ.

The graded algebra of modular forms of integral weight is denoted by

M∗(Γ) =
∞⊕
k=0

Mk(Γ).

One can realize the symmetric domain D(M) as a tube domain at a zero-dimensional cusp. The
above modular form can be viewed as an automorphic form on a tube domain for Γ with respect to
an automorphy factor. Using the tube domain model one can define modular forms of half-integral
weight with a multiplier system. We refer to [4, §3.3] for more details.

For any r ∈M∨ of positive norm, the hyperplane

Dr(M) = r⊥ ∩ D(M) = {[Z] ∈ D(M) : (Z, r) = 0}

is called the rational quadratic divisor associated to r. The reflection fixing Dr(M) is

σr(x) = x− 2(r, x)

(r, r)
r, x ∈M.

The hyperplane Dr(M) is called the mirror of σr. For a non-zero vector r ∈M∨ we denote its order
in M∨/M by ord(r). A primitive vector r ∈M∨ of positive norm is called reflective if σr ∈ O+(M),
or equivalently, if there exists a positive integer d such that (r, r) = 2

d and ord(r) = d or d
2 . In this

case we call Dr(M) a reflective divisor. A modular form F for Γ < O+(M) is called reflective if
its divisor is a sum of reflective divisors. F is called 2-reflective if its divisor is a sum of divisors
Dr(M) for r ∈ M with (r, r) = 2. We remark that if r ∈ M is primitive then the reflection σr

belongs to Õ
+

(M) if and only if (r, r) = 2.
For convenience, we recall some results of [19] which will be used in this paper. The modular

Jacobian, or Rankin–Cohen–Ibukiyama differential operator, was first introduced in [1] for Siegel
modular forms.

Theorem 2.2 (Theorem 2.5 in [19]). Let M be an even lattice of signature (n, 2) with n ≥ 3,
and let Γ < O+(M) be a finite index subgroup. Let fi ∈ Mki(Γ) for 1 ≤ i ≤ n + 1. We view fi
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as modular forms on the tube domain at a given zero-dimensional cusp and let zi, 1 ≤ i ≤ n, be
coordinates on the tube domain. We define

J := J(f1, ..., fn+1) =

∣∣∣∣∣∣∣∣∣
k1f1 k2f2 · · · kn+1fn+1
∂f1
∂z1

∂f2
∂z1

· · · ∂fn+1

∂z1
...

...
. . .

...
∂f1
∂zn

∂f2
∂zn

· · · ∂fn+1

∂zn

∣∣∣∣∣∣∣∣∣ .
(1) J is a cusp form of weight n+

∑n+1
i=1 ki for Γ with the determinant character det.

(2) J is not identically zero if and only if the n+1 modular forms fi are algebraically independent
over C.

(3) Let r ∈M . If the reflection σr belongs to Γ, then J vanishes on the hyperplane Dr(M).

If M∗(Γ) is a free algebra then the Jacobian of its generators satisfies some remarkable properties:

Theorem 2.3 (Theorem 3.5 in [19]). Assume that M∗(Γ) is a free algebra with generators f1, ..., fn+1

of weights k1, ..., kn+1.

(1) The Jacobian J = J(f1, ..., fn+1) is not identically zero and it is a cusp form of weight

n+
∑n+1

i=1 ki for Γ with the character det.
(2) The divisor of J is the sum of all mirrors of reflections in Γ, each with multiplicity 1. In

particular, J is a reflective cusp form.
(3) Let {Γπ1, ...,Γπs} denote the Γ-equivalence classes of mirrors of reflections in Γ. Then for

each 1 ≤ i ≤ s there exists a modular form Ji for Γ with trivial character and divisor
div(Ji) = 2Γπi, and J2 =

∏s
i=1 Ji. The forms Ji are irreducible in M∗(Γ).

(4) There exist polynomials P , Pi, 1 ≤ i ≤ s, in n + 1 variables over C such that J2 =
P (f1, ..., fn+1) and Ji = Pi(f1, ..., fn+1). Thus P =

∏s
i=1 Pi and these Pi are irreducible.

The following sufficient condition for a graded algebra of modular forms to be free will play a
vital role in this paper.

Theorem 2.4 (Theorem 5.1 in [19]). Let Γ < O+(M) be a finite index subgroup. Suppose there
exist modular forms f1, ..., fn+1 with trivial character whose Jacobian

J = J(f1, ..., fn+1)

vanishes exactly on the mirrors of reflections in Γ with multiplicity one. Then the graded algebra
M∗(Γ) is freely generated by f1, ..., fn+1 and Γ is generated by the reflections whose mirrors lie in
the divisor of J .

This theorem also holds for modular forms of half-integral weight and the proof is nearly the
same. We replace M∗(Γ) with the graded algebra of half-integral weight modular forms with respect
to a fixed multiplier system v of weight 1/2:

M∗(Γ, v) =
∞⊕
k=0

M k
2
(Γ, vk).

Theorem 2.5. Suppose there exist modular forms f1, ..., fn+1 ∈ M∗(Γ, v) whose Jacobian J =
J(f1, ..., fn+1) vanishes exactly on the mirrors Dr(M) of reflections σr in Γ that satisfy v(σr) = 1
with multiplicity one. Then M∗(Γ, v) is freely generated by fi.

Proof. Suppose that M∗(Γ, v) is not generated by fi. Then C[f1, ..., fn+1] 6= M∗(Γ, v), and we
choose a modular form fn+2 ∈Mkn+2(Γ, v2kn+2) of minimal weight such that fn+2 /∈ C[f1, ..., fn+1].
For 1 ≤ t ≤ n+ 2 we define

Jt = J(f1, ..., f̂t, ..., fn+2)
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as the Jacobian of the n + 1 modular forms fi omitting ft (so in particular J = Jn+2). Similarly
to Theorem 2.2, one can show that the Jacobian Jt is a modular form of weight k = n +

∑
i 6=t ki

and multiplier system v2k det on Γ, and that Jt vanishes on all mirrors of reflections in Γ satisfying
v(σr) = 1. Therefore the quotient gt := Jt/J is a holomorphic modular form in M∗(Γ, v).

We compute

0 = det

(
k1f1 k2f2 ··· kn+2fn+2

k1f1 k2f2 ··· kn+2fn+2

∇zf1 ∇zf2 ... ∇zfn+2

)
=

n+2∑
t=1

(−1)tktftJt =
( n+2∑
t=1

(−1)tktftgt

)
· J,

and therefore

(−1)n+1kn+2fn+2 =
n+1∑
t=1

(−1)tktftgt

because gn+2 = 1. In particular, each gt has weight strictly less than that of fn+2. By construction
of fn+2, this implies gt ∈ C[f1, ..., fn+1], and therefore fn+2 ∈ C[f1, ..., fn+1], a contradiction.
ThereforeM∗(Γ, v) is generated by the fi. SinceM∗(Γ, v) has Krull dimension n+1, these generators
are algebraically independent. �

Unlike the integral-weight case, we cannot conclude in general that Γ is generated by the re-
flections whose mirrors are contained in the divisor of the Jacobian. However, this does hold if
v(σr) = 1 for all reflections σr ∈ Γ.

We can investigate the modular variety Dn/Γ using algebras of half-integral weight modular
forms because the Proj is unchanged under Veronese embeddings:

Proj(M∗(Γ, v)(d)) = Proj(M∗(Γ, v)) = Proj(M∗(Γ)(d)) = Proj(M∗(Γ)) = (Dn/Γ)∗,

for any d ∈ N, where

M∗(Γ, v)(d) =
⊕
k∈N

M dk
2

(Γ, vdk), M∗(Γ)(d) =
⊕
k∈N

Mdk(Γ).

3. The 2U(4)⊕A1 lattice

In this section we recover Runge’s theorem and Perna’s theorem mentioned in the introduction.
Runge’s theorem asserts that the algebra of Siegel modular forms of genus 2 on the level 4 subgroup
Γ2[2, 4] is freely generated by 4 theta constants of second order. We will find that the Jacobian of
four theta constants of second order is exactly Igusa’s cusp form Φ5,A1 up to a multiple, where Φ5,A1

is the product of ten even theta constants. The Igusa cusp form Φ5,A1 is a reflective modular form
of weight 5 for O+(2U ⊕ A1) whose divisor is the sum of all Dr for primitive vectors r ∈ 2U ⊕ A∨1
with (r, r) = 1

2 and ord(r) = 2, each with multiplicity one. In view of the isomorphisms

(3.1) O+(M) = O+(M∨) = O+(M∨(m)),

we have O+(2U⊕A1) = O+(2U(4)⊕A1) and the function Φ5,A1 can also be viewed as a 2-reflective
modular form of weight 5 for 2U(4)⊕ A1 whose divisor is the sum of Ds with multiplicity one for

primitive vectors s ∈ 2U(1
4) ⊕ A∨1 with (s, s) = 1

2 and ord(s) = 2. Unlike Õ
+

(2U ⊕ A1), these

account for all 2-reflections in Õ
+

(2U(4)⊕A1). Moreover, the discriminant kernel Õ
+

(2U(4)⊕A1)

is a subgroup of Õ
+

(2U ⊕A1), and there are many more Borcherds products on Õ
+

(2U(4)⊕A1).
For these reasons it is natural to work with the lattice 2U(4)⊕A1.

We will first recall the Borcherds products of singular weight on 2U(4)⊕A1.

Lemma 3.1.

(1) There are 70 holomorphic Borcherds products of singular weight 1/2 on 2U(4)⊕A1. Their
product is the Igusa cusp form of weight 35.
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(2) Ten of the singular weight products have inputs with principal part q−1/4(ev + ew) where
v and w have order 2 in M∨/M . These are the ten theta constants and their product is
Φ5,A1. We call them the Type I products and denote them θi, i = 1, 2, ..., 10.

(3) The remaining 60 singular weight products have inputs with principal part q−1/4(eu + e−u),
where u has order 4. We call them the Type II products.

Proof. These facts can be read off of the Fourier coefficients of a weight 5/2 Eisenstein series. This
is carried out in detail in section 4 of [14]. With respect to the table of section 4 of [14], the
principal parts of the input into the Type I products consist of one of ten vectors v from the 7th
orbit and one of six vectors w from the 8th orbit. The vector-valued modular forms with principal
part q−1/4ev alone have non-integral Fourier coefficients so they are, strictly speaking, not valid
inputs into the Borcherds lift. However, the q−1/4ew term does not contribute to their divisor. �

Let O1(2U(4)⊕ A1) be the subgroup of O+(2U(4)⊕ A1) generated by all reflections associated
to the divisor of Φ5,A1 . It is obvious that O1(2U(4) ⊕ A1) is contained in the discriminant kernel

Õ
+

(2U(4)⊕A1). The 70 products satisfy the following basic properties.

Lemma 3.2.

(1) The 10 Type I products θi are linearly independent over C.
(2) The 55 forms θiθj are linearly independent over C.
(3) The 60 Type II products are modular forms of weight 1/2 for O1(2U(4)⊕A1), all of which

have the same multiplier system which we denote vΘ. Moreover, vΘ = 1 for all reflections
in O1(2U(4)⊕A1).

Proof. (1) The Type I products are modular forms on Õ
+

(2U(4) ⊕ A1). Let σi be a reflection

associated to the divisor of some θi. Since σi ∈ Õ
+

(2U(4) ⊕ A1), we obtain σi(θi) = −θi and
σi(θj) = θj for j 6= i. This implies the linear independence of the 10 products.

(2) Using the argument in (1), the linear independence of the 55 functions θiθj reduces to the
linear independence of the 10 squares θ2

i , which can be shown by computing Fourier coefficients.
(3) Consider the quotient of any two products of type II. This is a weight zero meromorphic

modular form on O1(2U(4)⊕A1). Since it does not vanish on any divisors contained in div Φ5,A1 ,
it has trivial character on O1(2U(4)⊕A1), so the type II products have the same multiplier system.
From the principal parts of their input forms we see that no type II product vanishes on the divisor
Dr for any reflection σr ∈ O1(2U(4) ⊕ A1), which forces vΘ(σr) = 1. We remark that v2

Θ = 1 on
O1(2U(4)⊕A1). �

Throughout this section we will consider sets of four type II products Θ1,Θ2,Θ3,Θ4 that trans-
form under larger modular groups than O1(2U(4)⊕A1). For this the following definition is useful.

Definition 3.3. A ∗-set (of type 2U(4)⊕A1) is a set of four Type II products, each of whose input
forms is invariant under all reflections associated to the divisors of the three other products.

In other words, if the type II product Θi has input with principal part q−1/4(eui + e−ui) then
{Θ1,Θ2,Θ3,Θ4} forms a ∗-set if and only if σui(uj) ∈ ±uj + (2U(4)⊕A1) for 1 ≤ i, j ≤ 4.
∗-sets have several interesting properties.

Lemma 3.4.

(1) There are exactly 105 ∗-sets.
(2) Every product of type II belongs to exactly seven ∗-sets.
(3) There are 1320 pairs of type II products that do not belong to a ∗-set; there are 360 pairs

that belong to exactly one ∗-set; and the remaining 90 pairs belong to exactly three ∗-sets.
(4) Any four type II products that form a ∗-set are linearly independent over C.
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Proof. Parts (1)-(3) were checked by computer. We constructed a graph with the Type II products
as vertices and an edge between two products if and only if their input forms are invariant under
the reflections associated to each other’s divisors. (See Appendix A for an image.) The ∗-sets are
the maximal cliques in this graph.

(4) Let fj , 1 ≤ j ≤ 4, be a ∗-set and let Γ∗ be the group generated by O1(2U(4)⊕ A1) and the
reflections associated to the divisors of the four products, such that these products are modular
forms on Γ∗. Let σi be a reflection associated to the divisor of fi. Then σi(fi) = −fi and σi(fj) = fj
for j 6= i, which implies the linear independence. �

The extra structure given by the 90 pairs of type II products in part (3) will be useful later in
this section.

Lemma 3.5. There is a ∗-set {Θ1,Θ2,Θ3,Θ4} for which the Jacobian J(Θ1,Θ2,Θ3,Θ4) equals
Igusa’s cusp form Φ5,A1 up to a nonzero constant multiple.

Proof. In the notation of Appendix A we took the products labelled Θ1,Θ2,Θ26,Θ55. By computing
their Fourier expansions it is straightforward to show that their Jacobian is not identically zero.
Since these products are modular forms of weight 1/2 and multiplier system vΘ on O1(2U(4)⊕A1),
and vΘ = 1 for all reflections in O1(2U(4) ⊕ A1), we conclude from Theorem 2.2 (4) that their
Jacobian J vanishes on the mirrors of all reflections in O1(2U(4)⊕ A1). It follows that J/Φ5,A1 is
a holomorphic modular form of weight 0 and therefore constant. �

By applying Theorem 2.5, we obtain Runge’s theorem in the context of orthogonal groups.

Theorem 3.6. The type II products span a four-dimensional space over C. If Θ1,Θ2,Θ3,Θ4 are
any linearly independent Type II products, then they are algebraically independent and generate the
algebra of modular forms:

M∗(O1(2U(4)⊕A1), vΘ) = C[Θ1,Θ2,Θ3,Θ4],

(D3/O1(2U(4)⊕A1))∗ ∼= P3(C).

Perna’s theorem can be phrased in terms of a larger modular group associated to a ∗-set.

Theorem 3.7. Let {Θ1,Θ2,Θ3,Θ4} be a ∗-set and let O2(2U(4) ⊕ A1) be the subgroup generated

by O1(2U(4)⊕A1) and the reflections with mirrors in the divisor of
∏4
j=1 Θj. Then

M∗(O2(2U(4)⊕A1)) = C[Θ2
1,Θ

2
2,Θ

2
3,Θ

2
4],

(D3/O2(2U(4)⊕A1))∗ ∼= P3(C).

Proof. By definition of ∗-sets, the forms Θ2
j are modular forms of weight 1 with trivial character

on O2(2U(4)⊕A1). By Lemma 3.5 their Jacobian equals Φ5,A1

∏4
j=1 Θj up to a non-zero multiple.

By Theorem 2.4, the graded algebra of modular forms on O2(2U(4) ⊕ A1) is freely generated by
the four squares. �

As another application, we determine an algebra of modular forms generated by ten theta con-
stants and reprove a well-known theorem of Igusa.

The Jacobian Φ5,A1 factors as
∏10
i=1 θi in M∗(O1(2U(4)⊕A1), vΘ). By Theorem 2.3, this decom-

position determines the character group of O1(2U(4)⊕A1). For 1 ≤ i ≤ 10, let χi be the character
of O1(2U(4) ⊕ A1) defined as the quotient of the multiplier system of θi by vΘ. These ten basic
characters generate the 1024 characters of O1(2U(4)⊕A1). Let O′1(2U(4)⊕A1) be the commutator
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subgroup of O1(2U(4)⊕A1). Then we have

M k
2
(O′1(2U(4)⊕A1), vkΘ) =

⊕
χ

M k
2
(O1(2U(4)⊕A1), vkΘχ),

M k
2
(O1(2U(4)⊕A1), vkΘχi) = M k−1

2
(O1(2U(4)⊕A1), vk−1

Θ )θi, 1 ≤ i ≤ 10,

the first sum taken over the character group of O1(2U(4)⊕A1).
Since each θ2

i lies in M1(O1(2U(4) ⊕ A1)) and the ten squares θ2
i are linearly independent, we

conclude from Theorem 3.6 that the ten θ2
i form a basis of M1(O1(2U(4)⊕A1)). We define O0 as

the subgroup on which the basic characters coincide:

O0(2U(4)⊕A1) = {γ ∈ O1(2U(4)⊕A1) : χ1(γ) = · · · = χ10(γ)}.

The group O0(2U(4)⊕A1) properly contains O′1(2U(4)⊕A1) because σ1 · · ·σ10 ∈ O0(2U(4)⊕A1)
where σi is any reflection associated to the divisor of θi for 1 ≤ i ≤ 10. We note that

θi ∈M 1
2
(O1(2U(4)⊕A1), vΘχi), 1 ≤ i ≤ 10.

Let χ be the common restriction of the χi to O0(2U(4)⊕A1). We define a multiplier system vϑ of
weight 1/2 on O0(2U(4)⊕A1) by

vϑ = vΘχ.

Then

(3.2) θi ∈M 1
2
(O0(2U(4)⊕A1), vϑ), 1 ≤ i ≤ 10

and

(3.3) Θj ∈M 1
2
(O0(2U(4)⊕A1), vϑχ), 1 ≤ j ≤ 4.

Since the quotient group O0(2U(4) ⊕ A1)/O′1(2U(4) ⊕ A1) is abelian, we obtain an eigenspace
decomposition

(3.4) M k
2
(O′1(2U(4)⊕A1), vkϑ) =

⊕
ε

M k
2
(O0(2U(4)⊕A1), vkϑε),

the direct sum taken over the characters of O0(2U(4) ⊕ A1)/O′1(2U(4) ⊕ A1). Note that vϑ = vΘ

on O′1(2U(4)⊕A1). Therefore, every modular form in M k
2
(O′1(2U(4)⊕A1), vkϑ) can be decomposed

as a sum

P0 +
4∑
i=1

PiΘi,

where P0 is a modular form of weight k/2, and P1, P2, P3, P4 are modular forms of weight (k−1)/2,
and

P0, ..., P4 ∈ C[θi, 1 ≤ i ≤ 10].

Combining (3.2), (3.3) and (3.4), we obtain

M∗(O0(2U(4)⊕A1), vϑ) = C[θi, 1 ≤ i ≤ 10]

and we see that χ is the unique non-trivial character of O2(2U(4)⊕A1)/O′1(2U(4)⊕A1). Altogether,
we obtain the generators found by Igusa in [11]:

Theorem 3.8.

M∗(O0(2U(4)⊕A1), vϑ) = C[θi, 1 ≤ i ≤ 10],

M∗(O
′
1(2U(4)⊕A1), vΘ) = C[Θ1,Θ2,Θ3,Θ4, θi, 1 ≤ i ≤ 10].
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Remark 3.9. The ten theta constants θi are not all modular on O2(2U(4) ⊕ A1). In fact, Φ5,A1

factors as the product of five forms of weights 1/2, 1/2, 1, 1 and 2 on O2(2U(4) ⊕ A1), which are
products of some theta constants.

We can now construct some new free algebras of Siegel modular forms associated to ∗-sets. Let
Θ1, ...,Θ4 be a ∗-set and let O2(2U(4) ⊕ A1) be the group generated by its reflections and by
O1(2U(4)⊕A1).

Theorem 3.10. For 1 ≤ i ≤ 4 let vi be the multiplier system of Θi on O2(2U(4)⊕A1). Then

M∗(O2(2U(4)⊕A1), vi) = C[Θi,Θ
2
j , 1 ≤ j ≤ 4, j 6= i], 1 ≤ i ≤ 4.

This includes Theorem 3.7 which describes the subring of integer-weight forms.

Proof. Without loss of generality we take i = 1. It is clear that v1 = 1 for all reflections associated
to the divisor of

∏4
j=2 Θj and v1 = −1 for reflections associated to the divisor of Θ1. By Lemma

3.5 the Jacobian of Θ1, Θ2
j for 2 ≤ j ≤ 4 equals Φ5,A1

∏4
j=2 Θj up to a non-zero multiple. The

claim follows from Theorem 2.5. �

Let O1,1(2U(4)⊕A1), O1,12(2U(4)⊕A1) and O1,123(2U(4)⊕A1) denote the subgroups generated
by reflections associated to the divisor of Φ5,A1Θ1, Φ5,A1Θ1Θ2 and Φ5,A1Θ1Θ2Θ3, respectively. By
a similar argument, we can prove the following results using Theorem 2.5:

M∗(O1,1(2U(4)⊕A1), v4) = C[Θ2
1,Θ2,Θ3,Θ4],

M∗(O1,12(2U(4)⊕A1), v4) = C[Θ2
1,Θ

2
2,Θ3,Θ4],

M∗(O1,123(2U(4)⊕A1), v4) = C[Θ2
1,Θ

2
2,Θ

2
3,Θ4].

We remark that O1,1(2U(4) ⊕ A1) does not contain any reflections associated to the divisor
of Θ2Θ3Θ4. Indeed, the multiplier systems v2, v3 and v4 coincide on O1,1(2U(4) ⊕ A1) because
the quotient of any two of them defines a character whose values on generators are always 1.
If O1,1(2U(4) ⊕ A1) contained a reflection σ associated to the divisor of Θ2 then we would find
v2(σ) = −1 but v3(σ) = v4(σ) = 1, a contradiction. Similarly, O1,12(2U(4)⊕ A1) does not contain
any reflections associated to the divisor of Θ3Θ4.

On the other hand, O1,123(2U(4)⊕ A1) does contain reflections associated to the divisor of Θ4.
In fact,

(3.5) O1,123(2U(4)⊕A1) = O2(2U(4)⊕A1).

(Of course, this agrees with Theorem 3.10.) If this was not true, then the only alternative would be
M∗(O1,123(2U(4)⊕A1), v2

4) = C[Θ2
i , i = 1, 2, 3, 4], contradicting the decomposition of the Jacobian

in Theorem 2.3.
Finally we obtain some larger groups generated by reflections and free algebras of modular forms

associated to triples of ∗-sets. Suppose Θ1,Θ2 is one of the 90 pairs of type II products that can
be extended to three distinct ∗-sets, denoted

{Θ1,Θ2,Θ3,Θ4}, {Θ1,Θ2,Θ5,Θ6}, {Θ1,Θ2,Θ7,Θ8}.

The principal part into the input function to Θi will be denoted q−1/4(eui + e−ui).
In this situation the reflection σu5 fixes the set {±u1,±u2,±u3,±u4} and has u1 and u2 as

eigenvectors. It cannot have u3 and u4 as eigenvectors as otherwise the proof of Lemma 3.4 yields
five linearly independent type II products. Therefore it maps u3 to ±u4 and u4 to ±u3. Taking
Borcherds lifts and using the fact that all type II products have Fourier coefficients in Z[i], this
implies σu5(Θ3) = ikΘ4 for some k ∈ {0, 1, 2, 3}. The same statements hold for the reflections σui ,
i = 6, 7, 8.
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Let O2,56(2U(4)⊕A1) be the group generated by O2(2U(4)⊕A1) and the reflections associated
to the divisor of Θ5. Since σu3 swaps u5 and u6 (up to multiples), O2,56(2U(4)⊕A1) also contains
the reflections associated to the divisor of Θ6. It is clear that Θ2

3Θ2
4 ∈ M2(O2,56(2U(4) ⊕ A1)).

From the previous paragraph it follows that σu5(Θ2
3) = cΘ2

4 where c ∈ {±1}. Then σu5(Θ2
4) = cΘ2

3

and therefore Θ2
3 + cΘ2

4 ∈M1(O2,56(2U(4)⊕A1)).
On the other hand, Θ5Θ6 ∈M1(O2(2U(4)⊕A1)) is a C-linear combination of Θ2

i for i = 1, 2, 3, 4.
By considering the action of σu5 on these functions, we find that Θ5Θ6 is equal to Θ2

3 − cΘ2
4 up to

a non-zero constant multiple. Using Lemma 3.5, we see that the Jacobian of Θ2
1, Θ2

2, Θ2
3 + cΘ2

4 and

Θ2
3Θ2

4 is equal to Φ5,A1

∏6
i=1 Θi up to a non-zero multiple. We have therefore proved the following:

M∗(O2,56(2U(4)⊕A1)) = C[Θ2
1,Θ

2
2,Θ

2
3 + cΘ2

4,Θ
2
3Θ2

4].

Similarly, since Θ7Θ8 ∈M1(O2,56(2U(4)⊕A1)), it is equal to Θ2
3 +cΘ2

4 up to a non-zero constant
by considering the action of σu7 . Letting O2,78(2U(4)⊕A1) be the group generated by O2(2U(4)⊕
A1) and the reflections associated to the divisor of Θ7, we obtain by the same argument

M∗(O2,78(2U(4)⊕A1)) = C[Θ2
1,Θ

2
2,Θ

2
3 − cΘ2

4,Θ
2
3Θ2

4].

Finally, let O2,5678(2U(4) ⊕ A1) be the group generated by O2(2U(4) ⊕ A1) and reflections as-
sociated to the divisor of Θ5Θ7. Then this group also contains the reflections associated to the
divisor of Θ6Θ8. Using Lemma 3.5 we derive that the Jacobian of Θ2

1, Θ2
2, Θ2

3Θ2
4, Θ2

5Θ2
6 equals

Φ5,A1

∏8
i=1 Θi up to a non-zero constant multiple, and have proved the following:

M∗(O2,5678(2U(4)⊕A1)) = C[Θ2
1,Θ

2
2,Θ

2
3Θ2

4,Θ
2
5Θ2

6].

Altogether we have computed the algebras of modular forms for eight subgroups of O+(2U⊕A1):

O′1(2U(4)⊕A1) ( O0(2U(4)⊕A1) ( O1(2U(4)⊕A1) ( O1,1(2U(4)⊕A1) (
( O1,12(2U(4)⊕A1) ( O2(2U(4)⊕A1) ( O2,56(2U(4)⊕A1) ( O2,5678(2U(4)⊕A1).

Remark 3.11. There is no multiplier system v of O2(U(4)⊕A1) which equals 1 on all reflections.
If such a v existed, then v4/v would define a character of O2(U(4) ⊕ A1) which equals 1 on all
reflections associated to the divisor of Θ1Θ2Θ3 but is −1 on all reflections associated to the divisor
of Θ4, which contradicts (3.5).

Remark 3.12. The Baily-Borel compactification of the modular variety D3/O1(2U(4)⊕ A1) is a
projective space, but the algebra M∗(O1(2U(4) ⊕ A1)) of modular forms of integral weight is not
free. It is well-known that if M∗(Γ) is free then (D/Γ)∗ is a weighted projective space (see [2]),
but the above example shows that the converse does not hold. Eberhard Freitag suggested to the
authors that the following statement may hold.

Conjecture 3.13. If the modular variety (D/Γ)∗ is a weighted projective space, then there exists
a weight k0 and a multiplier system v0 of weight k0 such that the graded algebra

M∗(Γ, (k0, v0)) :=
⊕
k∈N

Mkk0(Γ, vk0 )

is freely generated.

Remark 3.14. There are twenty linearly independent modular forms of weight 1/2 for the Weil
representation attached to 2U(4)⊕A1, and their images under the additive theta lift ([3], Theorem
14.3) span the 10-dimensional space of modular forms of weight one for O1(2U(4)⊕A1).
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4. The 2U(2)⊕ 2A1 lattice

In this section we prove Matsumoto’s theorem in the context of modular forms on 2U(2)⊕ 2A1.
We first work out some Borcherds products on 2U(2)⊕ 2A1.

Lemma 4.1.

(1) There are 10 holomorphic Borcherds products of singular weight 1. Their inputs have prin-
cipal parts of the form

q−1/4(ev1 + ev2) + 2e0, (v1, v1) = (v2, v2) = 1/2, ord(v1) = ord(v2) = 2,

where v1 and v2 are images of each other under swapping the two A1 components. In
particular they are 2-reflective modular forms. We label the ten forms Fi, 1 ≤ i ≤ 10 such
that with respect to the Gram matrix 0 0 0 0 0 2

0 0 0 0 2 0
0 0 2 0 0 0
0 0 0 2 0 0
0 2 0 0 0 0
2 0 0 0 0 0


their principal parts are as follows:

F1 : q−1/4(e(0,1/2,1/2,0,0,0) + e(0,1/2,0,1/2,0,0)); F2 : q−1/4(e(1/2,0,1/2,0,0,0) + e(1/2,0,0,1/2,0,0));

F3 : q−1/4(e(1/2,1/2,1/2,0,1/2,1/2) + e(1/2,1/2,0,1/2,1/2,1/2)); F4 : q−1/4(e(1/2,0,1/2,0,1/2,0) + e(1/2,0,0,1/2,1/2,0));

F5 : q−1/4(e(0,1/2,1/2,0,0,1/2) + e(0,1/2,0,1/2,0,1/2)); F6 : q−1/4(e(1/2,1/2,1/2,0,0,0) + e(1/2,1/2,0,1/2,0,0));

F7 : q−1/4(e(0,0,1/2,0,1/2,1/2) + e(0,0,0,1/2,1/2,1/2)); F8 : q−1/4(e(0,0,1/2,0,1/2,0) + e(0,0,0,1/2,1/2,0));

F9 : q−1/4(e(0,0,1/2,0,0,1/2) + e(0,0,0,1/2,0,1/2)); F10 : q−1/4(e(0,0,1/2,0,0,0) + e(0,0,0,1/2,0,0)).

The ten Fi are linearly independent over C. We define Φ10,2A1 :=
∏10
j=1 Fj.

(2) There are 15 reflective Borcherds products of weight 2 with principal parts of the form

q−1/2eu, where (u, u) = 1, ord(u) = 2 and u is invariant under the swapping of two A1

components.
(3) There is a holomorphic Borcherds product of weight 4, which we denote Φ4,2A1, whose

input has the principal part q−1/2e(0,0,1/2,1/2,0,0). The reflection σ1 associated to the vector
(0, 0, 1/2, 1/2, 0, 0) swaps the two A1 components.

Let O1(2U(2)⊕2A1) be the subgroup of O+(2U(2)⊕2A1) generated by all reflections associated
to the divisors of Φ10,2A1 and Φ4,2A1 . The inputs of all Fi and of Φ4,2A1 are invariant under the
reflection σ1, so Fi and Φ4,2A1 are modular forms for O1(2U(2) ⊕ 2A1). Each Fi has a quadratic
character on O1(2U(2)⊕ 2A1) so their squares F 2

i have trivial character.

Lemma 4.2. The Jacobian of F 2
i , 1 ≤ i ≤ 5 equals Φ10,2A1Φ4,2A1 up to a non-zero constant

multiple. In particular, the forms Fi for 1 ≤ i ≤ 5 are algebraically independent over C.

Proof. By computing the first few terms of the Fourier expansion we find that J = J(F 2
i , 1 ≤ i ≤ 5)

is not identically zero. By Theorem 2.2, J is a modular form of weight 14 and vanishes on mirrors
of all reflections in O1(2U(2) ⊕ 2A1). In particular J/(Φ10,2A1Φ4,2A1) is a holomorphic modular
form of weight 0 and therefore constant. �

By Theorem 2.4, we obtain the following result which is equivalent to Matsumoto’s theorem.

Theorem 4.3.

M∗(O1(2U(2)⊕ 2A1)) = C[F 2
i , 1 ≤ i ≤ 5],

(D4/O1(2U(2)⊕ 2A1))∗ ∼= P4(C).
11



Corollary 4.4. The squares F 2
i span a five-dimensional space over C and they satisfy the four-term

relations

F 2
1 − F 2

5 + F 2
6 − F 2

10 = 0,

F 2
2 − F 2

5 − F 2
8 − F 2

9 = 0,

F 2
3 − F 2

5 + F 2
6 − F 2

9 = 0,

F 2
4 − F 2

6 − F 2
8 + F 2

10 = 0,

F 2
7 − F 2

8 − F 2
9 + F 2

10 = 0.

The vector space spanned by the 15 weight two products in Lemma 4.1 and the ten squares F 2
i has

dimension 5.

Proof. The exact form of the relations among the F 2
i can be read off of their Fourier expansions.

The 15 weight two products have trivial character on O1(2U(2)⊕2A1) and therefore lie in the span
of F 2

1 , ..., F
2
5 . �

We will now obtain an analogue of Igusa’s theorem for Hermitian modular forms of degree 2
over the Gaussian numbers. The Jacobian J = J(F 2

i , 1 ≤ i ≤ 5) is the product of the ten Fi and
Φ4,2A1 . To apply Theorem 2.3 we have to show that Φ4,2A1 is irreducible as a modular form on
O1(2U(2) ⊕ 2A1), i.e. it is not a product of two non-constant modular forms with characters (or
multiplier systems) on O1(2U(2)⊕ 2A1). Since Φ2

4,2A1
∈M8(O1(2U(2)⊕ 2A1)), it can be expressed

as a polynomial P in terms of the five F 2
i . We computed this polynomial and found that it is

irreducible. From Theorem 2.3, it follows that Φ4,2A1 is irreducible on O1(2U(2)⊕ 2A1).
By Theorem 2.3, there are exactly 2048 characters of O1(2U(2)⊕2A1) and they are generated by

the basic characters χi of Fi and the character of Φ4,2A1 . Let O′1(2U(2)⊕ 2A1) be the commutator
subgroup of O1(2U(2)⊕ 2A1). Then

M∗(O
′
1(2U(2)⊕ 2A1)) = C[Φ4,2A1 , Fi, 1 ≤ i ≤ 10].

Let O0 be the subgroup

O0(2U(2)⊕ 2A1) = {γ ∈ O1(2U(2)⊕ 2A1) : χi(γ) = 1, 1 ≤ i ≤ 10}.

We have the following result immediately.

Theorem 4.5.

M∗(O0(2U(2)⊕ 2A1)) = C[Fi, 1 ≤ i ≤ 10].

Similarly, we define another subgroup of O1(2U(2)⊕ 2A1) via

O1′(2U(2)⊕ 2A1) = {γ ∈ O1(2U(2)⊕ 2A1) : χi(γ) = 1, 1 ≤ i ≤ 5}.

The group O1′(2U(2)⊕2A1) contains all reflections associated to the divisor of Φ4,2A1

∏10
j=6 Fj . The

forms Fi, 1 ≤ i ≤ 5, are modular with trivial character on O1′(2U(2) ⊕ 2A1) and their Jacobian

equals Φ4,2A1

∏10
j=6 Fj up to a non-zero constant multiple by Lemma 4.2. Therefore we obtain the

following result.

Theorem 4.6.

M∗(O1′(2U(2)⊕ 2A1)) = C[Fi, 1 ≤ i ≤ 5],

(D4/O1′(2U(2)⊕ 2A1))∗ ∼= P4(C).

The above theorem also implies that O1′(2U(2)⊕ 2A1) is generated by all reflections associated

to the divisor of Φ4,2A1

∏10
j=6 Fj . (Note that the same argument applies with F1, ..., F5 replaced by
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any of the 162 linearly independent sets of five squares of products F 2
i . These sets can be read off

of the four-term relations of Corollary 4.4.)
We define a larger subgroup of O1(2U(2)⊕ 2A1) via

O1′′(2U(2)⊕ 2A1) = {γ ∈ O1(2U(2)⊕ 2A1) : χ1(γ) = 1},
i.e. the subgroup generated by all reflections associated to the divisor of Φ4,2A1

∏10
j=2 Fj . A similar

argument to the above theorem yields the following result.

Theorem 4.7.

M∗(O1′′(2U(2)⊕ 2A1)) = C[F1, F
2
2 , F

2
3 , F

2
4 , F

2
5 ],

(D4/O1′′(2U(2)⊕ 2A1))∗ ∼= P(1, 2, 2, 2, 2) ∼= P4(C).

The ring of even-weight modular forms for O1′′(2U(2) ⊕ 2A1) is freely generated in weight two
(and indeed is exactly the ring from Theorem 4.3):

M2∗(O1′′(2U(2)⊕ 2A1))even = C[F 2
1 , F

2
2 , F

2
3 , F

2
4 , F

2
5 ].

Remark 4.8. There is a six-dimensional space of modular forms of weight 1 for the Weil repre-
sentation attached to 2U(2) ⊕ 2A1, and these map to a five-dimensional space of modular forms

of weight 2 with trivial character on the discriminant kernel Õ
+

(2U(2) ⊕ 2A1) under the additive

theta lift. Applying Theorem 2.4 to Õ
+

(2U(2)⊕ 2A1), we find that M∗(Õ
+

(2U(2)⊕ 2A1)) is freely

generated by the five additive lifts. Moreover, Õ
+

(2U(2) ⊕ 2A1) is generated by all 2-reflections
and then

Õ
+

(2U(2)⊕ 2A1) = O1(2U(2)⊕ 2A1).

By the Eichler criterion (cf. Proposition 3.3 of [9]), the divisor of Φ4,2A1 is irreducible on Õ
+

(2U(2)⊕
2A1). In this way we obtain a different proof that Φ4,2A1 is irreducible on O1(2U(2) ⊕ 2A1). We
also see that the square of each of the singular weight products is an additive lift.

Remark 4.9. By [8, Lemma 6.1], we have

O+(2U(2)⊕ 2A1) ∼= O+(2U ⊕ 2A1).

Thus Φ10,2A1 can be regarded as a modular form on 2U ⊕ 2A1. In the interpretation as Hermitian
modular forms this is the Borcherds product φ10 in [5, Corollary 4], which was realized earlier by
Freitag [6] as the product of ten theta constants. Indeed, our Fi are exactly the ten theta constants
when interpreted as Hermitian modular forms.

5. The 2U(3)⊕A2 lattice

In this section we reprove the theorem of Freitag and Salvati Manni in the context of modular
forms on 2U(3)⊕A2. We first work out some Borcherds products on 2U(3)⊕A2:

(1) There are 45 holomorphic Borcherds products of singular weight 1. Their inputs have
principal parts of the form

q−1/3(ev + e−v) + 2e0, (v, v) = 2/3, ord(v) = 3.

The product of these 45 forms is a reflective modular form Φ45,A2 of weight 45 which can
be viewed as a 2-reflective modular form for O+(2U ⊕A2).

(2) There is a holomorphic Borcherds product of weight 9 whose input has principal part

(q−1 + 18)e0.

We label this form Φ9,A2 . It is a 2-reflective modular form on O+(2U(3)⊕A2) and can be
regarded as a reflective modular form for O+(2U ⊕A2).
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Let O1(2U(3) ⊕ A2) be the subgroup of O+(2U(3) ⊕ A2) generated by all 2-reflections, i.e.
reflections associated to the divisor of Φ9,A2 . It is clear that O1(2U(3) ⊕ A2) is a subgroup of

Õ
+

(2U(3) ⊕ A2). By considering their divisors, we see that the 45 weight 1 products have trivial
character on O1(2U(3)⊕A2).

It will again be convenient to use the notion of ∗-sets.

Definition 5.1. A ∗-set (of type 2U(3)⊕ A2) is a set of five products of weight 1 on 2U(3)⊕ A2

whose inputs are invariant under all reflections associated to the divisors of any of the five products.

∗-sets of type 2U(3)⊕A2 satisfy properties analogous to Lemma 3.4:

Lemma 5.2.

(1) There are exactly 27 ∗-sets.
(2) Every product of weight 1 belongs to exactly three ∗-sets.
(3) There are 720 pairs of weight 1 products that do not belong to a ∗-set. The remaining 270

pairs belong to a unique ∗-set.
(4) The five elements of any ∗-set are linearly independent over C.

Lemma 5.3. There is a ∗-set {G1, G2, G3, G4, G5} whose Jacobian equals Φ9,A2 up to a non-zero
constant multiple.

Proof. In the notation of Appendix B, we used the forms G1, G14, G15, G23, G27 which form a ∗-set.
We computed their Jacobian to precision 10 and found that it is not identically zero (and indeed
agrees with the Fourier expansion of Φ9,A2). By the same argument as Lemma 3.5, the quotient
J/Φ9,A2 is holomorphic of weight zero and therefore constant. �

By applying Theorem 2.4 we obtain the theorem of Freitag and Salvati Manni in the context of
orthogonal groups.

Theorem 5.4. The 45 singular-weight products on 2U(3)⊕A2 span a five-dimensional space over
C. Any five linearly independent products G1, ..., G5 are algebraically independent and generate the
algebra of modular forms:

M∗(O1(2U(3)⊕A2)) = C[G1, G2, G3, G4, G5],

(D4/O1(2U(3)⊕A2))∗ ∼= P4(C).

We also have the following analogue of Perna’s theorem.

Theorem 5.5. Let {G1, ..., G5} be a ∗-set and let O2(2U(3) ⊕ A2) be the subgroup generated by

O1(2U(3)⊕A2) and the reflections associated to the divisor of
∏5
j=1Gj. Then

M∗(O2(2U(3)⊕A2)) = C[G2
1, G

2
2, G

2
3, G

2
4, G

2
5],

(D4/O2(2U(3)⊕A2))∗ ∼= P4(C).

In Remark 5.7 below, we will see that the squared Jacobian Φ2
9,A2

is irreducible in M∗(O1(2U(3)⊕
A2)). From Theorem 2.3 it follows that det is the only non-trivial character of O1(2U(3) ⊕ A2).
Let O′1(2U(3)⊕A2) be the commutator subgroup of O1(2U(3)⊕A2). Then

M∗(O
′
1(2U(3)⊕A2)) = C[Φ9,A2 , Gi, 1 ≤ i ≤ 5].

As in §3 we can construct a tower of free algebras of modular forms. We fix a ∗-set {G1, ..., G5}.
Let O1,1(2U(3)⊕A2), O1,12(2U(3)⊕A2), O1,123(2U(3)⊕A2) and O1,1234(2U(3)⊕A2) be the sub-

groups generated by reflections associated to the divisors of Φ9,A2G1, Φ9,A2

∏2
j=1Gj , Φ9,A2

∏3
j=1Gj
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and Φ9,A2

∏4
j=1Gj respectively. It is easy to derive the following structure results:

M∗(O1,1(2U(3)⊕A2)) = C[G2
1, G2, G3, G4, G5],

M∗(O1,12(2U(3)⊕A2)) = C[G2
1, G

2
2, G3, G4, G5],

M∗(O1,123(2U(3)⊕A2)) = C[G2
1, G

2
2, G

2
3, G4, G5],

M∗(O1,1234(2U(3)⊕A2)) = C[G2
1, G

2
2, G

2
3, G

2
4, G5].

From the last of these we obtain another realization of P4(C) as an orthogonal modular variety:

Theorem 5.6.
(D4/O1,1234(2U(3)⊕A2))∗ ∼= P(1, 2, 2, 2, 2) ∼= P4(C).

Remark 5.7. The space of invariants of the Weil representation attached to 2U(3) ⊕ A2 is ten-
dimensional, and these are mapped to a five-dimensional space of modular forms of weight one with

trivial character on the full discriminant kernel Õ
+

(2U(3) ⊕ A2) under the additive theta lift. In
particular the 45 singular weight products are all additive lifts. Using the argument in Remark 4.8

we conclude that M∗(Õ
+

(2U(3)⊕A2)) is freely generated by the five additive lifts and that

Õ
+

(2U(3)⊕A2) = O1(2U(3)⊕A2),

and the Eichler criterion implies that Φ9,A2 is irreducible in M∗(O1(2U(3)⊕A2)).

6. The 2U(2)⊕A1 lattice

In this section we will find three interesting free algebras of modular forms associated to the
lattice 2U(2)⊕A1. We first describe some Borcherds products on 2U(2)⊕A1 of small weight.

(1) There are nine holomorphic Borcherds products of weight 1 and one holomorphic product
of weight 2 on 2U(2)⊕A1. All have principal parts of the form

q−1/4ev, (v, v) = 1/2, ord(v) = 2.

The product of these ten forms, which we denote Φ11,A1(2), is a 2-reflective modular form
of weight 11 on 2U(2)⊕A1. This can also be viewed as a modular form on 2U ⊕A1(2) by
[8, Lemma 6.1] because

O+(2U(2)⊕A1) ∼= O+(2U ⊕A1(2)).

(2) There are six holomorphic Borcherds products f1, ..., f6 of weight 2 with principal parts

q−1/2ev, (v, v) = 1, ord(v) = 2.

We fix the Gram matrix

(
0 0 0 0 2
0 0 0 2 0
0 0 2 0 0
0 2 0 0 0
2 0 0 0 0

)
and label the six products f1, ..., f6 above such that their

principal parts are as follows:

f1 : v = (0, 1/2, 0, 1/2, 0); f2 : v = (0, 1/2, 0, 1/2, 1/2);

f3 : v = (1/2, 0, 0, 1/2, 1/2); f4 : v = (1/2, 0, 0, 0, 1/2);

f5 : v = (1/2, 1/2, 0, 0, 1/2); f6 : v = (1/2, 1/2, 0, 1/2, 0).

Let O1(2U(2)⊕ A1) be the subgroup of O+(2U(2)⊕ A1) generated by all reflections associated
to the divisor of Φ11,A1(2).

Lemma 6.1.

(1) The six products fi are modular forms with trivial character on O1(2U(2)⊕A1).
15



(2) The Jacobian J(f1, f2, f3, f4) equals Φ11,A1(2) up to a non-zero multiple.

Proof. (1) This can be seen from the divisor of the fi.
(2) We checked by computer that J = J(f1, ..., f4) is nonzero (and indeed equals 768Φ11,A1(2) up

to precision O(q, s)10). Applying Theorem 2.2 (4) as in the earlier sections shows that J/Φ11,A1(2)

is holomorphic of weight zero and therefore a constant. �

Therefore we can apply Theorem 2.4 to this situation. This yields another realization of P3(C)
as a modular variety.

Theorem 6.2. The six products f1, ..., f6 span a four-dimensional space and satisfy the relations

f1 + f3 + f5 = f2 + f4 + f6 = 0.

Any four that are linearly independent are algebraically independent and generate the ring of mod-
ular forms for O1(2U(2)⊕A1):

M∗(O1(2U(2)⊕A1)) = C[f1, f2, f3, f4],

(D3/O1(2U(2)⊕A1))∗ ∼= P3(C).

Proof. Theorem 2.4 implies everything except the exact form of the relations among the fi, which
can be determined from their Fourier expansions. �

Remark 6.3. The squares of the nine Borcherds products bi of weight one are modular forms
without character for O1(2U(2) ⊕ A1) and therefore lie in the span of f1, ..., f4. Indeed they also
span this space and they satisfy five three-term linear relations of the form b2i + b2j = b2k as one can
check from their Fourier expansions.

Choose any linearly independent squares of weight one Borcherds products b21, b22, b23 and b24
as in the remark. Let O1′(2U(2) ⊕ A1) be the subgroup of O1(2U(2) ⊕ A1) generated by all

reflections associated to the divisor of Φ11,A1(2)/(
∏4
j=1 bj). Similarly to the case of 2U(2) ⊕ 2A1,

the four forms bj are modular with trivial character on O1′(2U(2)⊕A1) and their Jacobian equals

Φ11,A1(2)/(
∏4
j=1 bj) up to a nonzero multiple. From this we obtain another realization of P3(C) as

a modular variety:

Theorem 6.4.

M∗(O1′(2U(2)⊕A1)) = C[b1, b2, b3, b4],

(D3/O1′(2U(2)⊕A1))∗ ∼= P3(C).

Furthermore, we define O1′′(2U(2) ⊕ A1) as the subgroup of O1(2U(2) ⊕ A1) generated by all
reflections associated to the divisor of Φ11,A1(2)/b1. Then

Theorem 6.5.

M∗(O1′′(2U(2)⊕A1)) = C[b1, b
2
2, b

2
3, b

2
4],

(D3/O1′′(2U(2)⊕A1))∗ ∼= P(1, 2, 2, 2) ∼= P3(C).

Remark 6.6. The space of modular forms of weight 3/2 for the Weil representation attached to
2U(2)⊕A1 is five-dimensional, and these forms map to a four-dimensional space of modular forms
of weight 2 under the additive theta lift. In particular, every modular form in M2(O1(2U(2)⊕A1))
is an additive lift and therefore has trivial character on the full discriminant kernel. Similarly to

Remark 4.8, we find that M∗(Õ
+

(2U(2) ⊕ A1)) is freely generated by the four additive lifts and
that

Õ
+

(2U(2)⊕A1) = O1(2U(2)⊕A1).
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Similarly to the previous sections, the decomposition of the Jacobian Φ11,A1(2) determines the

structure of the algebra of modular forms for the commutator group O′1(2U(2) ⊕ A1) and some
related groups. We omit the details.

7. The 2U(3)⊕A1 lattice

In this section we determine an interesting free algebra of modular forms on 2U(3) ⊕ A1. We
first work out Borcherds products on 2U(3)⊕A1:

(1) There are 29 holomorphic Borcherds products of weight 1 on 2U(3)⊕A1. Sixteen of them
have principal parts of the form

q−1/4(ev + e−v), (v, v) = 1/2, ord(v) = 6,

and they are not reflective modular forms. Twelve of them have principal parts

q−1/3(ev + e−v), (v, v) = 2/3, ord(v) = 3,

and they are reflective modular forms. The last one is a 2-reflective modular form denoted
by ∆1 with principal part

q−1/4e(0,0,1/2,0,0)

with respect to the Gram matrix (
0 0 0 0 3
0 0 0 3 0
0 0 2 0 0
0 3 0 0 0
3 0 0 0 0

)
.

(2) There is a holomorphic Borcherds product of weight 7 with principal part q−1e0. We label
this 2-reflective form Φ7,A1(3).

Let O1(2U(3)⊕ A1) be the subgroup of O+(2U(3)⊕ A1) generated by all reflections associated
to the divisor of Φ7,A1(3). The 28 products of weight 1 other than ∆1 are modular forms of trivial
character on O1(2U(3)⊕A1).

Lemma 7.1. There are four products g1, ..., g4 of weight 1 whose Jacobian J(g1, g2, g3, g4) equals
Φ7,A1(3) up to a non-zero multiple.

Proof. We used the products gi whose inputs have principal parts q−1/3(evi + e−vi), where

v1 = (1/3, 2/3, 0, 2/3, 0), v2 = (1/3, 2/3, 0, 1/3, 2/3),

v3 = (1/3, 1/3, 0, 2/3, 2/3), v4 = (1/3, 1/3, 0, 1/3, 0),

(although it will turn out that any four linearly independent forms not including ∆1 will do) and
using Fourier series computed that their Jacobian J is nonzero (and equals (12ζ3 + 6)Φ7,A1(3) up

to precision O(q, s)10). As in the previous sections J/Φ7,A1(3) is holomorphic of weight zero and
therefore constant. �

By applying Theorem 2.4 we obtain the following theorem.

Theorem 7.2. Every linearly independent set g1, ..., g4 of weight one products that does not include
∆1 is algebraically independent and generates the ring of modular forms for O1(2U(3)⊕A1):

M∗(O1(2U(3)⊕A1)) = C[g1, g2, g3, g4],

(D3/O1(2U(3)⊕A1))∗ ∼= P3(C).

In particular, the 28 products of weight 1 other than ∆1 span a 4-dimensional space. (∆1 has a
nontrivial character on O1(2U(3)⊕A1) and in particular does not lie in their span.)
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Remark 7.3. The space of modular forms of weight 1/2 for the Weil representation attached to
2U(3)⊕A1 is 8-dimensional, and these map to a four-dimensional space of modular forms of weight
one under the additive theta lift. It follows that all of the 28 products of weight 1 other than ∆1 are

additive lifts. Similarly to 2U(2)⊕ 2A1, we conclude that M∗(Õ
+

(2U(3)⊕A1)) is freely generated
by the four additive lifts and that

Õ
+

(2U(3)⊕A1) = O1(2U(3)⊕A1).

By the Eichler criterion, the forms ∆1 and Φ7,A1(3)/∆1 are irreducible on O1(2U(3)⊕A1).

8. The U(4)⊕ U(2)⊕A1 lattice

In this section we determine two interesting free algebras of modular forms on U(4)⊕U(2)⊕A1.
We first work out Borcherds products on U(4)⊕ U(2)⊕A1:

(1) There are 8 holomorphic Borcherds products of weight 1/2 and 3 holomorphic products of
weight 1 on U(4)⊕ U(2)⊕A1, all with principal parts of the form

q−1/4ev, (v, v) = 1/2, ord(v) = 2.

Their product is a 2-reflective modular form of weight 7 which we label Φ7,A1(4).
(2) There are 16 other holomorphic Borcherds products of weight 1. They are all reflective.

Twelve of them have input forms with principal parts

q−1/4(ev + e−v), (v, v) = 1/2, ord(v) = 4.

The remaining four have input forms with principal parts

q−1/2ev, (v, v) = 1, ord(v) = 2.

Let O1(U(4)⊕U(2)⊕A1) be the subgroup of O+(U(4)⊕U(2)⊕A1) generated by all reflections
associated to the divisor of Φ7,A1(4). Then the 16 products of weight 1 in (2) are modular forms of
trivial character on O1(U(4)⊕ U(2)⊕A1).

Let h1, ..., h4 denote the four products in (2) whose input forms have principal part q−1/2ev with
v of order two.

Lemma 8.1. The Jacobian J = J(h1, h2, h3, h4) is equals Φ7,A1(4) up to a non-zero constant
multiple. The four forms h1, h2, h3 and h4 are algebraically independent over C.

Proof. As in the previous sections the quotient J/Φ7,A1(4) is holomorphic of weight zero and there-
fore constant. We checked by computer that this constant is not zero. �

Theorem 2.4 yields the following structure theorem:

Theorem 8.2.

M∗(O1(U(4)⊕ U(2)⊕A1)) = C[h1, h2, h3, h4],

(D3/O1(U(4)⊕ U(2)⊕A1))∗ ∼= P3(C).

Corollary 8.3. The 16 products of weight one in (2) span a 4-dimensional space. The 8 squares
of weight 1/2 products also span this space.

We label the 8 weight 1/2 products di, 1 ≤ i ≤ 8. Let vi be the multiplier system of di on
O1(U(4) ⊕ U(2) ⊕ A1). Assume that d2

i for 1 ≤ i ≤ 4 are linearly independent over C. Let
O1′(U(4) ⊕ U(2) ⊕ A1) be the subgroup of O1(U(4) ⊕ U(2) ⊕ A1) generated by all reflections

associated to the divisor of Φ7,A1(4)/(
∏4
j=1 dj). The four multiplier systems vi for 1 ≤ i ≤ 4

coincide on O1′(U(4) ⊕ U(2) ⊕ A1) because the quotient of any two of them is a character of
O1′(U(4)⊕U(2)⊕A1) which equals one on the generator reflections of that group. Their common
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restriction defines a multiplier system of O1′(U(4)⊕U(2)⊕A1) and we denote it by v. This implies

that O1′(U(4) ⊕ U(2) ⊕ A1) does not contain reflections associated to the divisor of
∏4
j=1 dj , and

that v = 1 for all reflections in O1′(U(4)⊕ U(2)⊕A1). We obtain the following result:

Theorem 8.4.

M∗(O1′(U(4)⊕ U(2)⊕A1), v) = C[d1, d2, d3, d4],

(D3/O1′(U(4)⊕ U(2)⊕A1))∗ ∼= P3(C).

Remark 8.5. There are four linearly independent additive theta lifts of weight 1 for the Weil
representation attached to U(4) ⊕ U(2) ⊕ A1. This implies that every weight 1 modular form of
trivial character on O1(U(4) ⊕ U(2) ⊕ A1) is an additive lift and therefore is modular under the

full discriminant kernel. Similarly to Remark 4.8, we conclude that M∗(Õ
+

(U(4)⊕ U(2)⊕A1)) is
freely generated by the four additive lifts and that

Õ
+

(U(4)⊕ U(2)⊕A1) = O1(U(4)⊕ U(2)⊕A1).

9. The U ⊕ U(2)⊕A1(2) lattice

In this section we find two interesting free algebras of modular forms for the U ⊕ U(2)⊕ A1(2)
lattice. We first describe some Borcherds products:

(1) There are 3 holomorphic Borcherds products t1, t2, t3 of weight 1. They have principal parts
of the form

q−1/8(ev + e−v), (v, v) = 1/4, ord(v) = 4.

(2) There is a holomorphic Borcherds product Ψ8,A1(2) of weight 8 whose principal part with
respect to the Gram matrix (

0 0 0 0 1
0 0 0 2 0
0 0 4 0 0
0 2 0 0 0
1 0 0 0 0

)
is

− q−1/8(e(0,0,1/4,0,0) + e(0,0,3/4,0,0) + e(0,0,1/4,1/2,0)

+ e(0,0,3/4,1/2,0) + e(0,1/2,1/4,0,0) + e(0,1/2,3/4,0,0))

+ q−1/2e(0,0,1/2,0,0) + q−1e(0,0,0,0,0).

In addition, we let m2 be the additive theta lift of the (unique) modular form of weight 3/2 for
the Weil representation attached to U ⊕U(2)⊕A1(2) with constant term 1e0; in particular, m2 has
weight two.

Let O1(U ⊕U(2)⊕A1(2)) and O2(U ⊕U(2)⊕A1(2)) be the subgroups of O+(U ⊕U(2)⊕A1(2))
generated by the reflections associated to the divisors of Ψ8,A1(2) and Ψ8,A1(2)t1t2t3 respectively. By
considering the actions of these reflections on the input forms, we see that t1, t2, t3 are modular forms
with a character of order two on O2(U⊕U(2)⊕A1(2)), and m2 is modular on O2(U⊕U(2)⊕A1(2))
without character. Moreover, t1, t2, t3 have trivial character on O1(U ⊕ U(2)⊕A1(2)).

Lemma 9.1. The Jacobian J = J(t1, t2, t3,m2) equals Ψ8,A1(2) up to a nonzero multiple.

Proof. Using Fourier series we computed that J is not identically zero (and equals (−1/3)Ψ8,A1(2)

up to precision O(q, s)10). As in the previous sections J/Ψ8,A1(2) is holomorphic of weight zero and
therefore constant. �

Therefore, we can apply Theorem 2.4:
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Theorem 9.2.

M∗(O1(U ⊕ U(2)⊕A1(2))) = C[t1, t2, t3,m2],

M∗(O2(U ⊕ U(2)⊕A1(2))) = C[t21, t
2
2, t

2
3,m2],

(D3/O2(U ⊕ U(2)⊕A1(2)))∗ ∼= P3(C).

Furthermore, let O2′(U ⊕U(2)⊕A1(2)) be the subgroup of O+(U ⊕U(2)⊕A1(2)) generated by
the reflections associated to the divisor of Ψ8,A1(2)t2t3. We then have another realization of P3(C).

Theorem 9.3.

M∗(O2′(U ⊕ U(2)⊕A1(2))) = C[t1, t
2
2, t

2
3,m2],

(D3/O2′(U ⊕ U(2)⊕A1(2)))∗ ∼= P(1, 2, 2, 2) ∼= P3(C).

Remark 9.4. The following eight groups constructed in the paper are all subgroups of O+(2U⊕A1):

O1(2U(4)⊕A1), O2(2U(4)⊕A1), O1(2U(2)⊕A1), O1′(2U(2)⊕A1),

O1′′(2U(2)⊕A1), O1(2U(3)⊕A1), O1(U(4)⊕ U(2)⊕A1), O1′(U(4)⊕ U(2)⊕A1).

For any of them, the Satake–Baily–Borel compactification of modular variety is isomorphic to P3.
The decomposition into irreducibles of the square of the Jacobian of any generators corresponds
to the Γ-equivalence classes of mirrors of reflections in Γ (see Theorem 2.3). In particular, this
decomposition is an invariant of the groups up to conjugacy. We give the decomposition for the 16
reflection groups in Table 1, which shows that the eight subgroups above are pairwise non-conjugate
except for the possible cases

O1(U(4)⊕ U(2)⊕A1) and O1′(2U(2)⊕A1)

and
O1′(U(4)⊕ U(2)⊕A1) and O1(2U(4)⊕A1).

Remark 9.5. The groups of type O1(M) in our paper are finite index subgroups of the full integral
orthogonal group O+(M). This follows easily from the Margulis normal subgroup theorem [12]. It
can also be proved using the basic argument in the proof of [20, Theorem 3.1].

Remark 9.6. Many examples in this paper support Conjecture 5.2 in [19] which states that if
M∗(Γ) is a free algebra for a finite index subgroup Γ of O+(M) then M∗(Γ1) is also free for any
other reflection subgroup Γ1 satisfying Γ < Γ1 < O+(M).
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Table 1. 16 reflection groups Γ for which (D/Γ)∗ is a projective space. The symbol
k(J) stands for the weight of the Jacobian J . For a group Γ, the entry a1×x1 + · · ·+
at×xt in the rightmost column means that the decomposition of J2 into irreducibles
in M∗(Γ) consists of xi forms of weight ai, 1 ≤ i ≤ t.

group k(J) weights of generators decomposition of J2

O1(2U(4)⊕A1) 5 1
2 ,

1
2 ,

1
2 ,

1
2 1× 10

O2(2U(4)⊕A1) 7 1, 1, 1, 1 1× 6 + 2× 2 + 4

O1(2U(2)⊕A1) 11 2, 2, 2, 2 2× 9 + 4

O1′(2U(2)⊕A1) 7 1, 1, 1, 1 1× 8 + 2× 3

O1′′(2U(2)⊕A1) 10 1, 2, 2, 2 2× 8 + 4

O1(2U(3)⊕A1) 7 1, 1, 1, 1 2 + 12

O1(U(4)⊕ U(2)⊕A1) 7 1, 1, 1, 1 1× 8 + 2× 3

O1′(U(4)⊕ U(2)⊕A1) 5 1
2 ,

1
2 ,

1
2 ,

1
2 1× 10

O2(U ⊕ U(2)⊕A1(2)) 11 2, 2, 2, 2 2× 7 + 8

O2′(U ⊕ U(2)⊕A1(2)) 10 1, 2, 2, 2 2× 6 + 8

O1(2U(2)⊕ 2A1) 14 2, 2, 2, 2, 2 2× 10 + 8

O1′(2U(2)⊕ 2A1) 9 1, 1, 1, 1, 1 2× 5 + 8

O1′′(2U(2)⊕ 2A1) 13 1, 2, 2, 2, 2 2× 9 + 8

O1(2U(3)⊕A2) 9 1, 1, 1, 1, 1 18

O1,1234(2U(3)⊕A2) 13 1, 2, 2, 2, 2 2× 4 + 18

O2(2U(3)⊕A2) 14 2, 2, 2, 2, 2 2× 5 + 18
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Appendix A: Type II products and ∗-sets of type 2U(4)⊕A1

The sixty type II singular-weight products attached to the lattice M = 2U(4) ⊕ A1 have input

forms with principal part q−1/4(ev + e−v) for certain cosets v ∈ M∨/M of order 4. In the table
below, we list one coset representative v for each product Θi, with respect to the Gram matrix(

0 0 0 0 4
0 0 0 4 0
0 0 2 0 0
0 4 0 0 0
4 0 0 0 0

)
:

Θ1 (1/4, 1/2, 0, 1/2, 1/4) Θ2 (1/4, 0, 0, 0, 1/4)
Θ3 (0, 0, 1/2, 1/4, 1/4) Θ4 (1/2, 1/2, 1/2, 1/4, 1/4)
Θ5 (1/4, 0, 0, 1/4, 1/4) Θ6 (1/4, 1/2, 0, 1/4, 3/4)
Θ7 (1/2, 0, 1/2, 1/4, 0) Θ8 (0, 0, 1/2, 1/4, 1/2)
Θ9 (0, 1/4, 1/2, 0, 1/4) Θ10 (1/2, 1/4, 1/2, 1/2, 3/4)
Θ11 (1/4, 1/2, 1/2, 0, 0) Θ12 (1/4, 0, 1/2, 0, 0)
Θ13 (1/4, 1/2, 1/2, 1/4, 1/2) Θ14 (1/4, 1/2, 1/2, 3/4, 1/2)
Θ15 (1/4, 3/4, 1/2, 0, 0) Θ16 (1/4, 1/4, 1/2, 0, 0)
Θ17 (1/4, 3/4, 0, 1/2, 3/4) Θ18 (1/4, 3/4, 0, 0, 1/4)
Θ19 (0, 1/4, 0, 1/4, 1/4) Θ20 (1/2, 1/4, 0, 3/4, 1/4)
Θ21 (1/4, 3/4, 0, 1/4, 1/2) Θ22 (1/4, 3/4, 0, 3/4, 0)
Θ23 (0, 1/2, 1/2, 1/2, 1/4) Θ24 (0, 0, 1/2, 1/2, 1/4)
Θ25 (1/2, 1/4, 0, 1/4, 0) Θ26 (1/2, 1/4, 0, 1/4, 1/2)
Θ27 (1/2, 1/4, 1/2, 0, 0) Θ28 (1/2, 1/4, 1/2, 0, 1/2)
Θ29 (1/4, 1/4, 1/2, 1/4, 3/4) Θ30 (1/4, 1/4, 1/2, 3/4, 1/4)
Θ31 (1/4, 0, 0, 1/2, 1/4) Θ32 (1/4, 1/2, 0, 0, 1/4)
Θ33 (0, 0, 1/2, 1/4, 3/4) Θ34 (1/2, 1/2, 1/2, 1/4, 3/4)
Θ35 (1/4, 1/2, 0, 3/4, 3/4) Θ36 (1/4, 0, 0, 3/4, 1/4)
Θ37 (1/2, 0, 1/2, 1/4, 1/2) Θ38 (0, 0, 1/2, 1/4, 0)
Θ39 (1/2, 1/4, 1/2, 1/2, 1/4) Θ40 (0, 1/4, 1/2, 0, 3/4)
Θ41 (1/4, 0, 1/2, 1/2, 0) Θ42 (1/4, 1/2, 1/2, 1/2, 0)
Θ43 (1/4, 0, 1/2, 1/4, 0) Θ44 (1/4, 0, 1/2, 3/4, 0)
Θ45 (1/4, 1/4, 1/2, 1/2, 1/2) Θ46 (1/4, 3/4, 1/2, 1/2, 1/2)
Θ47 (1/4, 1/4, 0, 1/2, 3/4) Θ48 (1/4, 1/4, 0, 0, 1/4)
Θ49 (1/2, 1/4, 0, 3/4, 3/4) Θ50 (0, 1/4, 0, 1/4, 3/4)
Θ51 (1/4, 1/4, 0, 3/4, 1/2) Θ52 (1/4, 1/4, 0, 1/4, 0)
Θ53 (0, 1/2, 1/2, 0, 1/4) Θ54 (0, 0, 1/2, 0, 1/4)
Θ55 (0, 1/4, 0, 1/4, 0) Θ56 (0, 1/4, 0, 1/4, 1/2)
Θ57 (0, 1/4, 1/2, 0, 1/2) Θ58 (0, 1/4, 1/2, 0, 0)
Θ59 (1/4, 3/4, 1/2, 1/4, 1/4) Θ60 (1/4, 3/4, 1/2, 3/4, 3/4)

The ∗-sets are the maximum cliques in the graph formed by connecting products Θi and Θj

by an edge if the reflections associated to the divisor of Θj also preserve the divisor of Θi. With
respect to the ordering above, the 105 ∗-sets are {Θi1 ,Θi2 ,Θi3 ,Θi4} where (i1, i2, i3, i4) is one of
the following:

(1, 2, 26, 55), (3, 17, 18, 34), (6, 19, 36, 49), (10, 14, 40, 44), (13, 19, 20, 44), (17, 27, 47, 57), (23, 24, 53, 54),

(1, 2, 29, 60), (3, 21, 22, 34), (7, 8, 37, 38), (10, 30, 40, 60), (13, 30, 43, 60), (17, 48, 49, 50), (23, 24, 57, 58),

(1, 2, 31, 32), (3, 23, 33, 53), (7, 11, 38, 42), (10, 39, 53, 54), (14, 18, 43, 47), (18, 19, 20, 47), (23, 54, 55, 56),

(1, 5, 32, 36), (4, 8, 34, 38), (7, 13, 14, 38), (10, 39, 57, 58), (14, 29, 44, 59), (18, 28, 48, 58), (24, 25, 26, 53),
22



Figure 1. There is an edge between the type II products Θi and Θj if Θi is modular
under the reflections associated to the divisor of Θj . This is a 15-regular graph with
23,040 automorphisms. The edge between Θi and Θj is colored red, green or blue
depending on i+ j mod 3.

(1, 7, 8, 32), (4, 24, 34, 54), (7, 24, 37, 54), (11, 12, 28, 57), (14, 43, 49, 50), (19, 20, 49, 50), (25, 26, 55, 56),

(1, 18, 31, 48), (4, 33, 47, 48), (8, 12, 37, 41), (11, 12, 41, 42), (15, 16, 28, 57), (19, 23, 50, 54), (25, 29, 56, 60),

(1, 27, 31, 57), (4, 33, 51, 52), (8, 23, 38, 53), (11, 12, 45, 46), (15, 16, 41, 42), (19, 25, 26, 50), (25, 31, 32, 56),

(2, 6, 31, 35), (5, 6, 22, 51), (8, 37, 43, 44), (11, 21, 41, 51), (15, 16, 45, 46), (20, 24, 49, 53), (26, 30, 55, 59),

(2, 17, 32, 47), (5, 6, 35, 36), (9, 10, 22, 51), (11, 26, 41, 56), (15, 19, 45, 49), (20, 49, 55, 56), (27, 28, 53, 54),

(2, 28, 32, 58), (5, 6, 39, 40), (9, 10, 35, 36), (11, 42, 43, 44), (15, 29, 30, 46), (21, 22, 47, 48), (27, 28, 57, 58),

(2, 31, 37, 38), (5, 15, 35, 45), (9, 10, 39, 40), (12, 13, 14, 41), (15, 33, 34, 46), (21, 22, 51, 52), (27, 41, 42, 58),

(3, 4, 16, 45), (5, 20, 35, 50), (9, 13, 39, 43), (12, 22, 42, 52), (16, 20, 46, 50), (21, 25, 51, 55), (27, 45, 46, 58),

(3, 4, 29, 30), (5, 36, 37, 38), (9, 23, 24, 40), (12, 25, 42, 55), (16, 45, 59, 60), (21, 35, 36, 52), (29, 30, 59, 60),

(3, 4, 33, 34), (6, 7, 8, 35), (9, 27, 28, 40), (13, 14, 43, 44), (17, 18, 47, 48), (21, 39, 40, 52), (30, 31, 32, 59),

(3, 7, 33, 37), (6, 16, 36, 46), (9, 29, 39, 59), (13, 17, 44, 48), (17, 18, 51, 52), (22, 26, 52, 56), (33, 34, 59, 60).
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The ordering is chosen such that the 90 exceptional pairs of type II forms that extend in three
ways to ∗-sets are precisely those of the form (Θi+j ,Θi+k) where i < 30 is odd and j, k ∈ {0, 1, 30, 31}
are distinct.

Figure 2. Contracting the 90 exceptional pairs in Figure 1 yields the strongly
regular graph srg(15, 6, 1, 3) on 15 vertices. The edges are colored red, green, blue
by the same rule as Figure 1.
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Appendix B: Singular-weight products and ∗-sets of type 2U(3)⊕A2

The 45 singular-weight products attached to the lattice M = 2U(3)⊕A2 have input forms with

principal part q−1/3(ev+e−v) for cosets v ∈M∨/M of order 3. In the table below, for each product
Gi we list one coset representative v with respect to the Gram matrix 0 0 0 0 0 3

0 0 0 0 3 0
0 0 2 1 0 0
0 0 1 2 0 0
0 3 0 0 0 0
3 0 0 0 0 0

 :

G1 (0, 0, 2/3, 2/3, 0, 1/3) G2 (0, 0, 2/3, 2/3, 1/3, 1/3)
G3 (0, 1/3, 2/3, 2/3, 0, 0) G4 (1/3, 2/3, 1/3, 1/3, 1/3, 1/3)
G5 (0, 1/3, 1/3, 1/3, 0, 1/3) G6 (0, 0, 2/3, 2/3, 2/3, 1/3)
G7 (0, 1/3, 1/3, 1/3, 0, 0) G8 (1/3, 0, 1/3, 1/3, 2/3, 0)
G9 (1/3, 1/3, 1/3, 1/3, 0, 0) G10 (1/3, 1/3, 0, 0, 0, 1/3)
G11 (0, 0, 2/3, 2/3, 0, 2/3) G12 (1/3, 2/3, 1/3, 1/3, 2/3, 2/3)
G13 (1/3, 2/3, 0, 0, 1/3, 2/3) G14 (1/3, 0, 2/3, 2/3, 1/3, 0)
G15 (1/3, 1/3, 2/3, 2/3, 0, 0) G16 (0, 0, 2/3, 2/3, 2/3, 2/3)
G17 (1/3, 1/3, 0, 0, 1/3, 0) G18 (1/3, 2/3, 1/3, 1/3, 0, 0)
G19 (0, 1/3, 1/3, 1/3, 0, 2/3) G20 (0, 1/3, 2/3, 2/3, 0, 2/3)
G21 (0, 0, 2/3, 2/3, 1/3, 0) G22 (0, 1/3, 0, 0, 1/3, 1/3)
G23 (0, 1/3, 0, 0, 1/3, 2/3) G24 (0, 0, 2/3, 2/3, 0, 0)
G25 (1/3, 2/3, 0, 0, 0, 1/3) G26 (0, 1/3, 2/3, 2/3, 0, 1/3)
G27 (1/3, 2/3, 2/3, 2/3, 2/3, 2/3) G28 (1/3, 0, 0, 0, 2/3, 1/3)
G29 (1/3, 1/3, 1/3, 1/3, 1/3, 2/3) G30 (1/3, 0, 0, 0, 0, 1/3)
G31 (0, 0, 2/3, 2/3, 1/3, 2/3) G32 (1/3, 0, 0, 0, 1/3, 1/3)
G33 (1/3, 2/3, 2/3, 2/3, 0, 0) G34 (1/3, 0, 1/3, 1/3, 1/3, 0)
G35 (0, 1/3, 0, 0, 1/3, 0) G36 (1/3, 2/3, 0, 0, 2/3, 0)
G37 (1/3, 1/3, 0, 0, 2/3, 2/3) G38 (1/3, 0, 1/3, 1/3, 0, 0)
G39 (1/3, 1/3, 2/3, 2/3, 1/3, 2/3) G40 (1/3, 0, 2/3, 2/3, 0, 0)
G41 (0, 0, 2/3, 2/3, 2/3, 0) G42 (1/3, 2/3, 2/3, 2/3, 1/3, 1/3)
G43 (1/3, 1/3, 2/3, 2/3, 2/3, 1/3) G44 (1/3, 0, 2/3, 2/3, 2/3, 0)
G45 (1/3, 1/3, 1/3, 1/3, 2/3, 1/3)

With respect to this ordering the 27 ∗-sets are the sets {Gi, i ∈ I} where I is one of the index
sets:

(1, 14, 15, 23, 27), (1, 22, 33, 39, 44), (1, 35, 40, 42, 43), (2, 3, 14, 25, 45), (2, 9, 13, 20, 44),

(2, 26, 29, 36, 40), (3, 8, 10, 31, 42), (3, 12, 21, 30, 39), (4, 6, 7, 10, 44), (4, 11, 35, 38, 45),

(4, 15, 21, 26, 28), (5, 6, 14, 18, 37), (5, 9, 28, 41, 42), (5, 16, 36, 38, 39), (6, 12, 17, 19, 40),

(7, 16, 25, 34, 43), (7, 27, 29, 30, 41), (8, 11, 18, 22, 29), (8, 13, 15, 16, 19), (9, 11, 12, 23, 34),

(10, 23, 24, 32, 36), (13, 24, 30, 35, 37), (17, 20, 27, 31, 38), (17, 22, 24, 25, 28), (18, 20, 21, 32, 43),

(19, 32, 33, 41, 45), (26, 31, 33, 34, 37).

These can be computed as the maximal cliques in the graph depicted in Figure 3.
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Figure 3. There is an edge between the singular-weight products Gi and Gj if Gi
is modular under the reflections associated to the divisor of Gj . This is a strongly
regular graph with parameters (45, 12, 3, 3) and has 51,840 automorphisms.
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