These are notes for a course (Spezialvorlesung) on Jacobi forms at Heidelberg Uni-
versity in Wintersemester 2024/25. The prerequisites were complex analysis and some
knowledge of modular forms (the material of “Modulformen 1”). Familiarity with ellip-
tic functions was not assumed and the first lectures are a review of that subject.

The notes mostly follow The Theory of Jacobi Forms by Eichler and Zagier, with the
caveat that I did not discuss Siegel modular forms or their Fourier—Jacobi coefficients.
The later sections rely on other sources which are indicated by footnotes.
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0. Introduction

Jacobi forms are a family of special functions. They generalize two major families of
special functions that are characterized by their functional equations:

(1) Modular functions, which are holomorphic functions
f-H={x+iwy: z,yeR, y>0} — C
that satisfy f(y7) = f(7) for v € SLy(Z).
(2) Elliptic functions, which are meromorphic functions
f:C— CU{x}
that satisfy f(z + w) = f(z) for w in a lattice in C.

Both of these functional equations can be relaxed, and there are compelling reasons,
both practical and theoretical, for doing it. We can pass from (1) to modular forms,
which transform under the modular group v € SLy(Z) similarly to (1) but in which
the functional equations include what is called a factor of automorphy. Or we can pass
from elliptic functions to quasiperiodic functions, which transform under translations
similarly to (2) with yet another factor of automorphy.

Jacobi forms are defined to encompass both constructions.

The fundamental example of a Jacobi form is the Jacobi theta function:

o
O(r,z)= Y ez s el zeC.

n=—oo

This series converges absolutely (and locally uniformly).

The function 6 has fascinated mathematicians and physicists for about two centuries,
and for a number of reasons. It solves a form of the heat equation:

00 1 0%

or 4w 92

and it is essentially the fundamental solution of that differential equation on the interval
z € [0, 1] with periodic boundary conditions. € and related functions are also used to
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evaluate elliptic integrals. We will (for the most part) not discuss these or any other
physical applications in the course.

Our interest in 6 is due to the functional equations it satisfies. Trivially,
O(r,z+ 1) =0(r, 2).

The theta transformation formula is a far less obvious functional equation for € involving
its first variable:

Theorem 0.1. The 0-function

oo
Orz)= 3 e L cH e

satisfies the functional equation
1 z —7i/4 miz? /T
6(——,—)26 VT e 0(r, 2).
T'T
Here, /7 is the branch of the square root that becomes positive as 7 € H tends

towards the positive real axis.

The theory of Jacobi forms is a common generalization of modular forms, doubly
periodic functions, and functions like . It retains many of the attractive aspects of the
theory of modular forms:

1. Modular forms of a fixed weight form finite-dimensional vector spaces. Also,
Jacobi forms of fixed weight and inder form finite-dimensional spaces.

2. Modular forms and Jacobi forms are both graded rings: the weight and index are
added when Jacobi forms are multiplied.

3. Some modular forms are easy to compute (e.g. Eisenstein series). Similarly for
Jacobi forms.

4. Some modular forms contain very interesting arithmetic information (e.g. theta
series, or the discriminant A(7)). Similarly for Jacobi forms.



1. Elliptic functions

1.1. Period lattices

Let f: C — CU {00} be a non-constant meromorphic function.

Definition 1.1. A period of f is a complex number A # 0 with the property

f(z+ )= f(z) forallzeC.

We write

Per(f) :={ e C: f(z+ X)) = f(2)}.

Per(f) is a group under addition (since we include 0).

Lemma 1.2. Per(f) is a closed and discrete subgroup of C.

Proof. Per(f) can be written as the intersection

Per(f) = {N€C: f(z+A) — f(z) =0}.

zeC

Each function A — f(z 4+ \) — f(2) is meromorphic and nonconstant, so its zero set is
closed and discrete. Hence Per(f) is an intersection of closed, discrete sets and is itself
closed and discrete. ]

Proposition 1.3. Suppose G < C is a closed, discrete subgroup. Then one of
the following cases holds:

(i) G ={0}; or
(i1) G = {nw : n € Z} for some w € C\{0}; or
(i)
G = {mw;, + nwy : m,n € Z}
for wi,wy € C\{0} with the property T := 22 ¢ R. (In other words, {w1,ws} is
an R-basis for C.)
Conversely, any group of the form (i), (i), (iii) is closed and discrete.

The proof relies on the following lemma of Jacobi:
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Lemma 1.4 (Jacobi’s lemma). Let a,b,c € C. Then

inf |la + mb+ nc| = 0.

Lmn€eZ
(€,;m,n)#(0,0,0)

Proof. Suppose the claim were false: that is, we could find 6 > 0 such that
|a + mb + nc| > 0 for all (¢,m,n) # (0,0,0).
Then any two distinct tuples (¢,m,n) and (¢',m’,n’') € Z* would satisfy
(6= )a+ (m—m")b+ (n—n')| > 4.
Therefore, for any N € N, the (2N + 1)3 distinct points
{a+mb+nc: —N <{l,m,n<N}

would have distance at least § from one another and (by the triangle inequality) would
lie in the circle
{z € C: |z| <3N -max(|al,|b],|c|]) =: R-N}.

In geometric terms we would be able to fit (2N +1)3 circles of radius ¢ (centered at the
above points) within a circle of radius N R+ 9 with center at the origin without overlap.
For large N, we obtain a contradiction because the first set’s area grows proportionally
with N3 while the second set’s area is proportional to N2. O

Proof of Proposition 1.3. GG is a torsionfree abelian group. Its rank is at most two by
Jacobi’s lemma: if a, b, ¢ € G were linearly independent over Z, then the set Za+Zb+Zc
would contain nonzero numbers of arbitrary small absolute value, contradicting the fact
that G is discrete. By the structure theorem for finitely generated abelian groups, either
G = 7 (which is case (ii)) or G = Z? (which is case (iii)). In the latter case, writing

G = {mw;, +nwy : m,n € Z},
we have 7 = ws/w; ¢ R, because: supposing otherwise, define
a:=wi, b:=wsy, c:=1iws.
By Jacobi’s lemma,

inf [ta 4 mb + nc|? = |w|? - inf (|€—|—m7|2—|—n2> =0,
é,m,nEZ (£7m7n)7£(07070)
(E7m7n)7£(03070)

which forces inf(g,,)£(0,0) [¢ + m7|? = 0 and therefore 0 € G\{0}. That is impossible
because G is discrete. ]



A closed, discrete subgroup L < G of rank two (i.e. case (iii) in the Theorem) is
called a lattice.

Definition 1.5. Let L < C be a lattice.
An elliptic function for L is a meromorphic function f : C — C U {oo} that
satisfies

f(z4+ ) = f(z) for all A € L.

In other words, f is either a constant or its period group is
Per(f) = L.

Clearly the sum, difference, product and quotient of two functions that are L-periodic
are again L-periodic. Also, the set of elliptic functions with period lattice L is closed
under differentiation.

1.2. Properties of elliptic functions

Before constructing the first examples of elliptic functions, we will derive some of their
general properties. Let L < C be a lattice.

Definition 1.6. A fundamental parallelogram for L is any set P of the form
P = {awl—i—bwg: 0<a,b< 1}

where wq,ws is a basis of L.

et
T

Figure 1.1: A fundamental parallelogram.




So P is a compact set, and the points of P are in bijection with cosets of C/L
(with the exception of opposing sides, which are the same in C/L). For the rest of this
section, fix a basis {wy,ws} for L and thus a parallelogram P.

An elliptic function is completely determined by its values on P. This observation
quickly leads to strong restrictions for elliptic functions, known as Liouwille’s theorems:

Theorem 1.7 (Liouville’s first theorem). Any holomorphic elliptic function is
constant.

Proof. For any z € C, we can find A € L such that z+\ € P, and then f(z) = f(z+\).
This means that

f(C) = f(P).
But P is compact, so f(C) is also compact and therefore bounded. By Liouville’s
theorem (any bounded entire function is constant), f is constant. ]

Theorem 1.8 (Liouville’s second theorem). Let f be an elliptic function. Then

Z Res,(f) = 0.

[w]eC/L

If [w] € C/L then Res,(f) stands for the residue of f at any representative w. This
is well-defined because

fz+ X)) =f(2), NelL
implies that the orders and residues of f in w and any w + A are equal.

Proof. Choose u € C such that none of the poles of f lie on the boundary of the shifted
parallelogram u + P.

U+ Wo

\\.u+w1+w2
/ /

/ T
\

L]
U+ wq

Figure 1.2: Path of integration u + 0P



Using the residue theorem we obtain

+ 273 - Z Resy,(f)

[w]eC/L

S PRLCLE
u+0P
u+wi u+witwsa u+wo u
:/ f(z)dz+/ f(z)dz—i—/ f(z)dz + f(z)dz

+w1 u+wi +wsa uU+ws2

_ /uuml <f(z) s w2)> e /wa (f(z) —flz+ w1)> dz,

where the sign depends on whether the basis {wy,ws} of L is positively or negatively
oriented. The integrands in the last line are identically zero because f is elliptic.
O

Theorem 1.9 (Liouville’s third theorem). Let f be an elliptic function and

a € C. Then
Z ord,(f —a) =0.
[w]eC/L

In words: the number of poles of f mod L is equal to its number of zeros or even
the number of times it takes on the value a for any a € C, as long as we count with
multiplicity.

Proof. Let g be the elliptic function

such that Res,(g) = ord,(f — a). The claim is exactly Liouville’s second theorem
applied to g. O

Theorem 1.10 (Liouville’s fourth theorem). Let f be an elliptic function. Then

S ordy(f) - [w] = [0] € T/,

[w]eC/L

In other words: if aq, ..., ay represent the zeros and by, ..., by the poles of f modulo
L (counted with multiplicities), then

ai+ ...+ay =by + ...+ by mod L.

Proof. We follow the proof of Liouville’s second theorem but integrate z% dz rather
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than f(z)dz along the boundary of u + P. This yields
+ 273 - Z ord, (f) - w

weu+P
/
e
u+wi f/(Z) f/ Z—f-(,UQ uU+wsz f/(Z) f’(z—i—wl)
= - - TN g
/u <Zf(2) (2w f(z+ wq) ) /u (Zf(z) (z+w) 2+ woy ) .
U~+wsz f/(Z) /u+w1 f( )
=w dz —w
1/u f(z) E )
By Cauchy’s integral formula, 7 fuu+w1 % dz =: n; is an integer (more precisely,

it is the winding number of the curve
0,1] = C, t— f(u+ tw)

about the origin.) Similarly, 5= [ e ’;(j) dz =: ny € Z. Altogether,

Z ord, (f) - w = £(nywy + naws) € L. O

weu+P

1.3. The Weierstrass elliptic function

Most functions f satisfy Per(f) = {0}, and some well-known functions such as exp, or
sin or cos, have a single period: for example,
Per(exp) = {2min : n € Z}.

The existence of doubly periodic or elliptic functions is less obvious.

Our first examples of elliptic functions will be series of the form

1
fk(Z) = Z m

AEL
If we can show that f; converges (locally uniformly), then it is elliptic by a rearrange-
ment of the series: for p € L,

1
et m) =2 oy

AeL

where A — p also runs through L as A does.

Lemma 1.11. Let L = Zw; ® Zws < C be a lattice. Then

1
SoF Y el

AEL m,ne’l
AF0 (m,n)#(0,0)

converges if and only if a > 2.
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Proof. Observe that
[[(m, n)|| = [mwy + nw,|

defines a norm on R?. Since all norms on R? are equivalent, we can find constants
¢,C' > 0 such that

¢-max(|m, [n|) < [mw; 4 nw,| < C - max(|m|, n|)
for all m,n € R. Therefore, 1\ [A|7" converges if and only if the series

1
2 max(|ml, [n[)®

mneZ
(m,n)#(0,0)

converges.
But for each N € N, there are exactly 8N pairs (m,n) with max(|m|,|n|) = N, so

the latter series can be rearranged as

1 . 8
2 max(\m|,|n|>a:ZNa*1‘

m,n€s N=1
(m,n)#(0,0)
This converges for a — 1 > 1 and diverges otherwise. O

Proposition 1.12. For any k > 3, the series

fil2) = Zﬁ 2eC\L

AEL

s an elliptic function with poles of order k exactly in the points of L. Around
any w € L, its Laurent series begins

fiu(z) = (2 — w)_k + O(2°).

In addition, fr(z) satisfies

Proof. Let K C C\L be a compact set. Then there exists a constant C' = C'x > 0 such
that
|z—=A>C-|\ forallAe Landallze K,

because: suppose |z| < M for all z € K. For all A € L with |A| > 2M, we have

2 lz| _ 1
——1‘>1——>—, €K,
’A =TT

For each of the finitely many A with |[A| < 2M, we find some constant C'(\) with

;-1)ZC(A)>O, ze K,

12



z _

% — 1 is nonvanishing on K. Then take

since
Ck := min <1/2, min C’()\)).
AeL
[A|<2M
Therefore, we have the uniform majorant

1 1 1
<oy K
le_)\lk—zk+ KZ|/\|k’ z €4,

AEL AEL
A#0

so the series is holomorphic on C\L by the Weierstrass M-test.
About any w € L, we can write

) = (=) + 3

where the remaining series is holomorphic in w. This determines the beginning of the
Laurent series.

For the final claim, substitute A — (—A\) in the series to obtain
o) = 0 e = 2 e = (UM 0
AEL AeL
This construction does not work when k& = 2: the series
) Pp—
e BT A

does not converge absolutely. But since the exponent & = 2 is just at the threshold of
convergence, there is a workaround:

Theorem 1.13. The Weierstrass p-function

1 1 1
o) =5+ [o =5~ %
AeL
A0
18 an elliptic function with double poles exactly in the points of L. Its Laurent
series about z = 0 begins

p(z) = 272 + O(2?).

Proof. The series

Z [ 1 B i] 20z — 22
= (z—=XN)?2 A2 = A2(z — )2
A#0 A#0



defines a holomorphic function on z € C\L by the Weierstrass M-test applied to
>-acL 35, by essentially the same argument as for the elliptic functions fi(z). Hence we
A0

can differentiate the series termwise. We find

Since ¢'(z) is an odd function, p(z) is even.

The Laurent series about 0 begins

0(z) = 5 +0(),

since the series > xer, [W — %] vanishes at z = 0.
AZ0

Finally, the fact that p is an elliptic function follows from the following lemma. [

Lemma 1.14. Suppose f is an even meromorphic function whose derivative is
elliptic. Then f is elliptic.

Proof. Let A € L and consider the function

az) = fz+X) = f(2).

By assumption,
d

o) = Fz+ N = f) =0,

S0 ¢y is a constant. In addition, the map
L—C, A—cy

is a group homomorphism: since ¢y = 0 and

evin = FE A+ 1) = [(2) = (Fe+A+m) = f+m) + (F+0) - F(2) = er+

In particular ¢_y = —c,. But since f is even, we have
caa=flz=A) = f(2) = f(=2+A) = f(=2) = ax(—2) = e
So ¢y = 0 for all A € L, which is the same as saying that f is elliptic. m

14



Proposition 1.15. The complete Laurent series expansion of p(z) about z = 0
18

1 o
= —2 Z (21 + 1)Gany2(L)2*™ = 272 + 3G4(L)2* + 5Ge(L)2* + ...

where G}, is the Eisenstein series

=> A"

AEL
A£0

Proof. Write

o0

:Z—2+§ :anQn
n=1

(Note that only even exponents appear, since g is even.) Then

_ 1
Cp = _(QTL)' dz2n | ,—o (p(z)—z 2) = (2n+1) Z m i — (2n+1)G2n+2(L). 0
' . \EL =
A0

1.4. The Weierstrass equation and the field of elliptic functions

Let L be a lattice with basis {wy,ws}.
The notation (L) will be used for the set of elliptic functions for L. Clearly, £(L)
is a field (a subfield of the field of meromorphic functions on C): if f and g satisfy

f(z4+ ) = f(2) and g(z + ) = g(2)

for all A € L, then this is also true of f 4+ ¢ and f - g, and of 1/f (if f is not identically
zero). £(L) also contains the field C of constant functions.

The main result of this section is that the Weierstrass p-function and its derivative
already generate the field £(L).

Theorem 1.16. Every even (f(z) = f(—z)) elliptic function f can be written as
a rational function in p.

Proof. Suppose [ is nonzero. Since f is even, the order of f in any point a equals its
order in —a. If a is equivalent to —a in C/L (which happens exactly when 2a = w is a
period), then

fz+a)=f(z+a—-w)=f(z—a)= f(—2+a)

15



implies that the Laurent series of f(z + a) about z = 0 contains only even exponents,
so f has even order in those points.

So let 2myg, 2my, 2ms, 2ms be the orders of f in the respective points 0, wy /2, wy /2, (w1 +ws)/2,
which represent the points @ modulo L with 2a € L.

Observe that if 2a ¢ L, then p(z) — p(a) has simple zeros precisely in the points
z = +a modulo L (it cannot have any other zeros by Liouville’s third theorem) and
that if 2a € L then p(z) — p(a) has a double zero precisely in the point @ mod L.

Therefore, if
+aq, ..., ag

represent the pairs of zeros (with multiplicity) a with 2a ¢ L, and if
+by, ... b

represent the pairs of poles (with multiplicity) with 2b ¢ L, then the function

f(z)
M = (o) = olr D) (0] — ol 27 ((2) — plen 2 + D)™
[T (p(2) — p(b;))
[T (9(2) — plas)
is an elliptic function without zeros or poles outside of the lattice points L. By Liou-

ville’s fourth theorem, g cannot have a pole in the lattice points either. By Liouville’s
first theorem, g is constant, which implies that f is the rational function

f=const - (p(z) — p(w1/2))™ (p(2) — p(w2/2))"* (p(2) — p(w1/2 + w2 /2))™
% Hf:l(@

4
Hj:1(@
in Q. O

X

)_
)_

Corollary 1.17. The field of elliptic functions has the form

E(L) =C(p)® ¢ - C(p).

Proof. Any elliptic function can be decomposed into its even and odd parts as

[ +1(=2) | f(2) = f(=2)
2 * 2 '

f(z) =

The even part belongs to C(gp) by Theorem [1.16] Since ¢/(z) is an odd function, the

quotient (%) /¢'(z) is even and also belongs to C(p) by Theorem . O

16



Since (p’)? is even, it has a representation has a rational function of p: in particular,
p satisfies a differential equation. The precise statement is as follows.

Theorem 1.18 (Weierstrass). The p-function satisfies the differential equation
©'(2)? = 4p(2)° — 60G4(L)p(2) — 140G (L),
where G4 and Gg are the Eisenstein series

GiL)= Y w? GeL)= ), w

weL\{0} weL\{0}

of weights 4 and 6.

Proof. @' has no poles outside of the lattice points. It has forced zeros at the three
points a € %L with a ¢ L, and no other zeros by Liouville’s third theorem. The proof
of Theorem shows that (p')? has the representation

(¢)* = (constant) - (p(2) — p(w1/2))(p(2) — p(w2/2))(p(2) — p(wi/2 + w2/2)),

i.e. as
(9')? =Ap*+ Bp*+Cp+ D

for some (unique!) A, B,C, D € C.
Using the Laurent series

0(2) = 272 + 3G42% + 5Gs2* + O(2°)

and
O (2) = —22° + 6G4z + 20G42° + O(2°),

we take (p')? — 4p? to cancel the leading coefficient and obtain
(¢))? — 49® = —60G42~2 — 140G;

and the only linear combination of 3, p?, o, 1 that can produce the right-hand side of
that is —60G,p — 140Gs. [

Corollary 1.19.
(i) 9"(2) = 6p* — 30G,.
(ii) 9" (2) = 12p(2) - p"(2).

Proof. (i) Differentiate the Weierstrass equation and divide by 2¢/(2).
(ii) Differentiate (i) and divide by ¢'. O

For any w € C, the function
z— p(z +w)

17



is also an elliptic function, and can therefore be expressed in terms of o and ¢’ alone.
Any such representation is an addition formula for .

Theorem 1.20 (Addition formula).

ol +u) = (22 - p(e) - pw).

Proof. Assume without loss of generality that 2w is not a lattice point. (That case
follows by a continuity argument.) Consider the function

) - gw)
1&) = = otw)

This has exactly two simple poles modulo L, in z = 0 and z = —w, and a short
computation shows that the Laurent series about those points begin

f(2) = =227 —2p(w)z — @' (w) 2% + (12G4 — 2p*(w)) 2> + ...
-1 R2p(w)
_ — 9,71 2 o 2y
fz —w) 2+ o (w) (p°(w) — 5Gy)z + O(z7)
So 1f(2)* — p(z) — p(z + w) is an entire elliptic function (for fixed w, viewed as a
function of z) hence constant. Since

P = 0() — oz +w) = (72 4 20(w) + 0(2)) — (24 0(2)) — (o) +0(2))
= p(w) + O(2)

the constant is p(w). O

18



2. Theta functions

The Weierstrass constructions of elliptic functions suffer from very poor convergence.
(Indeed the reason for the strange-looking definition of g is the fact that the series
Y orel ﬁ fails to converge altogether.) For both practical and theoretical purposes,
it is natural to construct elliptic functions as quotients f/g where f and g are entire
functions and therefore not elliptic, but transform under translations in essentially the

same way. We will study a class of functions of that type here.

2.1. Quasiperiodic functions

Definition 2.1. An entire function f : C — C is called quasiperiodic with
quasiperiod ) if there are constants A = A()\), B = B(\) € C such that

flz+ X)) =e¥Bf(2), zeC.

The exponent A = A()) is then uniquely determined from A (as long as f is not
identically zero), while B()) is only determined modulo 27iZ.

The quasiperiods A of f form a group. Indeed, if f is not identically zero and A, u
are any two of its quasiperiods, then

eA(AJru)erB(/\Jru)f(Z) — f(z + N+ ,U)

= f((z+A) +p)
= AWEHNTBW £(5 4 )\)

A(,u)(z+)\)+B(u)+A()\)z+B()\)f(

=e 2),

so A is a homomorphism on the group of quasiperiods,
AN+ 1) = AN + A(p),

and B satisfies
BA+p) = B(A) + B(p) + A - A(p) mod 2miZ.

Clearly B(\ 4+ p) is symmetric in A and g, so the right-hand side of the above
equation is as well (which is less obvious): in particular,

ANA(p) — pA(N) € 2miZ

19



for any two quasiperiods A, of f. (See also Proposition below for a more precise
statement.)

The possible quasiperiod groups are constrained by the following lemma.

Lemma 2.2. Let f be a nonzero function. The following are equivalent:
(i) w € C is a quasiperiod of f;

, /
(11) w is a period of <f7> )

, !/
So unless (fT) is constant, the group of quasiperiods of f is either {0}, or of the

form {nw : n € Z}, or is a lattice L. In the third case f is called doubly quasiperiodic
or a theta function for L. (We reserve the name “theta function” for certain specific
theta functions to be discussed later.)

Proof. Taking logarithmic derivatives in the identity

flz+w) =t Bf(2)

yields ( ) )
z+w f'(z
ferw) TR

!

, / !/
Hence (’%) is elliptic. Conversely, if (%) is elliptic, then we have

fetw) 16

fz+w) f(z)
for some constant A (depending on w), which implies (locally)
Log f(z + w) = Az + B + Log f(z)
for some other constant B (again depending on w) and therefore
flz4w) =e*TBf(2). O

Example 2.3. The entire functions f that have every complex number w € C as

, !/
f—) is constant. Taking antiderivatives

a quasiperiod are precisely those for which ( 7

twice, this implies (locally) that
Log(f) = az* + bz + ¢

for some constants a, b, ¢, i.e.
2
f(z) = e Fb=te,

The function f(z) = e¥=* th=t¢ ig indeed quasiperiodic with respect to every w € C, and
the associated exponents A, B in this case are

Aw) = 2aw, B(w) = aw?® + bw.
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Remark 2.4. Suppose f is a doubly quasiperiodic function satisfying
flz4+ X)) =eANHBN £y N e L.

By the above example, we can modify f by an entire function without zeros to have
any fixed w € L\{0} as a true period: since

§(2) i DB Mo,
also satisfies
9(z + w) = eAWFBE g2y
the function Aw) 2 Aw) . Bw)
h(z) :=e 20 T2 27707 f(2)

is doubly quasiperiodic and satisfies h(z + w) = h(z).

Doubly quasiperiodic functions satisfy the following analogue of Liouville’s third
theorem:

Proposition 2.5 (Legendre relation). Suppose {wy,ws} is an oriented basis of
L; that is, T := wse/wy belongs to the upper half-plane. Let f be a nonzero doubly
quasiperiodic function for the lattice L. Then

woA(wy) — w1 A(wg) = 2miN,

where N is the number of zeros of f in any fundamental parallelogram P (counted
with multiplicity).

Proof. We proceed exactly as in the case of elliptic functions. Let u € C be chosen
such that none of the zeros of f lie on the boundary of u + P.

U+ Wo

/T
U \ .

U+ wq

Figure 2.1: Path of integration

Integrate % dz along the above contour and use the residue theorem to obtain

LR M) w) W f(z) fz+w)
N= G on 1) ‘/u (f(Z)_f(Zerz))dz_/u <f(2)_f(z+w1)>dz'
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Taking logarithmic derivatives in
f(Z + w) _ eA(w)z-i-B(w)f(Z)

yields
f'(z+w)
flz+w)
So the above integrals simplify to

S PZ) (2 4 w)) e et w)
/u <f(2)_f(2+wz)>dz_/u (f<z>_f<z+w1>>dz

u+wi u+w2
— / (—A(ws)) dz — / (—A(wr)) dz
= wrA(wy) — w1 A(ws). -

Remark. The integer N is independent of the choice of (oriented) basis: any other
basis w],wh of L can be represented as

Wi = awy + bwo, wy = cwy + dwo
for some matrix <CCL Z) € SLy(Z), and then

wy A(w)) — Wi A(W)) = (cwy + dwy) Alaw; + bws) — (aw; + bws) A(cwy + dws)
= (ad — be)waA(wy) — (ad — be)wy A(ws)
= CL)QA(LLJl) — wlA(MQ).

This can also be proved directly.

2.2. The Weierstrass sigma function

It follows from Lemma 2.2 that a nonzero function f is doubly quasiperiodic with re-

, /
spect to a lattice L if and only if ¢ := (f7> is a nonconstant elliptic function. The

poles of any such g are also tightly constrained (they can only be double poles at which
g has zero residue). But we have already encountered one such g: The Weierstrass
sigma function is a choice of f whose g is (up to sign) the Weierstrass p-function.

Let L < C be a lattice.

Definition 2.6.
The Weierstrass o-function attached to L is the infinite product

o(z)==z- H [(1 — §>ez/“z2/2’\2]

AeL\{0}
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An infinite product [], a, converges if and only if the series ) Log(a,) converges
(where Log is the principal branch of the logarithm), and the notions of absolute con-
vergence and (for functions) uniform convergence for that product and that series are
equivalent. When z is confined to any compact set, since

P 22/9)2 ¥
Log((l—z/)\)e /At /2’\>:X+2—)\2+Log<1——>
I S
A2 L)
1
=C 3

for some constant C' and all sufficiently large |\|, the series (and therefore the product)
converges absolutely and locally uniformly and the product defines an entire function.
Moreover, o has only simple zeros and they occur precisely at the lattice points z € L.

Proposition 2.7. The Weierstrass o-function is a doubly quasiperiodic function.
It satisfies

/

(%)=~

Proof. From
2
z z oz
Logo(z) = Log(z)+ >_ |Log(1=3)+5+5y3)
AEL\{0}
we have
o'(2)
=—L
o)~ a0
_1, _j_+l+z]
B —A A a2
AEL\{0}
hence /() X X ,
o (z)\’
=2 - | = O
(0(2)) 2 T (z— \)? - )\2} p(z)
AEL\{0}

The function

is called the Weierstrass (-function.
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Fix a basis {wy,ws} of L. We will determine the constants A(\), B(A) in the identity
o(z+ \) = ANVHBN 5 (),
Observe that ( = ¢’/o satisfies
Cz+2) = A +C(2).
If we L with w/2 ¢ L, then we can evaluate ¢ at w/2 and we find
((w/2) = A(w) + ¢(~w/2).
But ¢ is an odd function (as seen by substituting A — —\ in the defining series) so
((w/2) = Aw) = ¢(w/2)

and therefore
A(w) = 2¢(w/2).
The traditional notation is
i = ((wi/2),
such that A(w;) = 2n; and A(wy) = 21s.

Proposition 2.8. The Weierstrass o-function attached to the lattice
L = Zwy & Zwo satisfies

o(z +w;) = 2=t mig () § =12

That is: A(w;) = 2n; and B(w;) = nw; + mi.

Proof. We already computed A(w;) so it remains to show that B(w;) = m;w; + mi. This
follows from the fact that o(z) is an odd function: substituting A — —\ in the defining
product yields

o(—z) = —0o(2).

But setting z = —w;/2 in the identity
o(z+w;) = 2 Bg(2)

yields .
o(w;/2) = ePMig(—w; /2) = T TVig (1w, /2).

Hence B = nw; + m mod 2. O
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2.3. Fourier series

In this section, we consider doubly quasiperiodic functions f attached to the lattice
L=7Zr&Z={mr+n: mné€l}
for some fixed 7 € H. Recall that we write
flz4+ X)) =etNHBN £y N e L.
Throughout this section we make the assumption
flz+1) = e f(2), (2.1)
i.e. A(1) =0. This is more or less harmless since it becomes satisfied for any f after

multiplying by e for the appropriate value of ¢. The reason for making it is that it
guarantees that f is represented by its Fourier series:

f(z)= Z cn€®™* ¢, € C.

n€Z+a

By the Legendre relation, f is doubly quasiperiodic if and only if
f(Z + 7_) — 6—27riNz—27ribf(z) (2‘2)

for some b € C, where N € N is the number of zeros of f modulo L.

Lemma 2.9. A Fourier series

f(Z)Z Z Cn6271'inz

neZ+a

satisfies if and only if its coefficients satisfy the recurrence

e
Cnpn = T n e Z +a.

Proof. Any such Fourier series converges (very quickly!) as its coefficients decay at the
rate of e=™¥ where 7 = x +1y. To see that f defines a theta function, compare Fourier
coefficients in

f(Z —f-T) — Z Cn627rz'n(z+7')

n€Z4+a

— E (Cne%rzm—) 627rmz

ne€Z4+a
and

6—27erz—27rzbf(Z) _ E Cne—27r2b627rz(n—N)z

neZ+a

— E <Cn+N€—27rzb> 627rmz'

nel+a
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Conversely the same calculation shows that the coefficients of a theta function satisfy
that recurrence. ]

Corollary 2.10. The space of doubly quasiperiodic functions [ satisfying
15 N -dimensional.

This is significant when N = 1, where the recurrence shows that any single Fourier
coefficient determines the entire series:

Corollary 2.11. FEvery entire function f satisfying
e+ 1) =™ (), flztr)=e 2 2Rg()

18 a constant multiple of the theta function

Oup(2) == Z prin(n—1)7+2min(ar+b) | 2mi(n+a)z

)

n=—0oo

In terms of the “classical” theta function

(e o]

9(7_; Z) — Z eTrin2T+27rinz

n=—oo

we have
Oup(2) = 2™%0(T; 2 + (a — 1/2)T + b).

Four particular theta functions, the Jacobi theta functions, play a major role
in the classical theory of special functions and will appear later on in the course. Un-
fortunately there are many different notational conventions for them. We will use the
following deﬁnitionsﬂ They are multiples of 8, for the values a and b indicated below.

(i) (a=0,b=171/2)

o0

000(2) — Z eﬂin2r+27rinz

n=—oo

satisfies . .
600(2 + ].) = 000(2) and 600(2 + 7') = e—7rz’r—27rzzeoo<z);

(ii) (a=0,b=1/2+7/2)

o0

901(2) = Z (_1)n€”in27+27rinz

n=—oo

satisfies 4 .
901 (Z -+ 1) = 901 (Z) and 901 (Z -+ ’7') = —6_7”7—_271-%901(2’);

IThis notation follows Mumford’s Tata lectures on theta, up to a factor of i in the definition of 6;;.
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(iii) (e =1/2,b=1/2)

O10(2) == Z emi(nt1/2)?r+2mi(n+1/2)2

n=—oo

satisfies -
O10(z + 1) = —019(2) and Oo(z +7) = e ™7 2= o (2);

(iv) (a=1/2,b=1/2+7/2)

011(2) == Z (_1)nem(n+1/2)27+2m(n+1/2)z

n=—oo

satisfies ' '
O11(z+1)=—011(2) and 6Oy1(z2471)= —e_””_Q’”ZHll(z).

The function 6y, is special because it is odd: substituting n — —n — 1 in the series
implies
911(—2) = —911(2’).
In particular, #11(0) = 0. But by the Legendre relation, #;; has only one zero modulo
L. So 611(z) has only simple zeros precisely in the lattice points z € L. From this we
can read off the zeros of any theta function:

Proposition 2.12. An entire function f # 0 that satisfies
e+ 1) =™f(e), fletr) =2 Rf(e)
must have simple zeros precisely in the points

z=(m—-a)T+(n+1/2-0), mneZ

and nowhere else.

. J

For example, the classical theta function (2) = 3, _, €™ 727" with @ = 0 and
b = 7/2 has its zeros in the points z = (m + 1/2)7 + (n + 1/2) with m,n € Z.

Proof. We observed earlier that 61;(z) = 0 exactly when z = m7 + n with m,n € Z.
The claim follows from that because f is a multiple of 6,,(2) and because 0, is itself
a multiple of 011(z + ar +b— 1/2). O

2.4. The Weierstrass sigma function revisited

For L = Z1 ® 7Z, the Weierstrass sigma function is

2
z z z“/2
O'(Z) =Z- H |: 1 — em7+"+(m7+n)2
mrT+n

m,nEL
(m,n)#(0,0)
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and its functional equations are o(z+1) = —e?*"* Mg (z) and o(z +7) = —e22*T127(2)

where

m=EFUZCE
and B

m=CFD =S o)

(Here ¢ = 0’/o is the Weierstrass zeta function.)

Lemma 2.13. The exponents 1, and ny satisfy

n=33 (2 )

m=—o0 neZ

(m,n)#(0,0)

and

v=3 2 ( X Grrop)

n=-—00 MEZL

(m,n)#(0,0)

Apart from the factor of 7, the series for n; and 7, look rather similar and you might
think the mix-up in the indices m, n in the sums for n; and 7, is an error.

It is not. The two iterated series are not the same (and since the underlying double
series does not converge absolutely, there is no reason to think that they should be the
same). We fix the following definition:

Definition 2.14. For 7 € H,

(e.o]

Go(T) := Z( Z m>

m=—00 neZ
(m,n)#(0,0)

\ J

Convergence problems of the double series notwithstanding, G5 converges rapidly
as a single series (over m). To see why, use the partial fractions identity

2

s 1
W) 2 Tl

neZ
Replacing 7 by mr (for m # 0) yields:

2

1 1 w2 7r
a0 =2t D (S ) =5 w0V

n#0 m#£0 nez

Here |sin?(7m7)|~2 decays exponentially in m. By writing

TImT __ e*ﬂ'imT ) 2
21

1
sin?(mm7) = (e = —qum(l —q"),
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we get the Fourier series:

Gﬂﬂ:ﬂg—sﬂéiatzj— [1—%}2 }

where o(n) = >_,,, d is the sum of the divisors of n € N.
Proof of Lemma|2.15 To compute 1; we write
2m = ((z+1) = ((2)

11
T4+l 2
- 1 1 z+1
+mz_:oo % [2+1—m7—n+m7+n+(m7+n)2
(m,n)#(0,0)
1 1 z
Cz—mr—-n mr+n (mr+n)2}

Z Z(z—l—l—mT—n z—mT—n) Z Z m

m=—00 Nn=—00 m=—00 nez

(m,n)7#(0,0)

For any fixed m, the series
1

1
Z(z—i—l—mT—n_z—mT—n)

nez

is a telescoping series that sums to zero. Hence

20 = i( Z M)—Gz(ﬂ.

m=—00 neZ
(m,n)#(0,0)
72 is dealt with similarly, writing
2y = ((z+7) = ((2)
1
Tz —i— Tz
1 1 24T
+n_z_oo 7% [z—i-T—mT—n—i_ mT +n +m7’+n)2
(m,n)#(0,0)
1 1 z
z—mr—n mr4+n (mT~|—n)2]
-
n_z_:oom;m <z+7'—m7'—n a z—m7‘—n> n—X—:oo mze:Z (m7 4 n)?
(m,n)#(0,0)
-
-X T G
(ma)2(0.0)
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The calculation of the values 7y, 7, has a significant corollary:

Theorem 2.15. The series

[e.9]

Ga(r) = Z( > m>

m=—o00 nez
(m,n)#(0,0)

satisfies

GQ( — 1) = 72Gy(1) — 2miT.

T

Proof. We can write

1 1
G(-7)= X ( )
7 mz_oo ; (—m/T +n)?
(m,n)#(0,0)
1
2
-7 ( Z (nT — m)2>
m=—00 nez
(m,n)7(0,0)
= 27 - 12,
and m = 2G2
The Legendre relation for the quasiperiods of o(z) is
1
Mo — T M = —§<T A1) —1- A(T)) = —mi.
But then

1 T .
ZGQ(_1/7—> — §G2(7') = —mi,

or equivalently Ga(—1/7) = 72Go(T) — 27iT.

]

(G5 is not a modular form, but certain expressions in G5 and its derivatives do define
modular forms. These lead to the Ramanujan equations relating G5 and its derivatives

to G4 and Gg and their derivatives. We leave that to the problem sets.

In any case, )
f(z) = e o(2) = e 2@ (2)

is a theta function that satisfies
flz+1)=—f(2)

and

f(Z + 7_) _ _62(772*T]1T)z+(n27'77117'2)f(z) _ _6727riz77ri7'f(z)_

Comparing this with the transformation laws of the Jacobi theta functions, we find:

f(2) = const - 011(2),
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1.e.
o0

O'(Z) — const - e%G2(T)22 Z (_1)n67ri(n+1/2)27+27ri(n+1/2)z'
The constant can be computed by expanding both sides above as Taylor series. We
have

o(z) = 2+ O(2*)
and 611(z) = 07,(0)z + O(2?). We have proved:

Theorem 2.16. )
2
011(2) = g~ 2G2(7)z 07,(0) - o(2).

0}, means the derivative with respect to z. In terms of 7,

d S n  mwi(n 2r2mi(n z . - n iln 2,
01:(0) = e Z (—1)nemin /D r+2min+1/2)z _ oy Z (=1)"(n + 1/2)emn+1/2°r

n=—oo n=—oo

z=0

2.5. The Jacobi triple product

In this section we use the abbreviation

U7, 2) = 0n(1,2) = Z (_l)n_l/QeﬂinQT—l—Qwinz.

neZ+1/2

9 will always mean the derivative with respect to z.

Taking logarithmic derivatives in Theorem [2.16]
9(z) = e 2909 (0) - o(2)

yields

and therefore

With the Taylor series

I(z) =9 (0)z + %(0)23 + O(2°)

we obtain

V(z)\ _ o, 197(0) >
<m@>‘”* 35910 TOE)

and on the other hand this equals
—o(1,2) — Go(1T) = —272 — Go(7T) + O(2?).
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Comparing constant coeflicients gives us 9"”(0) = —3G2(7)9'(0).

But ¢ satisfies a form of the heat equation: since

19//(2:> _ Z (_1)77,—1/2(QWin)Qem'rﬂT—i-Qwinz

nezZ+1/2
and P
Eﬁ(z) _ Z (_1)n71/2(Trin2>em'n27—+27rmz’
neZ+1/2
we have
2 0
@19(7', Z) = 47'('7:519(7', Z),
hence

0
—3Go(1)0'(0) = 9"(0) = 4m’§19’(0). (2.4)
That differential equation for 9(0) leads to Jacobi’s identity:

Theorem 2.17 (Jacobi’s identity).

omi(q/® — 3¢/ + 5¢%/8 — 7¢*/8 + ..) = 9'(0) = 2mi - ¢'/® H(1 —q")?,

n=1

2miT

where ¢ = e
Proof. Equation implies that the logarithmic derivative of ¥(7,0) with respect to 7
is

o' (0)/0r 3
OV W
9'(0) 4y
Here
o) = = By )—”—2<1—24i(2d) ”) 2T
27—327—3 n:1d‘nq,Q—
Smce = 27rzqd—q, we can write this in the form
d 1 1 .
—Log?'(0) = ¢ 'Ey(q) = — — 3 n=l
dq og U'(0) 861 2(q) 8¢ ;m(”)q
So

1 = o1(n)
/ o n
Logv'(0) = const + gLog(q) -3 E —n q

= const + éLog —322 —Q

nlml

= const + 8Log —i-SZLog 1—q")

n=1
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and .
¥'(0) = const - ¢'/* H(l
The constant is obtained by writing

19/(0) — 97 Z ( l)n I/an / — 27T1( 1/8 3q9/8+5q25/8 7q49/8j: )
nezZ+1/2

and comparing coefficients of ¢'/® (or of any other exponent) on both sides. ]

Theorem 2.18 (Jacobi triple product). 9(7, z) has the infinite product represen-
tation

o0

I(r,2) = ¢3¢ =) [ =)@ =" - g"¢T),

n=1

where ¢ = e*™7 and ( = >,

Proof. Denote by F(r,z) the infinite product
F(r,2) =¢"*(¢"* = ¢ [ =g (1 = q")(1 = "¢ ).
n=1

Then F(7,z4 1) = —F(7, z) because substituting z — z + 1 leaves the infinite product
unchanged and it turns ¢/2 — ¢~Y/2 into (/2 — (/2.

The substitution z — 7+ 2z amounts to substituting ( — ¢ - {, which in turn shifts n in
the product:

8

F(T,Z—I—T) — q1/8(q1/2<1/2 71/2 1/2 H . n+1<)<1 . qnflcfl)

o0

g8 2P (g¢ )(1=q"O)(1—q"¢h)

q¢

= —¢ V2CIF(r,2).

So F'is doubly quasiperiodic with respect to the lattice Z & Zr, and in fact satisfies
exactly the same equations that ¥ does:

W1, z+1) = =9(1,2), U1, z4+7)=—¢"*¢C"W(r,2).
Therefore ¥ is a constant (with respect to z) multiple of F":
U(r,z) = C(1)F(T, 2).

We obtain the multiple C'(7) by expanding both sides as Taylor series about z = 0: by
Jacobi’s identity,

(7, 2) = 9 (0)z + O(2%) = 2mig"/® H(l —q")? 2+ 0(2°).

n=1
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Meanwhile, ¢!/2 — (71/2 = 2isin(nz) = 2miz + O(2%) and

o0 o0

[T0-a)0-gon-ach|_ =T[a-a"

n=1 n=1

SO
F(r,z) = 2mig"/® H(l —q¢")? 2+ 0(2®).
n=1

Comparing the coefficients of z shows that both sides of the claim are already equal. [

Remark 2.19. It is interesting to compare the triple product formula for ¥(7, z) with
the identity

o

(1, 2) = 2mig T (1 = ¢")* - e 20 (7, 2).

After taking the logarithmic derivatiT\L:of

(1, 2) = ¢'® - 2isin(n2) ﬁ 1—¢")(1—q"e*™*)(1 — ¢"e ?™*)
n=1
with respect to z we have
ié;’j)) = mcot(mz) + 2mi g; ( 1 ifng +1 En(f;;_l)
= 7 cot(mz) + 2mi i (CT™ = ¢™)g™, if g < [¢] < lq] ™"
mn=1

and therefore

(g((;’j)))lz + 47 ng + ¢ g™

sin (7rz) o

But applying this to 9(7, z) = 2mig"/ [0, (1 — ¢")* - e_%GQ(T)Z20(T, z) gives us

(55) = Gatr) - oir.2)

So we get the Fourier expansion of the Weierstrass p-function with respect to 7:

p(r2) = =Galr) + o — 4’ S m(em +¢

m,n=1
2
:—___4 _2 —m)\  mn
sin2(7rz) i mznjl e
2
= —5—— o d (mdz) )
sin?(7z) +7T ;(; sin®(mdz
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or written out only in terms of ¢ = 27

_%W,z) i 1*_120“ 122(Zd —2+¢h)q

r=1 d|r

For fixed z this g-series converges for |q| < |¢] < |¢|™}, ie. for 7 = x + iy in the

half-plane y > |im(z)].
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3. Jacobi forms

3.1. Motivation

Suppose L < C is a lattice.

If f:C— CU{oo} is an elliptic function with period lattice L, then fi(z) := f(Az)
is elliptic with period lattice AL for any A\ € C*. This is because

A+ A w) = f(z +w) = f(A2)

for any w € L.

More generally, if f is quasiperiodic with f(z4w) = eA@*+B f(2) then fy(z) = f(A2)
satisfies

falz +23710) = fAz +w) = MO (),

so fy is quasiperiodic with quasiperiod lattice A\~'L and index homomorphism \A.

We want to consider families of elliptic or quasiperiodic functions, one for each
lattice, that behave in a reasonable way as the lattice varies. To that end it is useful
to introduce the space

Q= {(wl,wg) €C?: Zw, @ Zws is a lattice}.

This is an open subset of C? so we can speak of holomorphic or meromorphic functions
on it.

Definition 3.1. Let f : Q@ — CU{oo} be a meromorphic function. f is modular
of weight k € 7Z if it satisfies:

(1) f(w1,ws) depends only on the lattice Zw; @& Zws.

(2) f(twy,tws) = tF f(wy,ws) for every (wy,ws) € Q and t € C*.

The reason for the name is that if f : 2 — C is modular of weight %, then

F(r):=f(1l,7), 7€H

is also modular of weight k under SLy(Z): For any <(2 Z), we have
F<a7+b>_f(1 a7’+b>_( g f( i +b)
a+d)  T\Vagrad) T rraarTo).
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But the lattice spanned by ¢7 + d and a7 + b is the same as Z & Z7, so this is just
(e + d)*F (7). Conversely, every function F that is modular of weight k arises in this
way for a uniquely determined function f on €.

Naively we would like to consider functions ¢ : Q@ x C — C U {00} that combine
“modularity” and “ellipticity” (or quasi-periodicity) in the following sense:
1) For each fixed z, ¢(wy,ws; z) depends only on the lattice spanned by wy, wo;
2) For each fixed wy,wsq, 2z — ¢(wy,ws; 2) is a doubly (quasi)-periodic function with
quasi-)period lattice Zw; @ Zws;
3) ¢ is modular, i.e. homogeneous:

(
(
(
(

O(twy, twys tz) = t’k¢(w1, wa; 2)

for some integer k.

This is fine for elliptic functions. For quasiperiodic functions (2) is not naturally
compatible with (1) and (3), since the exponent A will (generally) not be a lattice
function and not behave correctly under scaling. We avoid that problem by considering
the modified function

~ _Awy) 2
O(wr,we; z) =€ 21 7 P(wy,wa; 2).

This also has quasiperiod lattice Zw; @ Zw, and its index homomorphism A always
satisfies fl(wl) =0 and fl(wg) = —%, no matter which basis wy, ws we work in, and
independently of scaling. So it makes sense to ask for ¢ to be a lattice function but for
(;3 to be modular.

To make this concrete, suppose we restrict to w; = 1 and wy = 7 € H; that we ask
for ¢ to be 1-periodic and have index N € Z, and for the B-term in its quasiperiod law
to be as simple as possible (which is the choice B(w) = wA(w)/2).

Then z — f(7,2) := ¢(1, 7, z) must satisfy the quasiperiod laws

f(r,z+1)=f(r,2) and f(r,2+7) = e 2™N=TNT £(1 ),

For any matrix (Z Z) € SLy(Z), modularity implies

f(%, CTZ+d> = &(1,%,%) = (c7’+d)kg%<c7'—|—d,a7'+b,z).

The underlying lattice function is

A(cT+d) |

¢let+d,ar +b,z) =€ etd %Z2¢(CT +d,at + b, 2),

where A(cr +d) = —2wiNec. So we can write
+b iN <=2
f(%l’ ﬁl) = (et + d)*e™Nersa - p(er +d,at + b, 2)

; C22
= (cr 4 d)Fe™Nerap(1, T, 2)

N CZ2
= (cr + d)Fe™Nerra f (1, 2).
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Finally, we assume that N = 2m is even in order to avoid inconvenient roots of
unity +1. That leads to the defining functional equations:

Definition 3.2. An unrestricted Jacobi form of weight £ and index m is a
holomorphic function f : H x C — C that satisfies the functional equations:
(1)

flrz 1) = f(r,2) and f(r,z47) = eI pr o),

(2) For any matrix M = (CCL Z) € SLy(Z),

ar +b z g2
_ d k 27rzmr )
f(m-—l—d’m-—i—d) @7t AT, 2)

. J

“Unrestricted” means there is a growth condition “at infinity” (similarly to the
definition of modular forms) that is missing. We will deal with that later.

3.2. The Jacobi group

In this section, we will show that Definition [3.2| is natural in the sense that equations
(1) and (2) express precisely that f is invariant under an action of some discrete group
on functions on H x C.

Lemma 3.3. The group SLy(Z) acts on H x C via

a b ar +b z
(C d)'(sz).—<CT+dJCT+d>’ Tel, zel.

Proof. This can be checked using the standard action of SLy(Z) on H and the fact that

JM;T):=cr+d, TEeH, M= (CCL 2) € SLy(Z)

satisfies the cocycle relation
JMN;7) = j(M; N - 7)j(N; 7). a
We would like to be able to say that SLy(Z) acts on f defined on H x C via
km \C d
A short computation shows that this is true if and only if the factor of automorphy

: CZ2
Jrem(M; 7, 2) = (c1 + d)*e>™ M erra
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satisfies the cocycle law
jk‘,m(MN7 T, Z) = jk,m(M7 N - (7_7 Z))]k’,m(Na T, Z)

Certainly (cr + d)¥ = j(M;7)* satisfies that cocycle law: this is the factor of
automorphy for modular forms. The claim for ji ,, follows from the following lemma:

Lemma 3.4. For M € SLy(R), 7 € H and z € C, define

CZ2

et +d

a(M;T,z2) =

Then « satisfies the additive cocycle law

a(MN;7,z) =a(M;N - (1,2)) + a(N; T, 2).

Proof. By abuse of notation, write the action of SLy(Z) as
N - (7,2) = ((7), 7 (2)).
Taking logarithms in the cocycle identity
JMN;7) = j(M;yn(7))j(N; 7)
and differentiating already almost leads to an additive cocycle: we have

J(MN;7)  J(M;yn(T))

7' (N;7)
JOIN:T) — j () N

J(N;T)

Multiplying this by 22 has the effect of absorbing the term ~/(7), since

22

7&(7)22 = m = WN(Z)2

. a b
1fN_<C d).Soweget

"(MN; (M (N
]( 77-)’22:].( 77N(T))'}/N(Z)2+]( 77—)22‘
J(MN;7) J(M;yn (7)) J(N;7)
This is what we wanted because o(M; 7, z) = 7;((]{\/[4,;:)) 22, O

That explains the action of the modular group. We also need to investigate the
quasiperiodic law under translations. For A\, u € Z, we define

A ) (1,2) == (1, 2+ AT+ p).

This defines an action of the group Z? on H x C.
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The action of Z? does not commute with that of SLy(Z). More precisely,

a b _at+b 2+ AT+ p
(c d).()HM)‘(T’Z)_(CT—l—d’ ct +d )

while

’

a b _qat+b 2+ (Aa+ pe)T + (Ab + pd)
A w) <C d) (T’Z)_<07+d’ cr+d )

in other words, we have
v-M-(1,2)=M-(vM)-(1,2)

for v € Z? and M € SLy(Z).

To express this as the action of a single group, we need the following definition:

Definition 3.5. The Jacobi group is the semidirect product

J :=SLy(Z) x 72,

where SLy(Z) acts on Z? via right-multiplication.

So elements of J are tuples (M,v) where M € SLy(Z) and v € Z? is a row vector,
and the group operation is

(M,v) - (N,w) := (MN,vN +w).

The action of J on H x C is

(M.0) - (1,2) == (M,0) - () - (r,2) = (g, 22200

cr+d  er+d

a b

for M = (c d) € SLy(Z) and v = (\, u) € Z2.

We have the following generators:

Lemma 3.6. The Jacobi group is generated by the elements (S,0), (T,0) and

(1,(0,1)), where
0 —1 11
S:(l O) and T:(O 1>.

Proof. 1t is well-known that S and 7' generate the group SLo(Z); therefore, (S,0) and
(T,0) generate the subgroup of tuples (M,0) where M € Sly(Z). All translations
(A, i) € Z?* can be generated by ¢ = (0,1) and by (1,0) = ¢S, and we have

(1,68) = (871,¢) - (5,0) = (S8,0)™" - (1,¢) - (8,0). =
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So for a function f to transform like a Jacobi form of weight £ and index m, it is
necessary and sufficient for f to satisfy the functional equations

f(T—i—l,Z):f(T,Z—l—l):f(T,Z)

and

f( 1 E) = Tke%imZQ/Tf(T, 2).

9
T T

Definition 3.7. Let f : H x C — C be a meromorphic function. The slash
operator is defined by

b —2mimCERATEW? o o ; +b 2+ AT+
M _ ke —2mim < t_)r‘ 07 4 omim THATIMmAZ ar

.., L0 2) = (ertd) e & ="
for M = (CCL Z) € SLy(Z) and ¢ = (A, ) € Z%. Tt defines an action of the Jacobi

group on functions f.

In other words, we extend the slash operator from SLy(Z) to J by defining

I o, z) = O fr g A7 4 p)

k,m
for (A, p) € Z?, viewed as the element (I, (), p)) € J.

Proof. Since we know that |y, defines an action of the subgroups SLy(Z) and Z?, the
point is to verify that these actions are compatible with the semidirect product in the
sense that

fl,.¢, p=1]

3
km Tkm

a b

for every ( = (A, ) and M = d

) € SLy(Z). Writing (M = (5\,,&), that equation
in turn follows from the identities

z ar +b 24N+ i
+ A +u=—"
ct +d ct +d ct +d

and

Sat +b z e o N _c(z+/~\7—|—ﬁ)2 T
)\CT+d+2)\CT+d CT+d_)\T+2/\Z cT+d A= Aw)

and from the fact that e2™Oi— ) — 1. m

Remark 3.8. The slash operator does not define an action of the Lie group SLy(R) x R?
on functions! The problem is that the last step of the proof, ™= ) = 1 no longer
holds when A, u are arbitrary reals. The correct notion of real Jacobi group is the

semidirect product
JR = SLQ(R) X HeisR,

41



where Heisg is the Heisenberg group, which is a central extension of R? by R: the
underlying set is R? x R and the group operation is

(A t) - (s w) = (WA p) + 1+ w)

where

w((a, b), (c, d)) = ad — be.

The action of SLy(R) on Heisg from the right is by ignoring the second component:

One can show that the map

le — GL4(R)7
a 0 b ap—>bA
a b Al op t
<<c d),((A,u),t))H c 0 d cpu—di
0 00 1

is a faithful representation. It identifies Jg with the subgroup of

Sp,(R) = {M € GLy(R) : MTJM = J}

00 -1 0
(where J = ? 8 8 _0 ) of matrices of the form
01 0 O
* 0 *x %
* 1 * %
* 0 * %
00 01

This is another interpretation of the group law in Jg.

Remark 3.9. The transformation law under (—1,0) is:

f(r,—2) = (=1)*f(1, 2).

Unlike the case of modular forms for SLy(Z), this does not imply that f = 0 when
k is odd; and indeed nonzero Jacobi forms of odd weight do exist. For example, the

function )
/
@(1,2)=-2
(m,r;o,()) (z —mr —n)3

is a (meromorphic) Jacobi form of weight 3 and index 0.
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3.3. Theta transformation formula

The notation, the name and their presence in the earlier lectures suggest that the Jacobi
theta functions 6(7, z) might transform in an orderly way under the action of the Jacobi
group. This is true.

Recall that 1 stands for the odd Jacobi theta function

n— n? n T TiZ
I(rz) = Y (1) g =T, (= e

n€%+Z

Theorem 3.10 (Theta transformation formula).
For every M = (CCL Z) € SLy(Z), there is an eighth root of unity x(M) such

that

a7’+—b z ;2
o === _ M) -/ d - e™ic* /(cr—&-d)ﬁ ]
(CT—l—d’CT—l—d) X( ) G = € (7—72)

Here 7+ +/c1 4 d is the branch of the square root that maps H into H.

Proof. Essentially we want to show that ¥|;/91/0M = x(M)¥ for every M € SLy(Z).
But since we defined the slash action only for integral £ and m, it is better to apply it
to the square ¥2. (This avoids some technicalities involving multiplier systems.)

For any ¢ € Z? and any M € SLy(Z), we have the equation

(‘LCM_I) : <M70) = (M70) ’ (‘LC)
in the Jacobi group. So
2 _ (92 -1
(#], M), ¢ = (7], )],
But the quasiperiodic law for 92,
DT, 2 4 AT 4 p) = 2MNTE)92 (7 2)

implies that 92|, ;¢ = 9¥?. So ¥?|; 1 M is also quasiperiodic of index 1, just as ¥? is.

Also,

< atr+b =z

192 M= (cr+d 7k672ﬁzmcz2/(c7'+d)192( ’ )
. ( ) ct+d et +d

has double zeros exactly in the lattice points z € Z @ 77Z, exactly as 9? does. So 192‘119’21M

is a holomorphic elliptic function and therefore a constant (with respect to z). Hence

we can write

atr+b =z on?
— M: . pmicz?/(eT+d)
ﬁ(c¢+d’cr+d> a(M;7)-e (. 2)
with a factor o(M; ) that depends only on M = (Z 2) and on 7.
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To compute the multiple a(M; 1), we write ¥(r, z) = ¥'(7,0)z + O(2%), where

9'(1,0) = 2mig"/® H(l —q")?

n=1

by Jacobi’s identity. Then

ﬁ(i:ifl’ c7‘j—d> - 0/<Z:i_2’0> CTj—d +O().

The claim follows from the following lemma. O

7

Lemma 3.11. The function

f(r) == (r,0) = 2mig'/® H(l —q")?

n=1

satisfies

F(EE3) = XD (er + 25 (r)

or every M = a b , where x(M) is an eighth root of unity.
c d

This proves the theorem because comparing coefficients of 2! in

ar +b z ar +b z
; = 3).
<c7’+d’c7’+d) (CT+d’O)CT—|—d+O(z )

a(M;T) - e”iCZQ/(CT+d)19(T, 2) = a(M; 7)Y (1,0)z + O(%)
yields a(M; 1) = x(M)ver +d.

0 1 1

Proof. 1t is enough to prove this when M =T = L1 or S = <O _01) The case
M =T is trivial. For M = S, consider that the logarithmic derivative is

A
- %Z —67?2';::1 : _nqn
s (S
_ %ZGQ(T)
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So g(7) := f(—1/7) satisfies

)= %L um
1 3
= E@(T Go(T) — 27rz7'>
f 3

But this forces )
f( 7_) g(T) = const - 7/ f(1).

Setting 7 = i shows that the constant is 73/2 = ¢=37/4, O

Remark 3.12. The map M — x (M) is not a character of SLy(Z), because S* = I but
X(8)t # 1.

Corollary 3.13. (i)

G—21(7,2) == (2772' g,((:_” ?) ) ’

15 a meromorphic Jacobi form of weight —2 and index 1.
(ii)

I(T,22)

V¥ (T,0)

18 a meromorphic Jacobi form of weight —1 and index 2.

¢G-12(7,2) = 2mi

Proof. Both claims follow from the theta transformation formula

a7‘+b z P2
,19( 7 > _ M) -/ d - e™ic? /(c*r+d),[9 :
ct+d et +d X(M) - Ver +d-e (7.2)

and the formula

ﬂ’(‘” 0 0) — (M) - /(er + d)*9'(7,0)

cr+d’
with the same root of unity x(M). O

Corollary 3.14. The theta function

[e.9]

0(7—7 Z) = 00()(7', Z) = Z e”in27+27rinz

n=—oo

satisfies the theta transformation formula




Unlike ¥, 6 does not transform under the full modular group, even with a multi-
plier system: for example, 6(7 + 1, z) is not a multiple of 6(7,z). The subgroup of

d
group

(Z b) € SLy(Z) under which 6 does transform correctly (with multiplier) is the theta

a b
Fez{(c d) € SLy(Z) - a—i—czb—l—dzlmodZ},

which is a subgroup of index 3. (The proof for general M € I'? is not significantly more
difficult than for ((1) _01) )

For M € I'(2), the multiplier is trivial: we have

b on?
6(&7‘ + z > _ \/m ericz /(CT+d)9(T, Z)

ct+d er+d
Proof. Using

19<T7 Z) = Z (—1)nem;(”+1/2)2T+27ri(n+1/2)z
we obtain
0o
79(7', Z — 7'/2 — 1/2) = Z (_1)nem'(nQ71/4)T+27ri(n+1/2)(2*1/2) = —Z'eim'T/4+m‘Z¢9(7-’ 2)7
SO

0(t,2) = ie™/ =Y (1, 2 — 7/2 — 1/2).

From the theta transformation formula we obtain

1 . . 1 1 1
9( S z) _ iewz(—1/47')—7rzz/779( - z 4+ — — _)

7T T 21 2
_ Z'em'(—l/47')—7riz/7' . 6—37ri/4\/;em'(2—7'/2—1—1/2)2/’r,l9(7_7 5 — 7_/2 + 1/2>

_ 6—37ri/4 . eTriT/4—7riz . \/;em‘%/rﬁ(ﬂ P 7_/2 + 1/2)

_ \/Z(271'1lz2/7"9(7_7 Z). D
1

3.4. The theta decomposition
The quasiperiod law for an (unrestricted) Jacobi form of index m is
flr,z4+1) = f(r,2), f(r,2+7T) = Tme=2mms £(r ).

By Lemma [2.9] this is equivalent to its Fourier series

f(r.2) = 3 ealr)ein

neL
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satisfying the recurrence ‘
Cnsom = XM+ (3.1)
A particularly simple basis ©,,;, j = 0,1,...,2m — 1 of the space of theta functions

L2
satisfying 1} is obtained by setting ¢; = €” ™5mT and ¢; = 0 if i # j mod 2m. That
. . S (j+2mN)?
choice of ¢; determines ¢;o,n = €7 e for every N € Z, so

2
0. .= 2 eﬂi;—mr—i-%rirz o § 7”2/4m<=7“
m,j — = q .

rEZ r€Z
r=j mod 2m r=j mod 2m

Definition 3.15. The theta decomposition of a Jacobi form f is its represen-
tation as a linear combination
> hi(r)Om(1, 2).

JEZ/2mT.

Since f(7 4 1,2) = f(7,2) but ©,,;(7 + 1, 2) = ™°/27Q,, (1, z), we have
hi(T 4+ 1) = ™ 2mp (7).

So h;(7) itself has a Fourier series of the form

hi(r)= Y. aj(n)g”*, a;(n) €C.

n=—732 (mod 4m)

Lemma 3.16. The theta functions ©,, ; satisfy the theta transformation formula

1 , .
G)m,j( S — E) _ r ‘627rzmz2/7' . Z 6—%2]a/m@m7a(7_’ Z)

" G 2mi
a€Z/2m

Proof. We will show that this follows from the transformation law (Corollary [3.14]) for

0 =06y = an2/2<n

nel

For a € Z/2mZ, write

0<L 2+ _) Z e7m T+27rzr (z4+a/2m) __ Z e7r7,a7"/m r2/4m<-7’

om’ 2m
rez reZ

Using the identity

0: otherwise;

Z pria(r—j)/m _ {27” . r=j(mod2m);

a€Z/2mZ
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we extract the coefficients r = j (2m) with the linear combination

—mija/mp( ' el
O, (T, 2) = QmZe J 9( Z+2m>

a€Z/2m

The theta transformation formula for 6 yields

1 =z 1 . 1 =z a
N it R 7m]a/m9( - _>
@m’J< 7"7') 2m Z ¢ omt’ T + 2m

a€Z/2m
_ i Z efﬂ'ija/m . /2m7—€7ri(2mz+a7')2/(2m7')9<2m7_ 2mz + GT)
2m €ZL/2 ‘ ,

_ T e27rimz2/7- § e—wija/m . ewi(a2/2m)7—+27riaz § 627rim'r2T+27rir(2m)z+27riar7

2mi
a€Z/2m rez

_ T 627m'mz2/'r 2 6—7rija/m 2 e7ri(2mr+a)27+27ri(2mr+a)z

2mi
a€Z/2m reZ
T 2mimz2/ —7ija/m
=4/=—e€ E e Om.a(T, 2). O
2mi
a€Z/2m

Theorem 3.17. Let f be a Jacobi form of weight k and index m, with theta

decomposition
> hi(1)Om(T, 2).

JEZ/2m

The coefficients h; transform under the modular group by

hy(r +1) = @ (7);

hj( - k: 1/2 . / Z ewzga/mh

aEZ/2m

Proof. Only the second identity needs a proof. Compare coefficients of ©,,, in
f< — l i) — Tk62m'mz2/’rf(7_ ) o Tk62mmz Z h )
7T ’
a€Z/2m
and

1(=73)= X memen(-2.3)

JEZ/2m

_ /2 27mmz /T Z Z h 1/7_ —m]a/m@ma(,r Z)

JEZ/2m a€Z/2m
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to see that

ha(7) = [ 5 D ey (=1/m).

JEL/2m
The claim follows either by Fourier inversion, or by substituting 7 — —1/7 and using
the fact that f(r,—z) = (—=1)*f(r,2) implies (—1)*h; = h_;. O
Theorem implies that the vector H(1) = (h;(7));=0,..2m—1 transforms like a
modular form of weight k—1/2 for SLy(Z). In other words, for any M = <CCL Z) € SLy(7),

there is a matrix p(M) such that
H(M - 7) = (c1 + d)* ' 2p(M)H(7).

p is the simplest case of what is called the Weil representation of SLa(Z).

Warning: p is not a true representation of SLy(Z) (similarly to the “character” y
of 9); one can show that p(S)* = —I for every index m, while S* = I. What is true
however is that p defines a projective representation, i.e. a homomorphism from SLy(Z)
to PGLay,(C), and in fact into GLa,,(C)/{£1}. We will not explore this further.

Example 3.18. When m =1 and a Jacobi form of index 1 is written
f(T, Z) = ho(T)@Lo(T, Z) + hl (7')@171(7', Z),
the transformation law for the vector H = (hg, hy)? is

1 0

H(r+1)= (O ) H(r)

and
k—12 ((1+4)/2  (1414)/2
H(-1/r)=r1 /'((1+z’>/2 —(1+¢)/2) H{(7).

Example 3.19. Let’s work out the decompositions of the forms ¢_5; and ¢_; 5 from

Corollary [3.13, Since

19(7_’ Z) _ q1/8(C1/2 . C_1/2> + q9/8(<=3/2 . C_3/2) + q25/8(C5/2 . C_5/2) 4o

1
_‘19/(7_’ 0) — ql/S _3q9/8+5q25/8 _ 7q49/8:|:

211
we obtain
B (T, 2)\2 o
G_21(T,2) = <2ml9/(7’ O)> =" =24

+ (=224 8¢C — 12+ 8¢ —2¢%)q
+ (¢T3 = 12¢72 +39¢7 — 56 4 39¢ — 12¢% 4+ ) + ...

From the coefficients of (° and ¢! we read off the g-series

ho(T) = —2 — 12q — 56¢° =+ ...
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hy(1) = ¢ Y* + 8¢%* 4+ 39¢7* + ...

For ¢_; 2 we have the Fourier series

G_12(7,2) = QWi% = _Cfl +¢

+(CP =3¢ +3¢ - g
+ (3¢ —=9¢ +9¢ -3¢ + ...

The terms hy and hy vanish and the terms h; and hs can be read off the coefficients of
¢! and (! respectively. We have

hi(r) = ¢"% + 3"/ + 9¢"/ + .
ha(r) = —q~ /% = 3¢"/® — 9¢"/% — .

Notice that h; and hz are £27i times the series expansion of

1 _
_(ql/S — 3¢°/% 4 5¢P/8 _ 74192 4 L)

(T, 0)_1 =5

which has weight —1 — 1/2 = —3/2 as predicted by Theorem [8.21]

We finish this section by discussing two useful properties of the (projective) repre-
sentation p.

Proposition 3.20. For every M € SLy(Z), p(M) is unitary:

Proof. If we can prove this for M = S and M = T then it will be true for any M
(despite p not being a true homomorphism), because p(MN) = +p(M)p(N) for any
M, N.
We have

p(T) = diag(e’”ﬂ/@m), j=0,1,....2m — 1),

which is certainly unitary. p(S) is the matrix
7

p(S)a,j = %eﬂlja/m, a,j = O, 1, ceey 2m — 1,

so the (a,b)-entry in p(S)Tp(S) is

2m—1

1 —mija/m wijb/m L: aZb?
(P(S)TP(S))ap = 5— Y e Iu/memitim — {

0: otherwise.
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Finally it is good to know that p is trivial on a finite-index subgroup of SLy(Z). We
will show specifically that p acts trivially on the principal congruence subgroup

I(4m) = {M €SLy(Z): M —Tée 4mZZX2}.
In particular, if the Jacobi form f of weight £ and index m has theta decomposition

fr,2) = Y hi(1)Om(7,2)

JEZ/2m

then each h;(7) is a modular form of weight £ — 1/2 and level 4m, i.e.

h.

J

(aT+b

DY~ (er ey (),

where (e + d)*~'/2 involves the branch of the square root of 7 — ¢ + d that maps H
into HL

e N

b

Theorem 3.21 (Hecke-Schoeneberg). Suppose M = (i d

) € I'(d4m). Then

b 2
@mJ(aT + % ) _ \/m€27mmcz /(CT+d)@m’j(7_7 z)

ct+d er+d

for every j € Z/2m. In particular p(M) = I.

Actually the theorem of Hecke—-Schoeneberg applies to more general theta functions;
this is only a special case.

Proof. We have

atr +b =z 1 y at +0b z u
o ) e )
INer+d et +d 2m Z ‘ 2m(er +d) c7'+d+2m

u€Z/2m

_ 1 T e—m'ja/m9<aﬁ + b/2m7 z+uer + d)/Qm)‘
Wy 2meg—+d " 2me(T/2m) +d

Since <2Zw b/ cQZm) € I'(2), the theta transformation formula for # yields

9(&# +0/2m z+ u(cr + d)/2m>
2mes=+d " 2me(t/2m) +d

=/ (et + d)em(QmC)(”“(”*d)ﬂm)Q/(CT+d)9(Qla z+ ue—— + u_d>
m

Here we can write

T T ud N2 : ud T ud
9(_’ e _) _ —7i(uc) ('r/2m)727rzuc(z+%)8<_7 _)
2mz+uc2m+2m ¢ 2mz+2m

o1



After simplifying

2
u(cr+d)
2mc<z+ 2m ) (uc)? T, ( N ud) 2mez?  cd
—(uc)*— —2uclz+—) = — —u”,
cT +d m 2m ct+d  2m

—midy? _ 1 (since cE 4mZ) as well as

:
s ) (e 3

and using e

(since d € 1+ 2mZ), we obtain

at +b z N
@m '(—’ ) _ d 2mwimez /(CTer)@m (T, . n
TNer+d er+d (7 + d)e J(7,2)

3.5. Weak and holomorphic Jacobi forms

Let f be an unrestricted Jacobi form of weight k and index m.

Definition 3.22. (i) f is a weak Jacobi form if its Fourier series is holomorphic

at ¢ = 0: i.e. if it has the form

Fr0) =3 (S enr)cr)a

n=0 rez
(ii) Suppose f has theta decomposition

fr2)= D hi(7)Om(7, 2).
JEZ/2m
f is a holomorphic Jacobi form if the Fourier series of each h; is holomorphic

hi(r)= ) ()™

n€Np
n=—;2 (mod 4m)

at ¢ = 0: 1L.e.

11l is a Jacobi cusp form if each A, vanishes at ¢ = 0: 1.e.
( ) f p j q

hi(r)=" Y. a(n)g/™

n>1
n=—7;2 (mod 4m)

The C-vector spaces of weak Jacobi forms, holomorphic Jacobi forms and Jacobi

cusp forms of weight £ and index m will be labeled

W cusp
o -

k,m> Jk,ma
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Example 3.23. ¢_o; = (2mid(r, 2)/9'(7,0))? is a weak Jacobi form, because its g-series
expansion begins

¢-21 = (¢ —2+() +O0(q).

It is not a holomorphic Jacobi form, because its theta decomposition is
ho(T) = —2 — 12¢ — 56¢* £ ...

h(T) = ¢ Y4+ 8¢%* +39¢7/* + ...

and h; is not holomorphic at ¢ = 0.

A(T)¢p_a, is a Jacobi cusp form of weight 10, since the coeflicients in its theta
decomposition are A(7)ho(7) and A(7)h;(7) and both vanish at ¢ = 0.

Remark 3.24. In Definition (ii) it is equivalent to require each h; to be a holo-
morphic modular form (of level I'(4m)). By itself, the condition of holomorphy at ¢ = 0
only implies that h; is holomorphic at the cusp oo, and I'(4m) has many other cusps.
But for any matrix M € SLy(Z), we can write

h] M = p(M> ' (h17 "'7h2m>T

k—1/2

and observe the right-hand side is also bounded as ¢ — 0. This shows that h; is
holomorphic at the other cusps of I'(4m) as well.

Similarly, in part (iii) of Definition it is equivalent to ask for each h; to be a cusp
form.

For many purposes it is convenient to have an alternative form of Definition |3.22

Lemma 3.25. Suppose f has Fourier series f(7,z) = Zn,TEZ c(n,r)q"¢".
(i) f is holomorphic if and only if c(n,r) = 0 whenever r* > 4mn.

(ii) f is a Jacobi cusp form if and only if c(n,r) = 0 whenever r* > 4mn.
(iii) If f is a weak Jacobi form, then c(n,r) = 0 whenever r* > 4mn + m?.

Proof. (i), (ii) If f(7,2) = >, , c(n,r)q"(" then the components h;(7) are given by

h;(T) = Z c(n, r)q”’r2/4m,

nez

for any (fixed) r € Z with r = j mod 2m. So all h; contain only non-negative exponents
if and only if ¢(n,r) = 0 whenever n — r?/4m < 0, and all h; contain only positive
exponents if and only if ¢(n,r) = 0 whenever n — r?/4m < 0.

(iii) If we write the theta decomposition in the form

fr,2)= Y hi(7)On,(7,2)

j=—m+1
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then the theta series ©,, ; has Fourier expansion beginning
g Am T 4 (higher powers of ¢)

(except in the case j = m, where it begins ¢7°/*"(¢7 + (7). Since there is no cancella-
tion (the powers of ¢ are distinct), this sums to a g-series without negative coefficients
if and only if all A; have the form

h;(T) = ¢~7"/*™ 4 (higher powers of ),

i.e. if ¢(n,r) = 0 whenever n—r?/4m < —j?/4m for the representative j € {—m+1,...,m}
with j =r mod 2m.

In particular, we have c(n,r) = 0 whenever n — r?/4m < —m?/4m = —m/4, or equiv-
alently 12 > 4mn + m?. O]

Therefore the Fourier series of a holomorphic Jacobi form begins with exponent
n >0 (80 Jgm C J,me) and the ¢°-term can only be a constant. And the Fourier series
of a Jacobi cusp form begins in exponent n > 1. This also shows that the Fourier series
of a weak Jacobi form is of the form

f(Ta Z) = an(g)qna

where p, is a Laurent polynomial:
Pn(Q) =a-n¢ N +ana VT L+ ay VT Faney
for some N € N.

Remark 3.26. To check whether a Jacobi form f is holomorphic (or a cusp form) it
is mot sufficient to look at the constant term in its g-expansion. A counterexample is

the form
9197, 2) L0107, 2)

— (2mi)2 D)
p O e op
of weight 2 and index 5, where n(7) = ¢*/**[[°2,(1 — ¢"). The Fourier expansion of f
begins

f(r,z) =

flr,2) = (Y2 = ¢2) 0 = 2(¢H2 = ¢V2)10(5¢ T = 24+ 50)¢” + O(q?).

This is not holomorphic because the coefficient ¢(1,5) of ¢¢° is nonzero.

If a weak Jacobi form f fails to be holomorphic then it has nonzero coefficients
c(n,r) with 4mn < r? < 4mn + m?. In particular, r < m and n < 7?/4m < m/4. So
one needs exactly the first [m/4] — 1 terms of the g-expansion of f to decide whether
or not f is holomorphic. Similarly one needs the first |m/4] terms to decide whether
f is a cusp form.
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Using Lemma one can prove the following (without which the notions above
would be dubious):

7

Proposition 3.27. (i) Let f € Ji ,, and g € J .. be weak Jacobi forms.
Then fg € Ji 4 kymytm, 15 @ weak Jacobi form.

(i1) Let f € Jgym, and g € Jxym, be holomorphic Jacobi forms. Then

fg S Jk1+k2,m1+m2

s a holomorphic Jacobi form.

(iii) Suppose f € Jgymy and g € Jyym, are holomorphic Jacobi forms and either
f or g is a cusp form. Then fg is a cusp form.

Here my or my are allowed to be zero, in which case f or g is a modular form for
SLy(Z) in the usual sense.

Proof. (i) The Fourier series of fg is the product of the Fourier series of f and g, hence
also supported on non-negative exponents.

(il) Write f(1,2) = Zm c(n,r)q"¢" and g(T,2) = Zm d(n,r)q"¢". Then

gz =3 (3 clnr)dng, ) )¢

n,r€Z nitngz=n
ri1+re=r

If both c¢(ny,71) and d(ng,rs) are nonzero then r? < 4myn; and r3 < 4myny, hence

4(my +mo)n — r? = 4(my +ma)(ny +ny) — (r1 +12)?
= (dminy — 1) + (dmgny — 19)? + 4(ming + many) — 217y
4(ming + maony) — 2v/4myng - V4mans
= 4(ming + many — 2\/mimaning)
4(y/ming — \/m2n1)2 > 0.

So the Fourier series for fg contains only terms (n,r) with r? < 4(m; + ma)n.
(iii) follows from an argument similar to (ii). O

Remark 3.28. It is possible for fg to be a cusp form even if neither f nor g is a cusp
form (which does not happen for classical modular forms!). For example define

f = 930 + 931 + 9?0 - 9?1

and g = 60%,, both of which are holomorphic Jacobi forms (and not cusp forms!) of
weight 4 and index 4. But fg is a Jacobi cusp form of weight 8 and index 8.

Finally, we will show that (holomorphic) Jacobi forms only exist in nonnegative
weight:
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Theorem 3.29. Let f be a holomorphic Jacobi form of weight k and index m.
Then k > 0.
If k=0, then f is constant (and therefore m =0).

This is another hint that weak Jacobi forms do not capture the correct notion of
“holomorphic”, since there do exist weak Jacobi forms of negative weight.

Proof. For m < 0, there are no entire doubly-quasiperiodic functions, and certainly no
holomorphic Jacobi forms, and if m = 0 then any such function is constant (at least,
as a function of the elliptic variable z). Therefore assume m > 0.

Let H(1) = (h;j(7)) be the vector-valued modular form attached to f, such that
© Y Beun
j€(Z/2m)

Then H(M -7) = (cr+d)*"Y2p(M)H(7) for every M € SLy(Z). Since p(M) is unitary,
the (?>-norm || H|| satisfies

IH (M - 7)|* = ler + d* | H(7)]l,
and the function y*~'/2||H||?> (where 7 =  + iy) is invariant under SLy(Z).

The fact that H is holomorphic at ¢ = 0 (in the sense that all its components are
holomorphic) implies that ||H]|? is bounded on the standard fundamental domain for
SLy(Z). If k < 0, then y*~'/2 is also bounded, so by SLy(Z)-invariance y*~'/2||H||? is
bounded on the upper half-plane, say y*~1/2||H||*> < C.

This leads to a contradiction when we compute Fourier coefficients. If

H(t) = Zvne%im, v, € C*™,

n

then for any y > 0, we can bound

1+ay
|Un|| — H/ H —27rm’rd H

O0+iy
< / |H (@ + ig)lle™ da
0

< \/6 . y1/4—k/26—27rny.

Since k < 0, this upper bound tends to 0 in the limit y — 0 so we have v, = 0 for all
n. Hence H = 0 and f = 0 identically. O]
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4. Jacobi Eisenstein series

The Jacobi forms we encountered so far were defined in terms of theta functions. It is
possible to build up the theory of Jacobi forms more in the spirit of a typical course on
classical modular forms, where Eisenstein series are the protagonists. In this chapter
we consider the “Jacobi” analogue of the Eisenstein series.

4.1. Jacobi Eisenstein series

Recall that the normalized Eisenstein series Fj for SLy(Z) can be defined by

B(r)= > M@= Y (r+d
) c,d
MEFeAT gcd(c,ed?:l
c¢>0 or c=0,d=1

1 n
01
constant function 1 under the |g-action.

where I'o, = {£ n € Z} is the subgroup of I' = SLy(Z) that stabilizes the

a )

Definition 4.1. Let k¥ > 4 be even and m € N. The Jacobi Eisenstein series
of weight k£ and index m is the series

Epm(T, 2) = Z 1‘k (T, 2),

’Yejoo\j

where J = SLy(Z) x Z?* is the Jacobi group and J., is the stabilizer of the
constant function 1 under the | ,,-action.

If v=(M,(\pn) €T then

2
_ _omi c(z4+AT+p) i 2 Ari
1 ")/(T, Z) — (CT + d) ke L e p +2mimA T+ mm)\z,

k,m

and that equals 1 if and only if ¢ = 0 and d = +1 and A = 0. So the cosets v € Joo\J
are represented by coprime pairs (¢,d) with ¢ > 0 or (¢,d) = (0,1) and by tuples
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(A, 0) € Z. This leads to

Epm(7,2) = Z (Z‘ AO)‘

MeT o \I' AEZ

) 2
— § ( E 627mm()\ T+2>\2)>‘ M
k,m
MeT o \I' A€Z
2
_ § : (CT+d 27rzmc_r+d § :e2mm)\ “T+d+4mm>\ﬂ+d
e, d€Z \EZ

ged(e,d)=1
¢>0 or ¢=0,d=1

TI’L

Here M = <Ccl Z) is any matrix in SLy(Z) with the bottom row (c,d). The choice of

a, b does not matter: a different choice would only replace M by T"M for some n € Z,

: at+b at+b 2mimA\Zn __
lLe. o= by o5 +n. Bute =1.

Lemma 4.2. Ej,,, converges absolutely and locally uniformly for k > 4.

Proof. Write
Omo(T,2) = Z FT MmN — g(9mr, 2mz)
AEZ

in the notation of Section 3.4. Then

b
d
belongs to I'(2), and the theta transformation formula implies

For any matrix

. ' B ) a 2mb
€ I'g(4m), i.e. for which ¢ = 0 mod 4m, the matrix (C/Qm d )

(aT+b z ) B (2ma7+2mb 2mz )
mONer +d er+d) ctr+d  er+d
9<a(2m7') +2mb 2mz )
7= (2m7) +d ' 5%(2mT) +d
— Ver £d- e (2ma)? /(CT+d)«9(2mT, 2mz)

=Ver+d- e2mmcz2/(”+d)@m’0(7, 2).

Since ['g(4m) contains I's, one can rewrite > 4cr \r = D arerg@mh\r 2o Nela\To(m) (PY
factoring A = NM). If we only sum over M € I'g(4m), we have

F .= Z @m,o‘km =00 Z (er +d)Y/?7*

MeTl s \Io(4m) ' cd C(;)é)iin’;e
=0 (4m
c>0orc=0,d=1
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The latter series converges absolutely and locally uniformly because k—1/2 > 2. Finally

Bom= Y. F‘ M

k,m
MeTy(4m)\I'

which is a finite sum. O

4.2. Fourier decomposition of the Eisenstein series

Theorem 4.3. Ej,, is a holomorphic Jacobi form and the Fourier coefficients
of Eim are rational numbers. The coefficient c(n,r) of ¢"¢" depends only on
4mn — r?.

The proof leads to a sort of formula. It is not exactly a closed expression for the
coefficient of ¢"(", but for any given n and r it is straightforward to work out what
that coefficient is. Make yourself comfortable: this is going to take a while.

Proof. Split the series as

2
—k —2mim-2— 2mimA2 9Tl L ArimA —2 . mA2 ~2m\
(CT —|— d) e ceT+d e cT+d ct+d — q < + f(T’ 2)7
c,deZ AEZ AEZ
ged(e,d)=1
¢>0or c=0,d=1

where f(7,z) counts only the contributions from pairs (¢, d) with ¢ # 0:

s oardb 4
§ E : CT+d —k 727rzmc_r+d § 627rzm)\ g:+d+47mm)\ﬁ.

c=1 dez AEZ
ged(e,d)=1

This still satisfies f(7 +1,z) = f(7,2 + 1) = f(7, 2) so it has a Fourier decomposition

f(T, Z) — i i an’re27ri(n'r+7"z)7

n=—0o0 r=—oo

in which the coefficients a,,, are given by the integral formula

w—+1 1 )
= / / f(r, z)6_2m(m+m) dzdr,
w 0

Replacing d by d + ¢ in

for any basepoint w € H.

2at+b
(C’T + d) k —2mim T+d@27”m>‘ ZT+d+47rzm)\CT+d
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is the same as replacing M by MT and therefore 7 by 7 + 1. So rather than summing
over all d and integrating from w to w + 1, we might as well sum over a system of
representatives for d (modulo ¢) and integrate from w — oo to w + co:

w+00 . cz2 . )\2 a7'+b A
2 : § : § :/ / CT+d 27r7,mm+2mm g T4mim —2mi(nT+rz) dzdr.

=1 de(Z/cZ)* \eZ

After applying the identity

2 _ 2 2
CLT+b+2)\ 2 cz® oz — Ao +ﬂ

A — =
ct +d ct+d  cer+d ct+d c

and substituting 7 — 7 — d/¢, we obtain

w00 1 N
§ Cik § 27ri(am)\2+nd)/c§ / Tk/ e*QWim(cii)72ﬂ'l(nT+Tz) dzdr.
w—00 0

=1 de(Z/cZ)* NEZ
(cz /\) .
Replacing A by A + ¢ in e~ 2™z ~2m742) amounts to replacing z by z + 1, so we
can write
+
Z ck Z 27l'i(‘”n>\2+nd)/0 Z /w = —k /oo 72ﬂim@72ﬂ'l(n‘r+7‘z d d
T € c? zZdT.
—1 de(z/en)" Nezye ) w=oo o

Substituting z +— z + A/c simplifies that to

) ) w00 00 o, )
_ E —k § 27rz(am)\ —rA+nd)/c E / T—k/ 6—27rzmz J/T—2mi(nT+rz) dz dr.
oo

c=1 de(Z/cZ) % XeZ/e ¥ W >

o0 T 32
/ e ax 2 bz dx —€b /4(17
. a

(which is also valid for complex a, b as long as Rela] > 0), we find that the inner integral
Is

Using the integral

0 2
—omimZe —2mi — T ir2 T _om
/ e 2mimZ —2mi(nT4rz) dz =i 1/2 ™ 5 27rm7"
oo 2m
So
) w00 ) 9
Uy = —1/2 § E E —k 27rz amA\?—rX+nd)/c / T—k+1/26—2m(n—r /4m)T dr.
c—l de(Z/cZ)* NeZ]c w—oo

(4.1)
The integral in (4.1]) no longer depends on any of the sums (over ¢, d or \) so we have
split a, , into the product of a series and an integral. We compute them separately. [
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Lemma 4.4. For any real s > 0 and any w € H,

w00 ] efﬂis/Q
/w_oo 7% Vdr =27 - OB

Here I'(s) is the Gamma function for which there are several standard definitions.
(The integral above is essentially Hankel’s representation of I'(s)~!.) T will use Gauss’s
limit definition,

s.(n—1)! —1\ !
P(s) = tim — =Dy (”” ) L,

n—oo s(s+1)...(s+n—1) nooo n

Proof. Since e” = lim,,_,o(1 + /n)", we can write

w—+00 ] w+n
/ 7% "Tdr = lim 7 (1 447 /n) " dT.
w—00 =0 Jw—n

This is justified by the dominated convergence theorem. For n € N, the integrand has
a pole of order n in 7 = in, and around that point we have the Laurent series

(7 i) (14 i(r -+ im) /)™ = (i) 3 ( e 1) (i /)" - Gifm)

So the residue in 7 = in is

Res—n <T—8(1 +ir /n)_"> — (in)~*(i/n)"" (3 e 2) .

n—1

For all large enough n, the line segment [w — n,w + n| can be completed with a circular
arc to form a closed contour 7, around the pole at in as in the following figure:

Y

w—"n > 3 w+n

Figure 4.1: Path of integration.

Using the residue theorem we obtain

7{ 775 (1 + it /n) "dr = 2mi - (in)~*(i/n) ! (5 e 2),

Y n—1
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In the limit n — oo, the integral along the upper arc tends to zero and since
s+n—1 s+n—2
Cr )
n n—1

w—+00 ) -1 F—S
/ 75T dr = lim 27 -i—*n' 0 ° o B O
n—o00 n F(S)

we have

Proof, continued. If n—r?/4m > 0 then replacing 7 by m and using the Lemma
yields

w+-00 ) k—3/2 —k+1/2
/woo k12 2mi(n—r?/Am)T . (27T(n — 7"2/4m)> 27 - —F(Zk; 1)
On the other hand, if n — r?/4m < 0, then the integrand tends uniformly to 0 as
Im[w] — oo so the integral is simply 0. So

(27r)k—1/2(n T2/4m)k_3/2i_k+1/2

wtoo - : .2 .
/ T—k+1/2€—27ri(n—r2/4m)7' dT _ { F(k—l/Q) . 4mn re > 0,
0:

Amn — r? < 0.

w—0o0

Now we compute the series in Equation (4.1]). For any fixed ¢, the double sum
Z Z 27rz(am)\2—r/\+nd)/c
€(Z/cL)* NeZ/cZ

simplifies if we observe that d runs through Z/cZ just as A does (because ged(c, d) = 1)
and that a is the inverse of d mod ¢ (because (CCL 2) € SLy(Z)). We obtain

E : E 627rz (amA2—rA+nd)/ E /‘ E : 627rzd m)\er/\Jrn)/c

de(Z/cZ)% L/ cT. de(Z/cZ)% NEL/cZ.

2midN/e i the Ramanujan sum of elementary number theory:

Z (2midN/e _ Z u - p(e/u),

de(Z./cZ) u|ged(e,N)

ZdE(Z/cZ)X €

where p is the Mobius function. Therefore

E E : 627r1d (mA2—rA+n)/c

dE(Z)cL)* NEL/CL

= > > uple/u)

XEZ/cL ulc
ul(mAZ—rA+n)

= Zuu(c/u) -HINEZ/Z: mAN —rX+n=0modu}.

ulc
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Whether mA2 — rA +n = 0mod u is true or false depends only on the remainder class
of A in Z/uZ (and not in Z/cZ!). So we have

HINCEZ/cZ: mAN—rA+n=0modu} = E#{)\ € ZJuZ : mA*—rA+n =0modu}.
u
Denoting the latter numbers by
Npym(u) == #{)x € ZJuZ : mA —rX+n= Omodu},

we have:

Z Z 21i(amA?—rA+nd)/ ZM C/U n,r,m )

€(Z/cZ)* NEL/Z ulc

This is a Dirichlet convolution so the Dirichlet series factors:

Z Z Z ka 2mi(amA2—rA+nd)/c

c=1 de(Z/cZ)* NeZ/cZ

_Z - kZNC/U n,r,m )

ule

(@) - (3 Narn(©)

c=1 c=1
[e.e]

B 1 Norm(€)
P

c=1

The function N, ,,,(c) is multiplicative because a number A solves mA?—rA+n = 0mod ab
(a, b coprime) if and only if it does so mod a and mod b. So we have an Euler product

[e o] o0

> Rl T (3 et

c=1 P 7=0

Lemma 4.5. For any prime p, the series

o0

Nn,r,m (p] )

o R(p™)

j=0

18 a rational expression in p~*°

Proof. Any solution A € (Z/p"Z) of mA? — rA + n = 0 determines a solution A mod p*
of that equation for all £ < n. Conversely one can ask how many “lifts” of a solution
A\ € (Z/p"Z) to X € (Z/p"'Z) exist. Under certain conditions, Hensel’s lemma guar-
antees that such a lift exists and is unique; for example, this is true if the derivative
2mA — r at that solution is nonzero in Z/p™Z for any m < n/2.
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Since 4mn — r? # 0, in particular, Hensel’s lemma always applies for large enough
modulus p", and the series ultimately simplifies to

Nn,r,m (p]) - g
Z pjs + pjs

<N j=N+1

with a number C' that no longer depends on j. The first summand is a polynomial in
p~* and the second is the geometric series Cp~NV+1s . ﬁ. O

If p is a prime that divides neither 2m nor 72 — 4mn,
mA —rA+n=0 < 2mA—7r)* +4mn —r*=0.
SO . . .
Nuwvn(P) = #{NEZ/PZ : N =1* — 4mn mod p’}.

Solutions of this equation can only exist for any p? (5 > 1) if they exist modulo p, and
in fact Hensel’s lemma guarantees that solutions mod p’ lift uniquely to solutions mod
pitt for all j > 1. So

2: r? —4mnis a quadratic residue mod p;

Nn,r,m(pj) = Nn,r,m(p) = {

0: r%—4mnis a quadratic nonresidue mod p.

The resulting series are

oo

Nppm (@) (1 4p*)/(1=p~°): r? —4mnis a quadratic residue mod p;
1: r? — 4mn is a quadratic nonresidue mod p.

C

J

Let X = Xam2(r>—amn) be the quadratic character defined by

) 0: r? — 4mn = 0 mod p or p|2m;
4(r* — 4mn) )
xX(p)=|———)=<¢1: 7r?—4dmn=0mod p;
b —1: r%—4mn # Omod p.

Its Dirichlet series has Euler factors

o A 1:
> ng) =q1/(1=p7°): x(p) =
=0 A +p™): x(p) =-1L

Since this differs from » 7%, N”;T(p]) only by the factor 14+ p~* = 1{}; —

2s

, we have:

o0 N o
Z nrm () = () Z (c) X H (rational expression in p~*).
cs ((2s) &= ¢ ol

o
p|(r2—4mn)

c=1
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So we obtain

Z Z Z ka 2mi(amA2—1A+nd)/c __ L(kic—(;]; )27122)4mn) H (rational number).

c=1 de(Z/cZ)* NEL/cL p|2m
pl(r?—4mn)
Altogether the formula is
2 k—1/2 —r2/4 k—3/2;—k Lk =1
= OO AR 10
V2m Tk —1/2) C2k=2)
p|(r28r4mn)

with the rational numbers

1 itk B 2 _
Finally, observe that:
(1) T'(k — 1/2) is a rational multiple of \/7;
(2) ¢(2k — 2) is a rational multiple of m2~2;

(3) L(k — 1, Xy2_4mn) is a rational multiple of \/%.
S0 @y, is a rational number. It is clear from the formula (and from the definition of

the “rational numbers”) in Equation (4.2) that a,, depends only on 4mn — r2. O

4.3. Examples

The results of the preceding section can be simplified further. We have not used the
functional equations of ((s) or of L(s,x), or the value of I'(s) at half-integers, or any
number of facts about quadratic equations modulo prime powers (for example, quadratic
reciprocity).

But in practice the Jacobi Eisenstein series already succumbs to Equation (4.2)).
Here are a few computations.

1. k =4,m = 1. The simplest Jacobi Eisenstein series has weight 4 and index 1.
It has a Fourier series

Eu(1,2) =14 (T2 4+ Cs¢H + Oy + C3¢ + g
+ (C4¢ 2+ O+ Cg + Co¢ + Cuh g + O(¢P),

where Ca = ¢(n,r) for any n,r satisfying 4n — r* = A.

The Fourier coefficients involve values at odd integers of L-functions attached to
quadratic Dirichlet characters. In weight 4 we need the values L(3, x_a). We have:

3

o0 o0 T
L3, x2) = ;6n+1 ;6n+5 BETNG]
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> 1 > 1 s
L3 _ = _— _—— =
(8:x-4) ;(471—1—1)3 ;_()(4n+3)3 32’
4
L(3,x_98) = ——=7°;
( X 28) 49\/7

3
L<37X78) = 64\/§7T37

et cetera. The Gamma value is I'(4—1/2) = 224/7 and the zeta value is ((2-4—2) = .
So the formula of Equation (4.2) without the factors a,
(2m)*V2(A/Am) 2 Lk — 1,x-a)

o(A) = Vam - T(k—1/2) ((2k—2)

has values
b(3) =63, b(4) =126, b(7) =504, b(8) = T56.

Now we have to solve some quadratic equations:
(i) A = 3. We can take n = r = 1, and the quadratic equation becomes
mAN —rA+n=X-\+1=0.

This has no zeros modulo 2 (and therefore any power of 2), so

1 8

_ - 1=°
2= 19 9

It has one solution modulo 3 but no solution modulo 9 (or any higher power of 3), so

— (1+1-33=1.
BT 3 (1+1-37)
We obtain 8
03:63-5256.

(ii) A = 4. We can take n = 1 and r = 0 and the quadratic equation becomes
N +1=0.

This has a solution mod 2 but not mod any higher power of 2, so ay = (1+273) = 1.
Therefore Cy = 126.

(iii)) A = 7. Take n = 2 and r = 1 and the quadratic equation becomes

_1 .
14+2-3

M —A+2=0.

This has two solutions mod 2 that lift to two solutions mod every power of 2 (applying
Hensel’s lemma), so

g —

1 - - 8
1+2—3'<1+;2'(2]) 3) T
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The equation has one solution mod 7 and no solutions mod 49, so

(1+77%) =1.

Ty

We obtain C7 = 504 - £ = 576.
(iv) A = 8. Take n = 2 and r = 0 and the equation is A\*+2 = 0. This has one solution

mod 2 and no solutions mod 4, so ay = 1+%(1 +273) = 1. We obtain Cg = 756.
So

Eyr(7,2) = 1+ (¢72 +56¢™" + 126 + 56¢ + ¢*)q
+ (126¢ 2 + 576¢ " + 756 + 576¢ + 126¢*)¢* + O(q*).
2. k=6,m = 1. Again we have

Ee1(1,2) =1+ ((T2+ 3¢+ Oy + C3¢ + (P)g
+ (Cy? 4+ CoCH + Gy + C7¢ + CuC®) g + O(g?),

where Ca = c(n,r) for any n,r satisfying 4n — r? = A. Using the L-values

11 5
L(5,x_12) = ———=7°, L(5,x_4) = ——=7"
( 7X 12) 1944\/§7Ta ( 7X 4) 15367Ta
62 19
L(5, X 28) = ———75 L(5,y_g) = 0
(5:x-28) 72037 (5:x-s) 40961/2

we find that the values of
(2m)F 12 (A am)F 327k Lk — 1, x_a)

N = a1y @k -2
b(3):—¥, b(4) = —330, B(T) = —4092, b(8) = —7524.

The quadratic equations in the rational numbers «, do not depend on the weight, so
the solution counts are the same as for £ ;. So
(i) A = 3: we have
1 32
1= 2=
1425 33

Qg =

anda3:1,8003:—%'%:—88.
(ii)) A = 4: we have ap = 1 and Cy = —330.

(iii) A = 7: we have

and C7 = —4092 - % = —4224.
(iv) A = 8: we have ay =1 and Cy = —7524.
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So

Egi(m,2) =1+ (¢"%—88¢C" — 330 — 88¢ + ¢?)q
+ (—330¢ "% — 4224¢ " — 7524 — 4224¢ — 330¢%)q* + O(¢®).

By similar calculations one obtains

Esi(1,2) =14 (724 56¢ + 366 4 56¢ + ¢?)q
+ (366¢ 2 + 14016¢ " + 33156 + 14016¢ + 366¢*)q* + O(q?),

as well as the first Eisenstein series with nonintegral coefficients in weight 10,

860776 ., 9947070 860776

E =1 -2 _ _ B 2
10,1(7,2) =1+ (¢ 13867 13867 w867 ° ¢ Ja
0947070 _, 1159757568 _, 3601586268 1159757568 ., , ,
- - - - o).
(=567 ¢ 3367 © 13867 ey o T+ 0

3. k=4, m = 2. This Eisenstein series is
Eya(1,2) = 14 (C4¢* + C7¢ + Cg + C¢ + Cy()q
+ (T4 Cr P+ CraC 2+ CisC 4 Cug + CisC + CraC? + C: 3 + (g + O(?),

where Cn = ¢(n,r) for any n,r with 8» —r? = A. Using the same L-values as the case
(k =4,m = 1) we obtain the following values for

(2m)* 2 (A/Am) 32 Lk — 1, x-a) |

MR = T e 1) (k- 9)
b(4):%, b(7) = 63, b(8):1§—9,

b(12) =252, b(15) =441, b(16) = 504.
Now we count solutions of quadratic equations: (i) A = 4: take n = 1 and r = 2 so the
equation is
20 — 2\ +1=0.
This has no solutions modulo any 2" because 2A%2 — 2\ + 1 is odd, so we have

1 8
N
1+2-3 9

Qg =

and therefore Cy = % . % = 14.
(i) A = 7: take n = r = 1. The equation 2A\? — X + 1 = 0 has only one solution mod

any power of 2, so
1 - 64
= Sy ()P =
14273 z;( ) 63

J]=

Qg

There is a unique solution mod 7 and none mod 49, so a; = 1. We obtain C'; = 63-% = 64.
Repeating this procedure for A = 8,12, 15, 16 yields
Eyo(r,2) = 14 (14¢2 4+ 64¢ " + 84 + 64¢ + 14¢%)q

+ (CH 4 64¢3 + 280¢ 72 + 448¢ ™ 4 574 + 448¢ + 280¢2 + 64¢C° + ¢H2 + O(¢%).
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4.4. Eisenstein series and cusp forms

The Jacobi Eisenstein series Ej ,, is clearly not a cusp form as it has a nonzero constant
term. For squarefree index m and weights k& > 3 it accounts for all non-cusp forms in
the following sense:

- 3

Proposition 4.6. Let m € N be squarefree and k > 3.
(i) If k is odd, then every holomorphic Jacobi form is a cusp form: Jym = Jy.,.’.
(i) If k is even, then the space of holomorphic Jacobi forms splits as

Jk,m =C- Ek,m D J;;jiip

\. J

Proof. Let f be a Jacobi form. f can only fail to be a cusp form by having nonzero
Fourier coefficients c(n,r) with r* = 4mn, and if m is squarefree then any solution to
this equation has » = 0 mod 2m. In other words, in the theta decomposition

the forms hq, ..., ho,, 1 vanish at ¢ = 0 automatically, and the only condition is that the
g-series of hy vanishes at ¢ = 0.

(i) In odd weight, the identity hg,,—; = (—1)*h,, forces hy = 0 identically.

(i) In even weight, the Jacobi Eisenstein series has a theta decomposition whose ©,,, o-
coefficient does not vanish at ¢ = 0. So subtracting off some multiple of Ej,, from f
produces a cusp form. O

What about the non-squarefree case? If we write m = df? where d is squarefree and
f € N, then all of the reminader classes r = 2df -b, b= 0,1,2, ..., f — 1 yield solutions to
r?2 = 4mn. Conversely, if m = df? and 72 = 0 mod 4m, then r must be a multiple of 2df.

But for any such b and any such solution r? = 4mn (i.e. r = 2df-band n = r?/4m = d),
we can construct an “Eisenstein series”

Ek,m,b(Ta Z) = Z <qr /4m€7‘ + (_1)kq77’ /4m<7T> i 7(7—7 Z)'
V€T \T "

This is well-defined, because J» almost stabilizes ¢"/ 4m(r: it is invariant under
(r,2) = (t+1,2), (1,2) = (1,24 1),

and the action (7, z) — (7, —z) sends ¢ /4m(" to (=1)kg=*/4m¢r,

Imitating the proof of Theorem shows that the tuple (¢,d) = (0,1) contributes
the theta functions ©,,4 + (—1)*©,, 4 to Ej.p and that the remainder of the Fourier
series is supported on exponents ¢"¢” with 4mn — r? > 0: in other words, in the theta
decomposition

Eimp(T,2) = Z hi(T)Om (T, 2),

JEZ/2m
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only the components h, and h_; are nonvanishing at ¢ = 0.

This means that given any Jacobi form of weight £ > 3, one can subtract off some
linear combination of Ej ,,; to make the constant terms of all components of its theta
decomposition vanish. We obtain the following:

Theorem 4.7. Let m = df? with d squarefree, and let k > 3. Then there is a
decomposition
Jom = JE5,® TP

k,m

where the Eisenstein space Ji is spanned by Jacobi Eisenstein series Ej b,

1<b< f/2 (if k is odd) or 0 < b < f/2 (if k is even). In particular,

A= [(f —1)/2] - k odd.

\. J

Eis {Lf/QJ +1: Kk even

Computing the Fourier expansion of Ej ,,; with b # 0 is more difficult than com-
puting Ej .0 so we will not do it.

Remark 4.8. This motivates the choice of the non-cusp forms f and g in Remark
up to constant multiples, they are the Jacobi Eisenstein series Ey 40 and Ey4 1,
respectively.

Remark 4.9. The Eisenstein spaces in weight k£ = 2 are also known completely: JQE;;Q;J
is spanned by the linear combinations > x(b)Ek,mp, where x runs through the non-
principal Dirichlet characters modulo f with y(—1) = 1. However the proof of this is

outside the scope of these lectures.
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5. The algebra of Jacobi forms

In this chapter we work out structure theorems for weak and holomorphic Jacobi forms.
The main goal will be to compute dimensions, but along the way we will also develop
better methods of calculating the Fourier coefficients of Jacobi forms.

5.1. Jacobi forms and power series

The simplest way to show that two Jacobi forms (of the same weight and index) are
equal is to check that their difference vanishes in z = 0 to order 2m. That works because
a Jacobi form (and indeed any doubly quasiperiodic function of that index) can have
only 2m zeros, counting multiplicities, within any fundamental domain for C/(Z & Zr).

It is inconvenient to check that directly because that amounts to comparing Tay-
lor coefficients of Jacobi forms about z = 0, and those coefficients are not generally
modular forms. On the other hand one would like to generalize the fact (cf. the first
chapter) that the power series coefficients of p(7;2) about z = 0 are simple multiples
of the Eisenstein series G and therefore actually are modular forms.

As a substitute there is the following lemma. Recall that Go(7) is the nonmodular
Eisenstein series

o0

=Y (X o) =5 Y a)

m=—00 nez n=1 djn

(m,n)#(0,0)

Lemma 5.1. Suppose f is a Jacobi form of weight k and index m. Then the
function

f(r,2) = e f(7,2)

satisfies

~(ar—|—b %

/ et +d’ c7’+d) - <CT+d)kf(T’ )

Proof. Observe that f/¢™, | satisfies

f rar+0 z B fet2m f
4 <CT +d e+ d) = (er+d) ™1 (7,2).
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But ¢_51(7,2) = (2mi(7, 2)/9¥'(7,0))?, and by the results of Section 2.4 we have

(T, 2)
V'(,0)

= e’GQ(T)ZQQU(T, z)
with the Weierstrass o-function

2
2 #_’_ z“/2
o(r,2) ==z | | 1-— " )emr+n mrtm?
mT +n

So we can write

2

f(1,2) = em@2= (1 2)
= (202" sz, 2)

2mip_o1(T, 2)

= (27mi) "o (T, 2)*™ - ¢ir];1.

For any (Z Z) € SLy(Z), a rearrangement of that product implies

(CLT +b z )
O' —_— —_—
cr+d er+d
22
— < H 1 _ < ) e (ma+nc)7'z+(mb+nd) + ((ma+nc)7+/(2mb+nd))2
cr+d () 200) (ma + ne)T + (mb + nd)

= (et +d)o(r, 2),

i.e. o is modular of weight —1. Therefore

f<ar+b z

ct+d et + d) = (er +d)"f(7.2).

Theorem 5.2. (i) Let f be a weak Jacobi form of weight k and index m, and
write the Taylor series of f as

f(r,2) = mBOFf(r,2) = 3 an(r)".

Then each a,(T) is a (holomorphic) modular form of weight k + n for the full
modular group SLy(7Z).

(i1) If f is a holomorphic Jacobi form, then each a,(7) (n > 1) is a cusp form.

Proof. Writing out the Taylor expansion
flrz) =2 an(r)z"
n=0
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and comparing coefficients of z” in

f<a7'—|—b7 z )—ian<m+b>(m+d)”z"

ct+d er+d

and

shows that each a,, satisfies

<a7'+b
n ct +d

) = (7 + ) (7).

The g-coefficients of the exponential emCa(r)z* only appear in nonnegative exponents
because this is true for Ga(7), so if f is weak then the g-expansion of each a,,(7) involves
only nonnegative exponents. If f is a holomorphic Jacobi form, then its ¢’-term is a
constant so all derivatives (with respect to z) are 0. This means that the constant term
in any a,(7) with n > 1 is zero. O

It is therefore natural to compare the Taylor coefficients (up to order 2m) of the
modified functions f rather than f. We have

9= (S0 “)

a=

8

1
af(b)(T, O)zb)

[e=]

0 (

S
a'd! ’

n=0 a, b>0

2a+b:n

(7, 0)) n

Since the derivatives involve powers of 274, it simplifies things to substitute z +— z/(271)
and write:

oo mo (®)
< 2m> ;—%( a;o QfZQ)EQzL!{QWZ(;’b?)>Zn
2a-+b=n
S5 (o) pocn)
2a’+b=n

2

where D, = . Here we have used Ga(7) = 75 Ea(7).

27r8
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Definition 5.3. The Taylor expansion map is

TRk — @D Min(SLa(2)),
0<n<2m
n=k (mod 2)

defined by sending f € J,Xfﬁ,?k to the Taylor coefficients

m 1 @ b _
"2 (= 3o Be() Dif(r,0), 0<n<2m, n=k(mod2)
2a1|—b_:n

of f(r,z/2ms).

These are not the development coefficients as defined by Eichler—Zagier but they
are related to them. (See the next section.)

Our observation at the beginning of this section implies that the Taylor expansion
map is injective. Theorem implies that it sends Jj ., into the space

1<n<2m

n=k (mod 2)

In fact, if k£ is odd, then every weak Jacobi form of weight & is an odd function and
has forced zeros at the 2-torsion points 1/2,7/2, (7 4+ 1)/2. So in odd weight, to show
two weak Jacobi forms are equal it suffices to check whether their difference vanishes
in z = 0 to order at least 2m — 3. Therefore the modified development map

T — D Min(SLa(Z))
1<n<2m—-3
n=k (mod 2)
is already injective and maps Jy ,, into @, Sk+n(SL2(Z)).
Example 5.4. Since 7 defines an injection

D J&l — Mg@Sm = M8@{0}7

Jg1 is (at most) one-dimensional. But the Jacobi forms Eg; and Ej - E4; both belong
to Js1 and have the same constant coefficient. So Eg; = EyFy ;.

5.2. Development coefficients

The point of this section is to improve on the map 7 by defining certain differential op-
erators that map Jacobi forms to modular forms (without involving the series Go(7)).
Actually the map 7 is sufficient for our main goal (the dimension formula) but the
operators we will discuss here are very useful for computations and are interesting in
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their own right.

The basic observation is that any f has a theta decomposition

> hi(1)Onm (T, 2)

JEL/2m
and that each series
7"2 m T
SO
r=j (2m)
satisfies ) im0
_ 2 r2/4m m —0
(27i)? 822 Z " " 2mior ™
So the product rule yields
1 0? 0 4m
S smim =) (f) =~ H(7) Oy (7, 2).
(2mi)? (322 mm(%_ (£) 271 J(T) 4(7:2)
JEZ/2m

Unfortunately A’(7) is not a modular form: for the vector-valued function H(7),
differentiating

H(ZZ'IZ) = (7 + )2 p(M)H(7)
yields
1'(5E0) = (k= 1/2)cler + (M) H () + (er -+ )2 p(M) (7).

We correct for this by applying 2 5, from

ar +b z mimez2/ (et
f(m—i—d’CT—l—d) = (c7 +d)*e? et f(r, 2),
we find
0 at +0b z k . 2mimez? [ (er4-d)
0z (ﬂﬂ) = (cr + d)" (4mimez)e™ ST 2)
z" \er cT

, 0
+ (e + d)kﬂe%zmczQ/(CTer)&f(ﬂ z),

such that %% gives (up to a constant multiple) exactly the correction that makes f
transform correctly. Written out more carefully, we have the following lemma:

Lemma 5.5. Define the modified heat operator of weight k and index m by

1 0 2k—10 0?
Lk = Gy [87”7"% I @]

For any M € SLy(Z) and any holomorphic function f on H x C,

Lim(f|, M) = Land)| , M.

k+2,m
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Note however that Ly ,, breaks quasiperiodicity due to the z in the denominator of

2kZ 1 ‘9 . In particular it does not map Jacobi forms to Jacobi forms.

If f is even, the function % f is odd and therefore %% f is still holomorphic. Since
Ly m f is then again even, we can apply Lj2n, to it.

Starting with a Jacobi form f of even weight & (which is therefore an even function)
and index m, we obtain a sequence of modular forms of weights k + 2N for SLy(Z) by
defining

_ @)
Don(f) == m(Lk+2N—2,m---Lk+2,mLk,mf> o
(The multiple —)) turns out to make the result nicer.)
[ Definition 5.6. Doy f is the (2N)-th development coefficient of f. ]

Explicitly, if f(7,2) =3 o7 a2,(7)2*" then

o)

<umf:@myﬂgj@Mm%gﬂ—4m+4xn+m@mﬂﬂy%.

n=0

By induction, one can show that

Lyvon—om---Limf

N\(n+N—)l(n+k+2N—-2—j) &
—2N 7 2n
(2m0) Zno[zjo ~ (8rim) (;) nlin+ k+ N — 2)! 27 2= ()27
So
al (@N)! (k42N —2 )l &

Do () = (2ri) ™ S () Smim ) S gt e ()

=0

In terms of the Fourier expansion of f, if

flr,2) =) cln,r)g"¢"

n,r

then N 00
<erc(n, r))q"
n=0 r
So
di -
(8mim)’ Eag(]\,_j)( T) = (2(]%;# J; (Zr:ﬂ(N Dne(n T))qn.



This leads to the expansion

[e's) N

. @N) (k+N-—2+(N -
DQN(f):Z<Z(_1) ]j!(2(N—>2j).( (k+ N —2)! Z (mn)e(n, )>q

n=0 ;=0

For example, we have:

f: (Z (k4 2)(k + 1)r* — 12(k + Dr*mn + 12m*n?)c(n, r))q”;

n=0 r

Z(Z [(k+4)( k+3)(k—|—2)7"6—30(/{+3)(k:—|—2)7"4mn+180(k+2)r2m2n2—120m3n3]c(n,r))q”;
n=0 T

etc.
Example 5.7. (i) The equations
Do(Ey1) = By = 1+ 240q + 2160¢* + 6720¢° + ...

and
D2<E471) - 0 < 56

are already enough to (recursively) determine the entire Fourier expansion of £, ;. Write

Ei(r,2) =14+ (2 + C3¢H + Cy + C3¢ + g
+ (Cal 2+ Co( T+ Cs + C7¢ + CuCP) ¢
+ (C3C_3 + CsC 2+ Ci¢ ™ + Oy + O + G + 03C3)q3 + ...

Comparing coefficients of ¢' in Dy(Ey;) and F, and in Dy(Ey ;) and 0 yields
24205+ Cy =240, 2-14+2-2C5 —2C, = 0,

ie. 205+ Cy = 238 and 4C5 — 2Cy = —28, and therefore C3 = 56 and C; = 126. Doing
this for the coefficients of ¢* yields

21264 2C; + Cy = 2160 and 24-126+0-Cy —4-Cg = 0,
i.e. 2C; + Cs = 1908 and 4Cg = 3024, hence C7; = 576 and Cy = 756. With ¢?,
2-56+2-756+2C1 + C12 =6720 and 60 -56 + 20 - 756 — 4C; — 6C15 = 0,

hence 2C1; + Ci2 = 5096 and 4C4; + 6C15 = 18480, and therefore C; = 1512 and
Cia = 2072.
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(ii) Applying this to

fi=FEgBEy = 1+ (C2+56¢" — 378 + 56¢ + (?)q
+ (—378¢ ™% — 27648( " — 79380 — 27648¢ — 378(*)¢* + O(¢*),
we get
Do(f) =1 — 264q — 135432¢° * ...

and
Dy(f) = 1728q — 41472¢* + ...

hence Dy(f) = Eig and Dy(f) = 1728A.
Remark 5.8. If f has odd weight k, then % f is holomorphic and transforms under

SLy(Z) (but not under lattice translations) like a Jacobi form of weight £+ 1 and index
m. For these functions, the development coefficients are defined by

2N)! 1
D2N+l(f) = ﬁ<Lk+2N—1,m-~-Lk+3,mLk+1,m(;f)) .
So if
flr,2) = eln,r)q"¢",
then the development coefficients of f are:’
Di(f) =Y (Do re(nm)a"s
Ds(f) = Z <Z[(k + 1)7r* — 6mnr]c(n, r))q”;
Ds(f) = Z (Z[(k + 3)(k + 2)r° — 20(k + 2)r*mn + 60rm*n?|c(n, r))q”;

n T

et cetera.

5.3. The ring of weak Jacobi forms

Since the product of two weak Jacobi forms is again a weak Jacobi form where weights
and indices are added, the set of weak Jacobi forms is naturally a bi-graded ring:

oo
k weak
o D@
. k:,m .
keZ m=0

In this section we will describe J¥°** completely in terms of generators and relations.
Recall that ¢_o; and ¢_; 5 are the weak Jacobi forms

= (=240 + (2048 - 12+ 8¢ —2¢*)q + O(¢*)
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and

G_12(7,2) = 27?2'%

= (¢ + )+ (=3¢ +3¢C - g+ O(d?),

and that ¢_o; has weight —2 and index 1 and that ¢_; 2 has weight —1 and index 2.

Let ¢ be the form

3
¢0,1(7; Z) = —F@@U 2)¢—2,1(7, 2)>

where @ is the Weierstrass elliptic function. This is holomorphic because the double
zeros of ¢_o for z in lattice points cancel out the poles of p. Using the Jacobi triple
product and the resulting Fourier series for p (see Remark one can compute the
Fourier expansion of ¢ ;. It begins

Go1(1,2) = (T + 10+ ¢) + (10¢2 — 64¢ ™" + 108 — 64¢ + 10¢%)q + O(¢?).

Theorem 5.9. Let Ey, Eg be the normalized Fisenstein series of weights 4 and

6:
Eyr)=1+240) (Z d3)q”;

n=1 dln
Bs(r)=1— 504i (Zd5)q"

n=1 dn

Then Ey, Eg, 921, ¢o,1 are algebraically independent, and they generate the graded
subring of weak Jacobi forms of even weight:

@@Jweak Ey(7), E6(T), 9—2,1(T, 2), $0,1(7, 2)].

ke2Z m=0

Proof. First we prove that Ey, Eg, ¢o1, 921 are algebraically independent:
It is not hard to see that Jacobi forms of different weight or index cannot be linearly
dependent. So suppose we have some polynomial relation of the form

D fan®i 16000 =0 € T

a+b=m

where f,, € C[Ey4, Fg] is a modular form of weight & + 2b, and m can be chosen to be
minimal. Setting z = 0 and using ¢_5;(7,0) = 0 shows that the (a,b) = (m,0) term
fm,0 = 0 vanishes. But then we can divide the equation by ¢_5; to get a relation of the
form

b k
Z fa,b¢g,1¢72,1 =0¢c J;?f,? 1

at+b=m—1
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This contradicts the choice of m.

To prove that Ey, Es, ¢_21, ¢o1 generate all weak Jacobi forms we use induction on
m:
(i) Any weak Jacobi form of index m = 0 is constant with respect to z, so it belongs to
C|Ey, Eg).
(i) Let m > 1 and let f € Jye* for some weight k. Then the function g(7) := f(7,0)
transforms like a modular form of weight k, so it belongs to C[Ey, Eg]. Since ¢ ;1 (7,0) = 12,

the function ()éor(7.2)
g(7)o1(T,2)"
f(Tv Z) - ;;m

is a weak Jacobi form of weight k£ and index m that vanishes at z = 0, and (since it is
even) has a double zero there. So it has double zeros at all lattice points z € Z @ T7Z.

Then
f(7,2) = g(T) o (7, 2)™ /127
¢—2,1(T ,2)
is a well-defined, weak Jacobi form of weight k£ + 2 and index m — 1, and belongs to
C[E4, Eg, »—21, ¢01] by induction. Therefore f € C[Ey4, Eg, ¢p—21, Poa]- O

Corollary 5.10. The ring of weak Jacobi forms is generated by the forms
Ey, Eg,9_21, 901, 9—1,2 modulo the single relation

$o1 — 3Eupo1¢% 5, + 2Est® 5,

2 — o
210 = P21 130

Proof. ¢_1 2 has only simple zeros in the points %Z ® 57Z. Since any odd-weight Jacobi
form f vanishes in those points due to the identity f(7, —z) = —f(7, 2), it follows that
every weak Jacobi form of odd weight is a multiple of ¢_; o: so

Jweak — Jweak D ¢71’2 . Jweak

2%,m 2% m*

This implies that J¥eak is generated by Ey, Eg, ¢_2.1, ¢o.1, ¢_1.2 and that the only defining
relation is the representation of gbzm in C[Ey, Eg, ¢_21,¢01]. One can either compute
this directly (using Fourier series) or observe that ¢_; 5 is (a multiple of) ¢*, - ©" and
that the relation is just the Weierstrass equation

(¢)? = 49 — 60G4p — 140Gs. O

So we can express the dimensions of J}"*?¢ as a generating function:

Corollary 5.11. dim J,Zfﬁjk is the coefficient of t*u™ in the following series:

o0 o0

oy Jeaky gk m 1+u?/t
2. 2 [im et = S T i =/

m=0 k=—o0
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Finally, the dimension formula implies that the development map D is actually an
isomorphism (on weak Jacobi forms):

Corollary 5.12. For every m € Ny and even 2k € Z, the development map

D: ngeak — @Mk—i-Zn

k,m
n=0

1s an isomorphism of C-vector spaces.

Similarly, for odd 2k + 1 € Z, the map

m—1

D: 5oy — €D Misan

k,m
n=1

is an isomorphism of C-vector spaces. So we have

m 1 . .
Yoo dim Moy, k even;

di Jweak —
o {22_11 dim Mgyon,-1 0 K odd.

Proof. We know that D is injective so it is enough to compare dimensions. Using
1

dim Mt" =
% R = Ty — ey

we find

35"t € )

m=0 keZ
:Zdika- (ZZtk’Q”um)
m=0 n=0
= Zdlka th ! If_;n; 2u

1 . 1 =2
= 7o ) dim Myt '<1—u+1—u/t2>
_ 1 _ ((1—u/t2)—t2(1—u)>
(I —t=2)(1 —t4)(1 —t5) (1 —u)(1—u/t?)

1 weak\ 12 m
T 1=t (1 — 51— ) (1 — u/2) :;(dlmj m)tt -
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ﬂlj -12(-11(-10-9|-8|-7|-6|-5|-4|-3|-2|-1]0(1|2|3|4|5]6 |7]8]9]10]11 12
1 170(|1{0}1}0(2|0| 2 0|2 0|3 |0]3
2 1jo0|1(1]2{0(2|1(3|1|3 |14 |14 2|5
3 1701121 |3|1|3|2|4|2|5 (2|5 |3]6]|3 |7
4 1 1112|132 |4(2(4|3|6|3|6 |4 7|4 8] 519
) 1 (1o0j1 112|132 4|3 |5|3|6[4]7|5|8 |59 |6|10|T7]11
6 1 0 1 112|132 (4|35 |4 |7|4]7]6|9/6|107|11|8|12| 9 |14

Figure 5.1: dim J,‘;fm forl<m<6and —12 <k <12.

5.4. Holomorphic Jacobi forms

The situation for holomorphic Jacobi forms is very different from weak Jacobi forms:

[ Proposition 5.13. The graded ring J of Jacobi forms is not finitely generated. ]

This is a little reminiscent of the fact that the ring of cusp forms for SLy(Z) is not
finitely generated.

Proof. Suppose {fi, ..., fn} is any finite set of (nonconstant) Jacobi forms. Let M be
the largest index of any f;. Since all f; have weight at least 1, it follows that every
monomial in {f, ..., f,} of index at least 5M has weight at least 5. But then the Eisen-
stein series Fy5) is not contained in the ring generated by fi, ..., fn.

Since that applies to any finite set of Jacobi forms, it follows that J is not finitely
generated. n

In weights k£ > 3, the formula for dim J g”fjk leads quickly to a formula for dim Jj ,:

'a 2

Theorem 5.14. Let k > 3 and m € N, and let Ny, ,,, be the number of tuples (n,r)
with 0 < r < m (if k is even) or 0 < r < m (if k is odd) and 0 < n < r?*/4m.
Then

dim Jy, , = dim J7EE — Ny .

k,m

Note that Ny ,,, depends only on the parity of k.

Proof. Let f(r,2) = 3, c(n,r)g"¢" € J¥2*. By Lemma , all coefficients ¢(n, )
with 2 > 4mn-+m? are zero. The condition for f to be holomorphic is then precisely the
vanishing of ¢(n,r) with 4mn +m? > r? > 4mn, ie. 0 <r <m and 0 <n < r?/4m.
If £ is odd, then the coefficients of a weak Jacobi form with » = m automatically
vanish as well, so f is already holomorphic if ¢(n,r) = 0 whenever 0 < r < m and
0<n<r*/dm.
Therefore we have a map
@ Jyeak s CNem o fes (e(n, 1))

k,m
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whose kernel is J,,,. The claim will follow as soon as we show that ¢ is surjective.
Since k > 3, we can construct weak Jacobi forms by modifying the Eisenstein series:

Y7, 2), 0<r<m, 0<n<r?/dm.
k,m

1 n r k _n —r
Pk,m;n,r = 5 Z <q C + (_1) q C )
’YEJOO\\.,]

(These are called Jacobi Poincaré series.) The general Fourier coefficients of Py ..
are complicated, but the coefficients with n — r?/4m < 0 are very simple: one can
show (by computations similar to Section 4.2) that (P . is the tuple with 1 in the
(n,r)-entry and 0 otherwise. O

The situation in weights k& € {1,2} is far less obvious. Certainly Theorem is
no longer correct as stated: for example, in weight £ = 2 and index m = 6 it predicts
dim J2,6 =—1.

The dimensions in low weight were computed by Skoruppa. We only sketch a rough
idea of the proof.

Theorem 5.15 (Skoruppa). (i) There are no nonzero holomorphic Jacobi forms
of weight 1 and any index:

J17m = {0}, m € N.
(i1) In weight 2,

dim Jy ,,, = dim Jy* — Ny, + #{divisors d|m with d* { m and d < m/d}.

2,m

Proof. Both claims involve counting vector-valued modular forms of weight 1/2:
(i) If f € J1,, has the decomposition

@)= hi()Om;(7 2),

JEZL/2m

then each of the functions h; is a holomorphic modular form of weight 1/2 and level
I'(4m). The Serre-Stark basis theorem implies that any such modular form is a linear
combination of functions 0, , => 2 X(n)q””2 for some appropriate numbers r € N
and Dirichlet characters x. The group Sl (Z) acts on this space via the slash operator
|1/2,0, and the possibilities for H = (h;);ez/2m are exactly the invariants of that action.
In this case there are no such invariants.

(ii) The correction term #{divisors d|m with d? { m and d < m/d} measures a space of
“dual” cusp forms of weight 1/2. The image of ¢ in the proof of Theorem consists
exactly of tuples that are orthogonal to those cusp forms in an appropriate sense, so
this is the number that must be added on to get dim J5 ,,. [
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le} 011123456789 ]10 (1112|1314 |15 |16 |17 |18 19|20 |21 |22 |23 |24
0 1{0j0(0j1]0]1]0|1|0] 1 0 2 0 1 0 2 0 2 0 2 0 2 0 3
1 0j(ojo|jo0f1j011j0j1,0| 2 0 2 0 2 0 3 0 3 0 3 0 4 0 4
2 0/(ojojo0(1j011(0(2|01| 2 1 3 0 3 1 4 1 4 1 5 1 5 2 6
3 0(ojojo0(1j012(0(2111 3 1 4 1 4 2 5 2 6 2 6 3 7 3 8
4 0010|0202 |1]|3]1] 4 2 5 2 5} 3 7 3 7 4 8 4 9 5 | 10
5 (0j0jo0jO(1|1{2|1({3|2|4 |3 |5 |36 |4 |7 |5 ]|8|>5 |96 10 7]|11
6 (0j0j0OjO|1|0|2|1|3|2|4 |3 |6 |3|6 |5 |8|5|9]|6 107 |11]| 813
7 10]0]0]0]2]|1({3|2|4|3]| 6 4 7 ) 8 6 |10 7 |11 | 8 | 12| 9 |14 |10 ]| 15
8 0/10/0|]0]2(|1]|3]|2|5]3]6 9 8 9 9 7T |11 8 (12| 9 |14 |10 | 15| 12| 17
9 010101224 |3|5|b5]| 7 6 9 71101 9 (1210 |14 |11 |15 |13 |17 | 14| 19
10[{0(0|0j0]|2|1 3|3 |54 7 6 9 71101 9 (13 /10|14 |12 |16 |13 |18 | 15| 20
Figure 5.2: dim Jj, ,,, for m < 10 and k < 24.

m 25 | 37|43 149 |50 | 53 | 57 | b8 | 61 | 64 | 65 | 67 | 73|74 |75 | 77|79

dmdo,,, (1 (1 |2 |21 1|1 |1 111 }2]2]1[1]1]1

dmJ," 101,100 (1 |1 11|01 [22|1]0|1]1

2,m

Figure 5.3: Jacobi forms of weight 2 and index m < 80

5.5. Modules of Jacobi forms

In the previous sections, we observed that the graded ring structure of J is rather
opaque: it is not even finitely generated. A different approach to understanding J is to
view

M = M*<SL2(Z)) = (C[E4, EG]

as the underlying (graded) ring and to consider J as a graded M-module.
The main theorem is then

[ Theorem 5.16. J, J¥e& gnd JP are free M-modules. ]

More precisely, J splits as a direct sum

J= é e

m=1

where J, ,,, consists of Jacobi forms of index m (and any weight), and each J, ,, is itself
a graded M-module. Theorem follows easily from the following stronger result:
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Theorem 5.17. For any fized index m, each of

weak cusp
J* ;1M J J*7m

xm

18 a free M-module of rank 2m.

L.e. thereis a basis fi, ..., fo,, of Jacobi forms of index m and some weights k1, ..., ko,
such that every Jacobi form f of weight £ and index m can be written uniquely in the
form

J=hifi+ ...+ hom fom
with modular forms h; € My_y, (SLa(Z)).

Proof. We will first show that J, ., is free. The C[E}), Eg-basis of J,,, will be con-
structed by induction on the weight: we begin with (), and suppose that for some k
we have already found a set {fi,..., f.} of Jacobi forms of weights ky, ..., k, with the
following property: every Jacobi form f of weight < k can be written uniquely in the
form f =", h;f; with modular forms h;. (Clearly @ works for & = 1.) Then {fi, ..., f,}
remain linearly independent in weight k: suppose there is a relation

D hifi=0, hi€ My,
=1

in weight k. Since each h; has strictly positive weight, we can further decompose
hi = a; By + BiEs, where o; € My_p,—4, Bi € My_p, 6.
Then

Ey- (i%‘fi) + Fg - (iﬁifi) = 0.
=1 =1

At the point 7 = ¢, we have
Ey(i) - (Z%’fz‘) (t,2) =0
i=1

because Fg(i) = 0. This implies that the quotient % is holomorphic; its Fourier
series also satisfies the vanishing condition (because Eg has constant term 1) so it is a
true Jacobi form ¢ of weight & — 10. So we have the identity

¢ — 22:1 aifi _ _22:1 Bzfz
E6 E4 '

By the induction assumption, we have a unique representation
T
¢= ifis Vi€ My,
i=1
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The uniqueness forces o; = FEgy; and 8; = —FEy7;, hence
hi = a;Ey + BiEs = (EsEy — E4Eg)y; = 0
for all i.

Now ;_, fiMy_y, is a subspace of Ji,,, and can be extended to all of Jy,, by
choosing a basis f,11,..., fs of a complement. We have

Jem = €D fiMix,
=1

because My = C. The set {fi, ..., fs} now satisfies the induction hypothesis in weight
k+ 1. The fact that J,fff;j”k and J{'WP are free follows with the same argument (although

in the weak forms case, we must start in weight k = —2m).
Finally we have to compute the rank. For Jgﬁﬁk, this is a consequence of the ring

structure
T = ClE}, Es, $-21, P01, ¢—1,2]/(¢2_1,2 =..):

a basis of ijf;i‘k is given by the monomials in ¢g1,¢_21,¢_12 of index m in which at
most one copy of ¢_; o appear, and the number of those monomials is 2m. Now the
identity
N k S k
AN e C R C L C T

(IV sufficiently large) implies that J. ,, and J{P also have rank 2m. ]

Example 5.18. J, 1, JI'¢, J/T" have the following bases:

*

Jii=ME;; @ MEg J:‘fak =Mop_o1 © Moy, Jc,ufp =MA¢_2; ® MA¢ ;.

*

Remark 5.19. The weights of any C[E,, Fg|-basis of J, ,, are uniquely determined. If
we label them k1, ..., ko, then as a formal power series,

i (dim ka)t’“ DY AT

_ 4 _ 46)°
p (1 —1t4)(1—19)
The first few polynomials P, (t) := 232 thi are:

Pit)y=t"+1% Pyt)=t" +1" + 5+t Py(t) = t* + 260 + 5 17 + 'L
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6. Hecke theory

6.1. The Petersson norm

The natural norm on modular forms f of weight k is defined in terms of the associated
invariant function y*/2|f(x + iy)| and the invariant metric dxﬁdy on H. In this section

we define the natural norm on Jacobi forms.

Lemma 6.1. If f is a Jacobi form of weight k and index m, then

f(r,2) == g ?e ™ £ (7, 2)|

satisfies f(r+1,2) = f(r,z+1) = f(7,2) and

F(-2.2) = fro).

)
T T

In other words, f transforms like a Jacobi form of weight 0 and index 0.

Proof. The identities for 7 — 7+ 1 and z +— z + 1 are immediate. If 7 = x + iy and
z = u + 1v then, in terms of the new variables

1 T — 1y 5 4 id
—— =" =T+
T $2+y2 Y
and
Z  ur—+ovy vTr —uy -
- = 3 = U+,
T rr+y? pt P
we have
22 v 2
m[Z] =27
T Y Yy
Therefore

f( o 1 z) — gk/2€72ﬂ'mf}2/y

’ Tk€727rim22/‘rf<7_, Z)
T T

_ |7_‘kgk‘/2ef2ﬂ'm(’52/y+Im[22/T])|f<7_’ Z)|

=y e 2N | f(1 2)| = f(1, 2). O
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Definition 6.2. Let f be a Jacobi cusp form of weight £ and index m, with
invariant function

f(r,2) = y*2e > f(, 2)].

The Petersson norm || f|| is defined by

dxdydudv
117 = | Fer

= / / |f(7', z)|26_4”m”2/yyk_3 du dv dz dy,
SLy(Z)\H J C/(zaZr)

where X is (the closure of a) fundamental domain for the action of 7 on H x C.

One can take X = {(r,ar +b): 7€ F, a,b € [0,1]}, where
F={ov+iy: 2* <1/4and 2* +y* > 1}
is the closure of the standard fundamental domain for SLy(Z) on H.
y~3dz dydudv is the natural invariant metric on H x C: it is the product of the

hyperbolic metric y~2 dz dy on H and the unique translation-invariant metric y=! du dv
on C that makes C/(Z & Zr) have volume 1.

The Petersson inner product is induced from the Petersson norm in the usual way:
for cusp forms f, g of weight k£ and index m,

(f,9) 3:/ f(7'>2)9(7',2)674”m”2/yyk73dxdydudv.
X

This reduces to the inner product for modular forms (of half-integral weight) in the
following sense - which also yields the proof that || f]| is finite:

Proposition 6.3. Suppose f and g are Jacobi cusp forms of weight k and index
m, with theta decompositions

Z fj(T)@mJ(Tv Z)7 g(Ta Z) = Z gj(T)@mJ(Ta Z)
JEZ/2m JEZ/2m

Then

Uhelh = \/_ SLs Z)\H< Z filr > P dady.

JEZ/2m

The right-hand side can be viewed as the natural inner product of the vector-valued
cusp forms F(7) = (f;)jez/om and G(7) = (9;)jez/2m of weight k& — 1/2. Note that
the function y*~"/237. ;o £i(T)g;(1) = y*'2FTG is SLy(Z)-invariant because the
representation p that F' transforms with is unitary.
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Proof. We have

(f,g) = S ()91 Oy (7, 2)m (7, 2) e/~ qu du dz dy.
FJC/zazr

J1,J2€Z/2m

For any fixed indices j1, j2, substituting z = a7 + b, the interior integral is

= grm?yy dudv
/ G)m,jl (T7 Z)@m,h (Tv Z)G /
C/Z&Zr Yy
— E : 2 / / z T+27rzr1 (at+D) | T+27rir2(a7+b) . 6747Tma2y da db
r1EZ ro€7Z
r1=71 (mod 2m) ro=jo (mod 2m)
The integral over b is zero unless 71 = ro =: r, so the entire integral is zero unless

J1 = jo =:j in which case it is

2
E / z T+27rzra7' WZTT 2miraT—4mrma? Yda

rEZ

Z / —4mrm(a+r/2m)3y da

rel
r=j (2m)

o0 1
= / e~ 4mmaty g — )
_ dmy

[e.9]

Hence

]EZ/Zm
1
= —F— fi(7)g;(7) 2 dr dy
Vam /f (jezzﬂm >

6.2. The Uy operator
For N € N, define a map Uy on functions on H x C by
Un(1,2) = f(1,Nz).

It is not difficult to see that if f(7 + 1,2) = f(r,2+ 1) = f(7,2) then Uyf is also
1-periodic in both variables. If f transforms like a Jacobi form of weight k£ and index
m, then the calculation
1 Nz
F(- 18

UNf<_l’z> T T

T T
_ Tk€_2mmN222/Tf(T, NZ)
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shows that Uy f transforms like a Jacobi form of weight k& and index N?m. So the rule
Uy defines maps
Un : Jim = T nzms

Un : Jkm — Tk N2m,
cusp cusp
U : TP — o8

If f(r,2) =>_,,cn,r)q"C" then
Unf(r,2) =Y cln,r)g"¢" =Y Z c(n,/N)q"¢".

nel re
r=0 (mod N)

cusp cusp
J

Through the Petersson inner product, Uy induces an adjoint map Uy : J; s, — Jp.
which is more interesting:

Proposition 6.4. The adjoint operator of Uy s

* 1 2mim(a?742az) Z+ar + b cus
Uif(rn) =55 > e (), Fe it
a,beEZ/NZ
For f(r,2) = Zm c(n,r)q"¢" € J,jj}i‘;m,
* 1 2 n r
Uyf(r,2) = Z (N Z c¢(n —ra+ma*, N(r — 2am))>q ¢

n,r a€Z/NZ

Proof. Morally, U}, should be more or less the map given by substituting z +— z/N;
however, f(7,z/N) transforms only under the translations z — z+ N7 and z — z+ N.
We get around that problem by averaging: let f be a Jacobi cusp form of index N?m
and define fy(7,2) := f(7,2/N) and

> i

¢eZ2/NZ2

_ Z 27m'm(a27+2az)f< Z4ar+ b)
= e T, —).
a,beZ/NZ N

Then the identities

InlemClemM = [nlem(CM),  fnlemClemn = falem(C 4+ 1)

(where (,n € Z? and M € SLy(Z)) shows that g|y,M = g for all M € J.
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g turns out to be a cusp form (see the Fourier expansion computed later on). For

any ¢ € J;F we have

=1,
a7'+b>

= NQ/ / e2mim(a?T+2aNz) T, Nz <T,Z +
FJc/N-1zgN-1 Z o 2 N

L 4 beZ/NT

z4+ar+0b

2mim(a2T+2az) (
€ p(r)f (7 —

) e’“mvz/yyk’?’ dudvdzdy
/Z&TL beZ/NZ

X 6_4”N2m”2/y k=3 du dv dz dy

= N? / / > emim(ertaN)p(r N2) f(1, 2 + ar JN)e N2 me* [y k=3 Qo du da dy.
C/zoN= GZ/NZ

Use the substitution z — z — a7/N and write
o(1,N(z —at/N)) = ¢o(1,Nz —at) = 62”7”(“2”2“Nz)<p(7', Nz)

and

e2mim(a?74+2aN(z—a1/N)) . e*4ﬂ'N2m(vfay/N)2/y _ 627rim(a27-+2aNz) . e74771\/2,,%,2@
to see that this equals
NQ/ / (7, N2) f(7, 2)e N mvvyh=3 qu do da dy
C/Z&TZ

Hence g = N%- U f.

To work out the Fourier coefficients, we write

* 1 ma am n-+ar T Tibr
(/']V‘]C(T,Z):m Z q 2<-2 ZC(TL,T’)(] + /NC /N€2 br/N

a,beZ/NZ n,r
1 ma2 am n-+ar T
= 2. "¢ Y cnr)gtteeN
a€Z/NZ n,reZ
r=0(N)
ma2+n+ar ~2am+r
=5 Z e(n,Nv) Y g ¢
a€Z/N
and substitute first r — r — 2am and then n — n — ra + ma®. O

The formula for Uy, also defines maps that will still be denoted by
U]tf : ZNQm — JXm? U]tf : Jk,NQm — Jk:,ma
but these are no longer the adjoint of Uy with respect to any natural inner product.

Remark 6.5. It follows from Proposition that Ux Uy = id is the identity on Jj n,
so we do not get any nontrivial “Hecke operators” on Jj ,,, by combining Uy and Ujy;.
This might be expected as the definition of Uy is rather simple.
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6.3. Double coset operators

The operators Uy are in fact true Hecke operators in the sense of being averaging oper-
ators induced from decomposing double cosets into one-sided cosets. We will consider
the latter notion more generally.

Let Z%§? be the set of integral (2 x 2)-matrices with positive determinant. There is
a double-coset decomposition given by elementary divisors (or Smith normal form):

di 0

2Xx2 __ 1 —

72 = F(O dQ) I, T =SLy(7%).
dy,d2>0
di|ds

Each double coset splits as a disjoint, finite union of right cosets:
d 0\, |
r (o d2> I = Ulr%.

If N = dids then one choice of the representatives 7; is

_f(a b
72_ 0 d )
where a,d > 0, ad = N, ged(a,b,d) = dy and b € {0,...,d — 1}.

Suppose f is a Jacobi form of weight k£ and index m, that

B di 0
a—F(O d2)F

is a double coset with det(a) = didy = N, and that A, = {71,...,7} are the right
cosets that make up a. Then the slash action

F = f‘a = gf‘mn(%%)

is well-defined (independent of the choice of representatives 7;) and F transforms cor-
rectly under SLy(Z) in the sense that

F( A=F forall A€ SLy(2);

k,m

this is because right-multiplication by A simply permutes the classes of A,. However,

the quasiperiod lattice of F' is now \/LNZ &) \/LNZ rather than Z & 77Z. To obtain a Jacobi

form we substitute z — /N - z, which is formally the operator U v~ and therefore
multiplies the index by N.
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d 0
0 dy
Hecke operator () is defined by

Definition 6.6. Let « = I’ )F be a double coset, det(ar) = N. The

<Oz>f(7', Z) — Nk Z (CT + d)—k€—2wimch2/(c7+d) . f(
MeA,

ar +b Nz)
cr+d er+d)’

b : . . .
where M = CCL . It maps (unrestricted) Jacobi forms of index m into (unre-

d

stricted) Jacobi forms of index m - N.

\. J

N 0
0 N

Remark 6.7. Suppose o = ( ) (Note that det(a) = N2, not N!) This com-

) : : N
mutes with everything and A, consists only of one coset, represented by M = ( 0 j(\)[) .
So

(@) f(1,2) = N* 2 f(1, N=z),
i.e. <Oé> = Nk_QUN.
To work out the action on Fourier coefficients it is easier to use the operators

VN = Z <O./>

det(a)=N

So
Vnf = N1 Z <f|kmiv>(7,\/ﬁz)

YEAN N

8 2) with a,d > 0, ad = N and
be{0,...,d— 1}, without any constraint on the g.c.d. of the entries.

Here Ax = Ugeq(a)=n Qo is represented by matrices (

Proposition 6.8. Suppose f is an unrestricted Jacobi form of weight k and index

m with Fourier series
f(r,2) = Zc(n, r)q"C".

n,r

i =3 (30 (G D))o

n,r  alged(n,r,N)

Then

a b

Proof. Use the representatives M = (O d

) for Ay, where N =ad and 0 < b < d. We
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have

Vif(rz) = N ST S0 k(T2 )

ad=N beZ/dZ
a,d>0

_ %Zak Z Z c(n, T n(a?/N) Car 2mibn/(N/a)

a|N beZ/(N/a) n,r

_Zak 12 NTL/CL T‘) ancar

a|N n,r
_Z Z k—lc<@ f) qC. []
n,r alged(N,n,r) a*

The expression for the Fourier coefficients of Viy f yields:

Corollary 6.9. Vy defines linear maps

weak weak Cusp cusp
Jem = Jenm:  Jem = JoNms Jem = i Nme

Example 6.10. We apply the operator V5 to Ey ;. Recall that the coefficients ¢(A) = ¢(n, )
(where 4n — r? = A) are given by

c(0)=1, ¢(3)=56, c(4) =126, c(7)=5T6,
c(8) =756, c(11) =1512, ¢(12) = 2072,

etc. Then
VaEii(r,2) = b(0,0) + (Y- b(1,1)¢ )+ Oe?),
reZ
where:
=> a’c(0,0) = 9;

al2
b(1,2) = ¢(2,2) =126, b(1,1) = ¢(2,1) =576, b(1,0) = ¢(2,0) = 756,
i.e.
VoEy1(1,2) = 94 (126¢ 2 + 576¢ " + 756 + 576¢ + 126¢*)q + O(q?).

Since dim Jyo = 1 we must have VoE,;; = 9- E;5. (Compare this with the Fourier
coeflicients of Ej, 5 that were worked out in Section 4.3.)

Note that Fy; and Ey4 9 are theta functions attached to the E; and D7 root lattices,
respectively, so Vao(E, 1) = E4- has an interpretation in terms of counting vectors of a
given length: e.g. the 756 vectors in E; of length two are nine times the number 84 of
roots in Ds.

We can recover all double-coset operators (a) from Vy and Uy by Mdbius inversion

as follows: from
Ay = Ud-{MeA(1 0 >},

2
BN 0 N/d
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it follows that

and therefore

<((1) ](\)[)>f = > w(d)d* UaVyae f-

d 0
0 d

@) = a0y 00 )

It follows that all («) preserve weak, holomorphic and cusp Jacobi forms.
As in the case of Hecke operators for SLy(Z), we have the following important fact:

More generally if « =T ( ) I' then

Theorem 6.11. The Hecke algebra is commutative: for any double cosets a, 3,

In particular, for any N1, Ny € N we have

UnUn, =UnUNy, UV, =V UNy, Vi Vv = Vi, Vi, -

Multiplication in the Hecke algebra can be defined either by composition of the
associated operators, or abstractly by writing

(Cal) - (TBT) =Y ngTeT,
é

where n; is the number of pairs I'a; € I'al” and I'3; € I'BT" for which I'e; 8; = I'6.

Proof. This follows from the fact that
(Cal’) - (I'pT) = (I'AT) - (Fal).

One way to see that is by using the fact that o and o’ have the same elementary divisors,
i.e. Tal' = (Tal)?, while a — o is an anti-homomorphism (i.e. order-reversing): so

(Tal) - (D6T) = ((Tal) - (DAT))
~ (DAD)” - (Pal)"
— (D) - (Tal). 0

Finally, we compare the actions of Uy and Vy with the development coefficients D,.
Recall that D, was defined by repeated application of the modified heat operator Ly,
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and then setting z = 0, and that Ly, is equivariant with respect to SLy(R) (not just

Ltm (f‘kM> - (Lk’mf)‘kHM'

Since Vy is a sum of actions by elements of SLy(R), followed by the substitution
z + zv/ N (which does not matter, since we set z = 0 when we apply D,), and since
Uy is just scaling by N, we have:

Proposition 6.12. Let f be a weak Jacobi form of weight k and index m. For
any v € Ny,
D, Vn(f) =TwD.(f)

where Ty is the Nth Hecke operator on My, (SLa(Z)), and

D,Un(f) = N"f.

Corollary 6.13. The composition of Vx-operators is given by

ViVwf= Y, & 'UiVyype

d|ged(N1,N2)

Proof. Since the family of maps (D, ),>¢ is injective, it is enough to check that

D,V Vi) = > dD, UV ).

d|ged(N1,N2)

By Proposition this is equivalent to checking that

TNlTN2 (Dyf) — Z dk+y_1TN1N2/d2 (Dyf> .

dlng(vaNz)

But this is just the formula for the composition of Ty on modular forms. n

6.4. Hecke operators

Now that we have obtained some non-trivial maps from Jj ,,, into Jj ,,n2, the plan is to
project the image back down to J,, via the averaging map Uy;.

Theorem 6.14. The operators
Uy oVne: J,‘;}flp — J,‘;ﬁp

are self-adjoint.
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Proof. Let f,g be any cusp forms of weight £ and index m. By definition,

(UNVn2f,9) = (Va2 f,Ung),

with the inner product on the right taking place in J;u;% Written out, this is

RN i dz dy dudv

(Vo f, Ung) = (N?)F/2- 1/X Z ) (1, Nz)g(r,Nz)e 7

where X is any fixed fundamental domain for 7 on H x C.

We move the sum over
—(* "Yea
Y= c d N2
out of the integral and apply the substitution
dr' —b N2/
(r,2) = (= )

—cr’ +a’ —et' +al’
i.e. we act by Ny~! € SI,(Q). Note that 6 := N?y~! is an integral matrix of determi-
nant N? whenever 7 is.

But ¢ is actually a left-coset whereas v is a right-coset. The key fact is that one
can choose the representatives 7, ..., 7, of A2 such that they simultaneously represent
the left and right cosets of {M € Z**? : det(M) = n} by SLy(Z): that is, Ay2 = {v;}
where

{M € 7*?*: det(M) = N*} = U SLy(Z)y; = O%SLQ(Z)

Namely if we pick right- and left-coset representatives such that

U U a(§ )se@-U U sao(f g)s

i di|d2 J o dild2
dido=N? dido=N?

dy

then the matrices v; := o ( 0 dy

) B; are a system of representatives of that sort.

For these representatives v;, the matrices §; = N?v, 1 also represent the different

right-cosets in Apy2. After applying the Mobius transformation %61- and observing that

1 1
f’k,mﬁryl lc,mﬁaz - f’
we obtain
1 dzdydud
<VN2f UNQ) NQ k/2—1 Z f T, NZ ( ‘ N(S) (7_7 NZ)G_MmN%Q/yykw
X(SEA N2 k;m y
= <UNf> VN29>-
So (UxVnzf,9) = (f, UNVn29). O
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More generally, the same proof shows that
(Uifa)) = U(N*a)

for any double coset o of determinant N? taken by itself. But N2a~! belongs to the
same double coset as a, so all U («) are self-adjoint. Alternatively, this fact follows from

Theorem [6.14] and the formula (((1] N2>> > av )d*2UqV(n /a2 and U Uy = 1:

we have
Uil(p e )) = ST

Warning: the fact that Uy, and Vy, commute does not imply that Uy, and Vi,
commute (even when both operators are defined), and in general they do not. So the
following commutativity is nontrivial:

Proposition 6.15. Suppose ¢, N € N are coprime and f € Jy,n2. Then

UnVef = VeUn f.

Proof. Suppose f has Fourier series

flr,2) =2 eln,r)q"¢".

Then the coefficient of ¢"¢" in V,UX f(T, 2) is
n ra
k—1
> g X (g rmen N (G- 2em))]
d|ged(n,r,l) a€Z/NZ
which we can write in the form

Z JE-1 Z C(ﬂn—rad+ma2d2 Nr—2amd>'

d? d
d|gcd n,r,0) a€Z/N

Replacing ad by af, (which also runs through Z/N because ¢/d is coprime to N), we

have 1 o ¢ma?®) Nr —2aml
b1 n —ra-+tma r—2am
¥ Y AT ).
a€Z/N dlged(n,r,f)
This is exactly the coefficient of ¢"¢" in URV,f. O

For reasons that will become clear later, the Hecke operators Ty are defined to be
neither UX V2 nor any single U (a), but certain linear combinations:
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Definition 6.16. Let N € N. The Nth Hecke operator on J;'[¥ is defined by

=30 )

a?|N

So

Tv=> “%_4%/“2(((1] (N/Oa2>2)>

a?|N

:Z Z p(d)d*2a® U g2y Viny a2
a?|N d|(N/a?)

Example 6.17. For a prime p, we have
sz = Z(—pk72)j(Up27j)*‘/p2£f2j, /e NO.
So
T,f =UpVie f =" 2
Tpf = UV f —p UiV f + p™ 4 f;
etc.

Using our earlier results it is not hard to reduce to the case of prime power index:

Proposition 6.18. Suppose Ny, Ny are coprime. Then

TNITN2 = TN2TN1 = TN1N2'

In particular if N has prime factorization N = p?...pfr then Ty = Tpﬁl e
Proof. By Proposition and Corollary we have
UV (Ui Vie) = UzUs Vi Vi = Ul Vi
for any divisors a|N; and b|N,. Taking the appropriate linear combinations, we get

TnTn, = ThNyN,- m

Expressing the prime-power-index operators T, in terms of T, is more difficult. We
will first work out the effect of T, »¢ on Fourier series.
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Theorem 6.19. Suppose p is a prime and { € N. Let f € Ji,, have Fourier

series
f,2) =) g ¢ = Y (D)g¢,
n,r D ~eZ/2m
where ¢ (D) = c(n,r) for any numbers n,r that satisfy 4mn —r?> = D and

r =y mod2m. Then the coefficient of ¢"C" in Ty f is

20

Z p(k_2)bcpefb7, <p2£—2b(4mn — rz)) Nye(n,r; pb)
b=0

where

Npe(n,r;pb) = Z (=1 -#{a € Z/p' : n —ra+ma® = p* I (r — 2am) = 0},

i+j=b
1,§>0
i+25<20

and where c,(D) =0 if D or ~y is not integral.

When ¢ = 1, we have:
Np(narapo) = 17

Ny(n,m,p") = -1+#{a €Z/p: n—ra+ma*=0};
Ny(n,r,p*) = #{a € Z/p* : n —ra+ma* = p(r — 2am) = 0}.
That is valid for any p. But if we suppose p 1 2m, then

dmn —r

Ny(1,7,9") = Xamn—r2(p) = ( 5 2) e {-1,0,1}

is the quadratic reciprocity symbol, and the term b = 2 appears exactly when p|r and
p?|n, in which case n — ra +ma® = 0 has only the p solutions a € pZ mod p?. So the
coefficient of ¢"¢" in T, f for pt (2m) is

_ _ n r
c(p*n, pr) + P X amn_r2(p) - c(n, ) + p* 36(};, ];),

where the convention is that ¢(n,r) = 0 if either n or 7 is nonintegral. More generally:
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Corollary 6.20. Suppose N is coprime to m and let f € Ji , have Fourier series
as in Theorem[6.19. Then

Tnf(r,2) =Y by(D)g"¢",
D,y

where b, (D) = b(n,r) for any n,r with D = 4mn — r* and r = v mod 2m are
given by
b.(D)= D ep(a)a* - cony ((N/a) D),

a|N?
(N/a)2DeA

where A are the integers that are 0 or 3 mod 4 and where a* is the inverse of a
mod 2m, and where ep is defined as follows: if D = —Dyf? where Dy < 0 is a
fundamental discriminant,

ep(n) = XDo(10) - g if n = nog® with g|f and ged(no, f/g) = 1;
i 0; ifged(n, f?) is not a square.

And if D =0 then

(n) r: n=r%1r>0;
epln) =
b 0: otherwise.

In particular, if D = Dy is itself a fundamental discriminant, then ¢ = xp, is the
quadratic character attached to Dj.

Proof. Since both N — T and this formula for b, (D) are multiplicative in N, we can
assume without loss of generality that N = p® is a prime power. The claim follows from
Theorem by counting solutions to n — ra + ma? mod prime powers. O

Proof of Theorem[6.19. Using
Tpe = Z(—pk_z)j(Upéfj)*%%fQj
5=0
and U;j U, =1, we can rewrite T f as
i

Tpef = U;g o Z(—pk_Q)jUij;)u&jf =: ;}g.

J=0
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The coefficient of ¢"(" in g is

20-2j,,

cy(n,r) = Z(—pk_2)j Z ak_lc<p o2 ’pJL'C)

jpilr alged(n,r/p? ,p2*=27)

min(vp(n),vp(r)—j,20—25)

vp(r)
Z(_pkﬁ)j Z (pkfl)ic<p2£72j72in’pfjfir>

=0 i=0
vp(r)
= ( > (—p’”)j(p’“‘l)i> -c(p%‘zbn,p‘br).
b=0  i+j=b
i+25<20
i<vp(n)

So the coefficient of ¢"¢" in T} f is

pt Z Cy <n —ra +ma®, p(r — 2am)>

a€Z/pt
_ p_e Z (_pk—2)j(pk—1)i . Z c(p%_%_%(n —ra-+ ma2),p€_i_j (7“ - QCLTR)>.
i+25<2¢ a€Z/pt

p?|(n—rat+ma?)
Pt (r—2am)

Since the conditions p’|(n — ra + ma?) and p‘|p*~7(r — 2am) depend only on the

remainder class of @ mod p’, we can rewrite the inner sum as a sum over a € Z/p",
multiplied by p*~*. So the coefficient simplifies to

Z (—pk=2) (pF=2) Z c<p2€—2i—2j<n ~ ra+ma?),pt=i I (r — 2am)).
i+2j<2¢ a€Z/pt
n—ra+ma?=0
pt=I (r—2am)=0

20—2i—2;

The numbers 7 := p (n —ra+ma?) and 7 := p*~"I(r — 2am) satisfy

A e <4m(n —ra +ma®) — (r — 2am)2> = p* 7272 (4mn — r?).

So using the notation ¢, (D) = ¢(n,r) if 4mn —1r? = D and r = v mod 2m, and writing
b =1+ 7, the sum becomes

Zp(k_Q)bCpt’*br <p2ﬂ—2b(4mn_r2)> Z (_1)j#{a e Z/pi . n—ra+ma2 — pﬁ—j (T—Qam) = 0}
b<20 Hi=b
i+2j<20

]

Theorem 6.21. Suppose N1, Ny are coprime to m. Then

T, Ty, = Z A3 Tn w2
d‘ng(Nl,Ng)
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Proof. Suppose f has Fourier series

[r2) =3 eln,r)g'¢

n,r

With D = 4mn — r? and v with » = v mod 2m, write ¢, (D) = ¢(n,r). By Corollary
the coefficient of ¢"¢" in T, Tn, [ is

b,y<D) = Z Z €D(a1)€D(GQ)alf_Zag_2-baTa3N1N2,y<(N1/(l1)2(N2/(12)2D>.
a2\N22 a,1|]\/12
(N2/az)?DEA (N1 /a1)?(N2/az)>DeA
Now sort all such pairs according to their ged d = ged(aq, az), and write N := NjNa:
b,(D)

= Y Y colma)d K mas/ ) b (G (e /) - D)

d|ged(N1,N2) ged(ai,a2)=d

N
= Z Z ED(alag/d2)d2k_3(alaz/dQ)k_2b(a1a2/d2)*(N/d2)7((ﬁ)z/(alaz/dQ) . D>

d|ged(N1,N2) ged(a1/d,az/d)=1

The product a := ayas/d? runs exactly once through the divisors of (N/d?)? for which
(%CF)QD = XD € A, so the sum simplifies to
172

2)2
Z d2k73 Z €D(a)akzba*(N/d2),y<(N£C2i ) D)

d|ged(N1,Na2) a|(N/d?)?
(N/(ad?))2DeA
This is just the coefficient of ¢"C" in 3= 4. v, vy d* 3TN f - O

6.5. Eisenstein series and Hecke operators

We end the discussion of Hecke operators by studying their action on Eisenstein series.

Suppose m = df? where d is squarefree and f € N. Recall that for k& > 3, the Eisen-
stein space is the span of the Jacobi Eisenstein series Ej 3, which are characterized
by the fact that their “singular coefficients” (n,r) with 4mn — r? = 0 are nonzero if
r = +b - 2df mod 2m, and 0 otherwise.

The Eisenstein space has an intrinsic characterization with respect to the Petersson
inner product:

Proposition 6.22. A Jacobi form f € Ji,, belongs to the Eisenstein space if
and only if (f,g) = 0 for every cusp form g.
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Proof. (i) Suppose that g is a cusp form. Then

(Ekmp, 9) = / Epma(7, 2)g(7, 2)e ™0 983 doy do da dy,
X

where X is a fundamental domain for the Jacobi group J on H x C and where 7 = z+1y,
z =u+ 1. But B, was itself defined as a series

Bimp =D %(q”? + (—1)’€qng—r> )

76700\7

s
m

where (n,r) is any solution to 4mn —r? = 0 and r = b - 2df mod 2m. Instead of
integrating over J\(H x C) and summing over J,\J, we can simply integrate over

T \(H x C), so
1 n —4mmo? Jy, k-3
(Ekmp, 9) = —(QC + (=1)kq"¢™ ) (1,2)e Yy*=3 du dv dz dy.
Too\(HXC)

Since J. is generated by the translations 7 +— 74+ 1 and z — 2z + 1 and by the map
z — —z, a fundamental domain for 7., on H x C is given by the product of two strips

o = {(z+iy,u+iv): —1/2 < Re[z],Refu] <1/2, y >0, v > 0}.

Now expanding the Fourier series for g(7,z) and carrying out the integral over x
and over u shows that the integral [ oo\ (HXC) picks out Fourier coefficients of g with

4mn — r? = 0. But these vanish identically because g is a cusp form.

(ii) Conversely, suppose f is orthogonal to all cusp forms and write f = e + g
where e € Ji' and g € J0P. Then 0 = (f,g) = (g,9) implies g = 0 and therefore
fedis. O

Proposition 6.23. The Hecke operators Vi and Uy preserve the FEisenstein
space.

Proof. (somewhat sketchy) Take a right-coset decomposition

{M €7 det(M) = N} = JTay, T =SLy(Z)

and consider the group
= SLQ ﬂ ﬂ (% 1SL2 )

(which contains the principal congruence subgroup I'(N)). Then

Vnf = Nt?*1 ozi> (1,VN2)

1
A7F

104



and each term f |k7m(\/1—ﬁa,-)(7, V/Nz) transforms correctly under T' by construction, and
indeed under the preimage

j::{'y:(M,C)Ej: Mef}

of I' in the Jacobi modular group.

It f = Ejmyp is an Eisenstein series and ¢ is any cusp form of index Nm, then we
can write

<VN, Ek7m7b7g> — / VNE'k7m7b§€—47rmy2/vyk dﬂ
J\(HxC)

with the invariant volume form dy = y~2 dudv dz dy. This is the same as

1
7 T

/ VNEk,m,b§6_4ﬂmv2/yyk dp.
j\(]HIx C)

Since each term e; := Ej k,m(\/#ﬁai) that makes up VyEj ,p transforms under J ,
this decomposes as a sum of Petersson inner products

E N e,
(VNErmp: 9) Ya¥i ;< 9)
with respect to Jacobi forms under the subgroup J. Each individual product {e:,q)
can be viewed (after substituting by the inverse Mdbius transformation to LNOQ-) as the
inner product of Ej ,,; against a cusp form on some finite-index subgroup of 7, which
is zero. So Vi Ej . is orthogonal to all cusp forms, hence Vy Ej 5 € J,fhﬁ,m
For Uy, one can show directly from the definition that

UnEimp = E Ei n2m s

YEZ/N f
y=bmod f

if m = df? with d squarefree. O

Corollary 6.24. Let m = df? with d squarefree, and k > 4 even. Then

VmEk,l = Z Ok—1 <d . ng(f7 b)2>Ek,m,b~
beZ/fZ

In particular, if m is squarefree then V,,,Ex 1 = 0g—1(m) E .

Proof. Since V,,, .1 belongs to the Eisenstein space, we can identify it once we compute
its Fourier coefficients b(n,r) with 4mn — r? = 0. These are given by the formula:

b(n,r) = Z ak_lc<%, g)

alged(n,r,m)
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where c¢(n, ) is the coefficient of ¢"¢" in Ej ;. But 4mn — 72 = 0 implies that

()~ ()=
a a
so c(mn/a?,r/a) =1, i.e.
b(n,r) = Z a" = Jk,l(gcd(n,r, m))
alged(n,r,m)
Since we can assume without loss of generality that » = b - 2df, we have
gcd(n, U m) =d- ng(f27 201, b2> =d- ng(f7 b)2

So

VinEg1 = Z Uk71<d'ng<f7b)2>Ek,m,b- [
beZ/fZ

Suppose m = df? with d squarefree. The series E},, can be recovered from the
above remarks by Mobius inversion, using the fact that

>~ wla)oi (d- ged(f/a,b)2) =0 if o,
alf
which holds for arbitrary d € N. We obtain
S @)UV By = .Y pla)oy (d - ged( f/m)z> B
alf beZ/f alf

=3 w1 (d?/a?) - Ein

alf

= (3 w(@)ar(m/a) - B

a?lm
The convolution simplifies as

S w@ora(m/a?) =m - TT (1417,

a?|lm p|m
prime

So all Ej,, for any index can be expressed via Hecke operators in terms of Ej ; alone.
Finally, we have:

Proposition 6.25. Suppose ¢ is coprime to m. Then Ej,, is an eigenfunction
of Ty with
Ty By = 02k—3(0) B .-

When ¢ is not coprime to m this can fail in several ways. For example, T5Fy 15 = 37-Fy 15
has the wrong eigenvalue, and T5Ey 15 = 262E) 18 + 2E, 151 is not a multiple of E, ;5 at
all. Nevertheless T, maps the Eisenstein space into itself.
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Proof. Since Ej,, is a linear combination of images of Fj; under operators UiV, 4
(where d?*|m) and all of these commute with T}, it is enough to show this for Ej ;.
Since T is self-adjoint and preserves the space of cusp forms, and Ej ; is characterized

by orthogonality to all cusp forms, it follows that Ej ; is an eigenfunction of 7,. By
Corollary the coefficient of (n,r) = (0,0) in TyE); is

b(0) =D " a-(a®)? = oa3(0). O

a?|02
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7. The Shimura lift

Since the spaces Jiy7 and Jiy7 of Jacobi cusp forms of weights 10 and 12 and of index

1 are one-dimensional, the forms fio = Ap_y1 € Jig) and fio = Ado1 € Jipy will
inevitably be eigenforms of all Hecke operators. A computation reveals:

Ty fro = =528 f10, Tsfi0 = —4284f19, T5fi0 = —1025850 f19, 17 f10 = 3225992 f1¢
and
T f1o = =288 f12, Tsf12 = —128844f13, T5fi2 = 21640950 f12, T7f12 = —768078808 f12.

On the other hand, the (more or less unique) cusp forms of weights 18 and 22 have
g-series that begin

A(T)Eg(T) = q — 528¢% — 4284¢° + 147712¢"* — 1025850¢° + 2261952¢° + 3225992¢" + ...
and
A(T)Eyo(1) = q—288¢* —128844¢>—2014208¢* +21640950¢°+37107072¢° —768078808rq¢ +...

The fact that the T)-eigenvalues of Jacobi forms coincide with g?-coefficients of mod-
ular forms is not at all an accident. It is a special case of a general correspondence,
discovered by Shimura, between modular forms of half-integral weight £ —1/2 and mod-
ular forms of integral weight 2k — 2.

In this section we will roughly follow Kohnen[[] and Gross-Kohnen-Zagier [| but in
less generality. On an abstract level the reason this lift exists is that SLy(Z) can be
viewed (more or less) as an orthogonal group acting on binary quadratic forms, and
indeed quadratic forms play a leading role in the following notes.

7.1. Zagier’s modular forms

Let A > 0 with A =0 or 1 mod 4. Zagie’| introduced the following functions:

'W. Kohnen. Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271 (1985),
237-268.

2B. Gross, W. Kohnen and D. Zagier. Heegner points and derivatives of L-series, II. Math. Ann.
278 (1987), 497-562.

3Appendix 2 of D. Zagier. Modular forms associated to real-quadratic fields. Invent. Math. 30,
1-46 (1975)
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1
fra(w) = Z (aw? + bw + )k’

a,b,ce€Z
b2—4dac=A

This is only meaningful if £ is even: otherwise the summands cancel out in pairs.

Proposition 7.1. Suppose k > 2. Then fia converges for all w € H and it
defines a cusp form of weight 2k for SLy(Z).

Proof. We can factor the summands as
law? +bw +c| = a- |w+ (b+ VA)/2a| - |w — (b+ VA)/2al.

None of these terms has a zero in H because A > 0. If w is confined to any compact
set K in H then the above factorization shows that inf,cx |aw? + bw + c| grows at most
linearly in a and quadratically in |b], so f; A can be majorized by the series

o0

D ()™ = (k)¢ (2k)

a,b=1

for £k > 2. In particular it converges uniformly on K. Moreover each summand
(aw? 4+ bw + ¢)~* individually tends to zero as Im[w] — oo.

For any M = (3 B) € SLy(Z), and any aw? + bw + ¢, substituting w — M - w

J
yields
aw+ f\2 aw+f
b
a<fyw—|—5> + yw 49 te
(aa? + bay + cy*)w? + (2aa + bB7y + bad + 2¢yd)w + af* + bB6 + cy?
N (yw + ) ’

where the numerator is another polynomial aw? + bw + ¢ with
b? — 4aé = (b* — 4ac)(ad — By)? = A.
Therefore we have f A(M - w) = (yw + §)% fr.a(w). O

Remark 7.2. f; A is also well-defined for A = 0 as long as we exclude the term
a =0b=c=0. In this case, one can factor out the g.c.d. of a, b, c to obtain

feow) = CH) S !

(aw? + bw + ¢)F’
b2 —4ac=0
ged(a,b,c)=1

The fact that b = 42+/ac is integral then implies that a = m? and ¢ = n? for some
(coprime) m, n, in which case aw? + bw + ¢ = (mw + n)?, so

1
frow) =C¢(k) ) (mw )% C(k) Eax(w)
gcé?g,i?:l
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is a multiple of the Eisenstein series.

Even if A < 0, the series f; A is well-defined, but in this case each polynomial aw?+bw+-c
that occurs in the denominator in the defining series has a root in H and therefore fj A
has poles.

Remark 7.3. The series fia can be written as Y5, Q(w,1)™%, where the sum runs
through all (indefinite) binary quadratic forms

Q(X,Y)=aX?+bXY +cY?

of discriminant A. There is a natural notion of equivalence (often called proper equiv-
alence) whereby two forms Q), Q)2 are called equivalent if

Q2(X,Y) = Q1(aX + BY,vX + §Y)

B

6) € SLy(Z). In other words, if one associates to

) o
for some matrix A = (

Q1(X,Y) =aX? +bXY + cY?

M= (672 bf) !

such that Q(X,Y) = (X,Y)M(X,Y)T, then the corresponding matrix for Q, is
M2 == ATMlA.

the Gram matrix

A minor variation of the above proof shows that the series
fraa= Y Qw, 1)
QeA

over any fixed equivalence class A define cusp forms of weight 2k. These can also yield
nontrivial series for odd k since quadratic forms @) are not generally SLo(Z)-equivalent
to their negatives —(). We will pursue that thought further in the next section.

Suppose A > 0 and write f; A as a Fourier series:

00
fk,A(w) _ Zane%ﬂnw.
n=1

Then the coefficients are given by the integrals

1+4 ]
a, = th(w)ewimw dw
0+

1+i
= E / (aw® + bw 4 ¢) Fe 2™ dop.
b2 —dac=A v 0t
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Substituting w + w + A (with A € Z) has the effect of replacing aw? + bw + ¢ by
a(w+ N)? +b(w + \) + ¢ = aw® + (b+ 2a\)w + (¢ + bA + aX?);

and as we vary A, that runs through all integer polynomials aw? + bw + ¢ with @ = a

and b = b(mod 2a) and b — 4aé = A. Considering first the tirms with a # 0, we can

write ¢ = bz;aA and are left with

oo+ b% — A\ K -
Z / an + bw + > e 2T Q.

4a
b (mod 2a) oo+
b?=A (mod 4(1

After w — w — b/2a that becomes

y /oo+i 672m'nw
minb/a
e dw.
2 k
—oo+1 (aw - A/46L)

To compute the integral we use the folllowing lemma without proof, which is a
formula for a particular inverse Laplace transform:

Lemma 7.4. Let k > 0 and a € Ryy. Then for any C' > 0,

1 C+ico 6ts \/E
— ds = (#/2a) Y2 Ty o (at
270 Jo_ine (82 + a?)F s I'(k) Ry k-1/2(at),

where J,(z) is the Bessel J-function

- —1)" 2m+a
Jalz) = 7; n!F(r(L n 21 T2

As an aside, note that the Bessel J-function at half-integer indices av simplifies to
elementary functions: for £k = 1 we have

Jija() = \/% - sin(z),

and formulas for J;_ /2 at higher values of k are obtained by differentiating the left-hand
side of the above lemma with respect to a. In any case we will not need this.
Writing w = —is we obtain

0o+1 e~ 2minw 1+ico e2mns
/ dw = (277) - —z'|a|k/ " g
1

—ooti (aw? — Afda)t o (82 + A/4a?)t
B & /T /2mn|al\k-1/2 m™myvA
= 2mlal 1)!( VA ) J’f—W( B )

ok+1/2 k+1,,k—1/2 <7m\/Z>
= Wi _|a| = k—1/2 a] )
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Finally, the terms with a = 0 appear only if A = b? is a perfect square. In that case

use the formula
oo

Z (z4n)7*

n=—oo

to see that

Z i (bw—l—c)*k —9. 27” Z k—1 2mn\/>w

b2=A c=—0

Altogether, (after combining the terms for a and —a),

Theorem 7.5. If A is not a square, then

(e 9]

th(w) _ Z Cn627rinw

n=1
where the Fourier coefficients are

Qk+3/2 k+1,k—-1/2 ) wn\/z
Bp = . Z < Z 67TZTLb/CL> a—l/ZJk_1/2< . ) (71)

AR — 1))
a=1 bmod2a
b2=A mod4a

If A is a square then c, is given by (l) unless n?> = d? - A for some d € N, in
(2m =)

which case it is plus 2 -

It is apparently impossible to simplify this Fourier series much further. For example,
with k£ = 6 we have:

for(w) ~ —1153.593453¢ + 27686.242873¢> — 290705.550167¢> =+ ...
= —1153.593453...A(w);

foa(w) ~ 31.54357q — 757.04570¢ + 7948.97989¢° + ...
= 31.54357...A(w);

fos(w) ~ —19.81066¢ + 475.45591¢> — 4992.28701¢° + ...
= —19.81066...A(w).

7.2. Genus characters and modular forms

The functions f; A described above have a significant role in the Shimura correspon-
dence, but not in the context that we are working in. The obvious problem is that
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their weight is off: fi; o only produces cusp forms in weights divisible by 4, while the
Shimura correspondence is meant to lift Jacobi forms of weight k£ € 2Z (and index 1)
to weight 2k — 2 =2 (mod 4).

To construct nonzero forms of weight 2 mod 4 of this type, we need to find SLy(Z)-
equivalence classes A for which forms Q € A are not equivalent to their negatives
—(@), and we have to assign the classes A and —A different signs +1 in a consistent
way. Gauss’s genus theory of binary quadratic forms explains how to do this. We have
to use some results from algebraic number theory in this section (mostly without proof).

The SLy(Z)-equivalence classes of primitive binary quadratic forms, (where a form
aX?+bXY +cY? is called primitive if ged(a, b, c) = 1) of any fixed discriminant A form
a finite, abelian group Ca with the group operation given by the Gauss composition
law. In Dirichlet’s formulation: any primitive forms @1, Q) of the same discriminant
are properly equivalent to forms

f=aX?*+bXY +cY? g=dX?>+0XY +Y?

with coprime a, a’ and the same middle term b, (these are sometimes called concordant
forms), and then the composition [Q;] - @] is represented by h = aa’ X? +bXY + 'Y?

where ¢” is the integer that satisfies b*> — 4aa’c” = A.

If A is not a perfect square, then a useful point of view is to associate, to any binary
quadratic form aX? 4+ bXY + cY? of discriminant A, the ideal

= (“’ b +2\/Z)

in the ring R =7 [%] (If A is a fundamental discriminant then this is the ring of

integers of Q(v/A).) Ideals I,.J of R are called equivalent if there exist a,b € R such
that a - I = b- J, and are called narrowly equivalent if a and b can be chosen totally
positive (i.e. positive in all real embeddings). Then the SLy(Z)-equivalence classes of
quadratic forms of discriminant A correspond exactly to the narrow-sense equivalence
classes of nonzero ideals of Z[v/A], and through this bijection the Gauss composition
becomes multiplication of ideals.

In the trivial case that A = b? is a square, the distinct classes of primitive quadratic
forms of discriminant A are represented by aX? + bXY with a € (Z/bZ)*, and Dirich-

let’s form of the composition law shows that the class group is exactly (Z/bZ)*.

Let us say that a form Q = aX? + bXY + cY? properly represents n € 7 if there
are coprime integers A, € Z such that n = Q(\, ).
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Proposition 7.6. Let A be a discriminant and suppose n € Z is coprime to A.
The following are equivalent:

(i) There exists a primitive binary quadratic form Q of discriminant b*> —4ac = A
that properly represents n;

(i1) A is a square mod 4n.

Proof. If A = b? mod 4n then we simply take the form Q(X,Y) = nX?+bXY + bz;nAYQ
with Q(1,0) = n. Conversely, if Q(X,Y") properly represents n, say Q(\, u) = n, then
after conjugating by any matrix M = 2 : € SLy(Z) we obtain a quadratic form
Q(X,Y) =nX?+bXY +&Y? of the same discriminant A = b2 — 4n¢ whose coefficient
of X? is n. In particular A = b? is a square mod 4n. O

It is not hard to see that equivalent quadratic forms represent the same numbers.
Whether or not a number can be represented by a single quadratic form is a more
difficult question when there are multiple classes with that discriminant.

Example 7.7. When A = 21 there are two (proper) equivalence classes, represented
by

Q=X>4+XY—-5Y% and —Q=-X?>—-XY +5Y%
After reducing modulo 3 they become X2 + XY + Y? and 2(X? + XY + Y?). As

X,Y € Z/3Z run through possible values the first form only evaluates to 0 or 1 and
the second form to 0 or 2. So () and —() do not represent the same numbers.

This motivates the following definition:

Definition 7.8. Two integral binary quadratic forms of the same discriminant
belong to the same genus if they represent the same numbers modulo n for all
n € N.

More generally, suppose A = D - D’ is a fundamental discriminant that itself factors
as a product of two discriminants D, D" (so D,D’ = 0,1mod4). Then by Gauss’s
theory of genera there is a well-defined character

X:XD:XD/ZCA%{Itl}

for which x(Q) = (2) = (%) for any integer n that is coprime to A and properly

represented by (). Moreover y is nontrival (both values +1 do occur), and two forms

(1, Q2 belong to the same genus if and only if x (@) = x(Q2) for every such y.

Definition 7.9. A genus character is a character yp : Ca — {£1} of the class
group attached to a splitting of A = DD’ into two discriminants as described
above.
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To simplify things later on, we extend yp to imprimitive forms by defining

Q) = () 10(@,

The relevant case will be when A = DD’ splits into a product of two negative

discriminants. Then
D\ D
-n/) n)’

so a quadratic form ) of discriminant A and its negative never represent the same
integers mod D. (In particular, quadratic forms @) and —@Q of discriminant A are never
SLy(Z)-equivalent.) Therefore the genus character xp satisfies xp(—Q) = —xp(Q).
This is exactly what we need to construct modular forms of weight 2 mod 4:

Definition 7.10. Suppose A = DD’ splits as a product of two negative discrim-
inants and let x be the associated genus character. For odd k£ > 3, define the
cusp form

fk,D,D’(w) — Z ( X([a,b, C]) - c Sgk<SL2(Z)),

aw? + bw + ¢)
b2 —dac=A

where [a, b, c] is the quadratic form aX? + bXY + cY?.

The Fourier expansion of f; p pr can be computed similarly to fi . Suppose D is a
fundamental discriminant (this is the only case we need). We have

fk,D,D/ (w) = Z ane2m‘nw
n=1
where |
1+
ap = Z X([@,b, C])/ (aw +bw+c) k e~ 2minw dw
b2 —dac=A 0+i

and substituting w — w + A (for A € Z) has the effect of replacing the form [a, b, ] by
the equivalent form [a, b+ 2a)\, c+bA+aX?]. So the forms [a, b, ¢] with a # 0 contribute

w=2 > "8 [

a=1 b (mod 2a) —oo+i
Amod4a

oco+1

b —A

a

_k )
<aw2 + bw + ) e 2T qup,

and the integral can be evaluated exactly as in the previous section. In the case that A
is a perfect square, (and therefore D' = D - f? for some f € N), we also have the forms
[0,b,¢] = bXY + cY? which properly represent ¢ and therefore have x([0,b,c]) = (2)

c
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(using the extension of x to imprimitive forms). So these contribute the series

)3 > ( ) (b + &)

=A c=—00

_ . /bw+a —k
-1 3 (3 >ZZ( o)

a€Z/|D| =A c=—00

(2mi)* k71< 1 DY\ o /|D\> 2minf
—9. - = Tina minfw

(k;—1)!2” D] 2 (3)e ¢

n=1 a€Z/D

The sum over a is a quadratic Gauss sum. Since we supposed D to be a fundamental

discriminant,
1 (D) 2mina/|D| i (D)
i 3 (2 e e (),
’D‘ a€Z/D a |D| n

Putting all of this together we get the Fourier coefficients:

Theorem 7.11. Let k > 3 be odd. Suppose A = DD’ where D is a negative
fundamental discriminant and let x = xp be the genus character. If A is not a
square, then fi p.p has Fourier series

o

fk,D,D’ (w) = Z Cn€2m'nw

n=1
where
ok+3/2 k+1, k—1/2
AR/ — 1))
xD( X ek (8 = A)dal)em a2 o

a=1 bmod2a
b2=A mod4a

(7.2)

Cp =

””;/Z). (7.3)

If A is a square then c, is given by unless Dn? = D'd? for some d € N, in
which case it is plus

(2mi)* D

21 - (D) nk1
AG(E— 1/1D] \d

7.3. Poincaré series

The Bessel J-functions appear often in formulas for the Fourier coefficients of modular
forms, due to their close relationship with the representation theory of SLs. But usually
the coefficients of a modular form of weight k are expressed in terms of the Bessel func-
tion Ji_1, not the Bessel function Ji/5_1/2 as in the Fourier series (Theorem [7.11]) for
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fr,p,pr. This discrepancy suggests that we try to identify the coefficients of the weight
2k form f p p with those of some modular forms of weight k + 1/2, or equivalently,
with Jacobi forms of weight k + 1.

Let m € N be an index. For any tuple (ng, 7o) with 4mng —r2 > 0, there is a linear
functional

Proro - Jem — C, Zc(n,r)q”(”" — c(ng, ro)-

n,r

Since J; P is a Hilbert space with respect to (—, —), there is a unique cusp form f,,
with the property

(f, frome) = Proro(f) for all cusp forms f € J,‘;};;p.

Theorem 7.12. Suppose k > 3. The series

1 _
Prmino,ro = B Z <qno<m + (_1)kqn0< TO)’ g

k,
VETe\T "

converges and defines a Jacobi cusp form of weight k and index m. It
extracts Fourier coefficients with respect to the Petersson inner product: if
f=> ., clnr)q"C" is another Jacobi cusp form of that weight and index then

mF2D(k — 3/2)

<f7 Pk,m;no,m) = C(n07 7“0) ’ ork—3/2 ’ (4mn TO)S/Q :

Proof. The series is majorized by the Eisenstein series and therefore converges by the
same proof. It defines a cusp form by the same argument that applies to the Eisenstein

CCL Z) :¢) with ¢ = 0 and d = 1 do not yield a

non-cuspidal contribution in this case because 4mng — 12 > 0.

series, noting that the terms v = ((

For any cusp form f as above, we have

<f7 Pk,m;no,ro>

1
=5 / f(r, z)( no(ro 4 (—1)kq"ocro>e*‘*”m“/yyk*?’ du dv dz dy
T \(HXC)

2

3w [T [ e T e
~1/2 71/2

The double integral over du,dx is zero unless n = ny and r = +ry, in which case it is
e~ Ammoy=dmrov op (1 )ke=dmmoytimrov pegnectively. But c(ng, 7o) = (—1)*c(ng, —70), so we
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can rewrite this as
o o0 5
—47mn —4mrov 4mrov —4mmu k-3
(fy Prming.ro) = c(no,ro)/ / e oY (e 0 4 7o )e /yy dv dy
o Jo

00 )
_ _ _ 2 Jy—
— C(no,T())/ e 47rn0yyk 3/ e drmo? Jy—4rrov dw dy
0

— C(no, TO)/O yk—3e—47r(n0—'r(2)/4m)y % dy
Tk —3/2)
(47)k=3/24/4m

By the formula for (f, Py o) it is impossible for a cusp form f to be orthogonal
to all Poincaré series, so we immediately have:

(ng — r2/4m)>* *c(ng, o). O

Corollary 7.13. The series Py ngre SPaN J. 00

km

The formula for (f, Pxmmngr,) also implies that Py ., depends only on the dis-
criminant Dy = 4mng — 7"3 and on the remainder of rg mod 2m. So we also use the
notation P . poir -

Corollary 7.14. Suppose N is coprime to m and let Dy = 4mng — r3. Then

_ 2k—3 1-k
TNPk,m;Do;ro =N E a €Dy (CL)Pk,m;(N/a)?Do;a*Nro'

a|N?
(N/a)2DoeA

Proof. Ty is self-adjoint, so for any cusp form f=3"  c(n,7)q"¢" we have

<f, TNPk,m;no,ro> = <TNf7 Pk,m;noﬂ“0>

=27k — 3/2 _
Ly

ok—3/2

where b(n,r) are the Fourier coefficients of Ty f. Since N is coprime to m, we have the
formula

b(no,ro) = > epy(a)at e nry (N/a)? Dy).

a|N?
(N/a)2DocA
So we can write
B .. /N? k—3/2
<f7 TNPk,m;no,ro> = Z €Dy (a)ak 2D3/2 F <¥D0> : <f7 Pk,m;(N/a)QDo;a*Nro>
a|N?
(N/a)?DoeA
= <f, N2k73 Z Gjlik&‘Do (G)Pk,m;(N/a)QDo;a*Nro>' L
a|N?
(N/a)2DoeA
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In particular, if Dy is a fundamental discriminant, then (N/a)?Dy belongs to A if
and only if d = N/a € Z. In this case, Py m.a2py.dr, 1S represented by Py n.a2ngdrg- SO

we have 5 H
TPl =N (50) 35 (5 ¢ Pt
d|N

As promised, the Bessel J-function features prominently in the Fourier expansion
of these Jacobi forms:

Theorem 7.15. Suppose D = 4mn —r? > 0 and D' = 4mng — 12 > 0. The
coefficient of ¢"C" in Py pmingro 45

%(5(71, r)+d(n,—7)) + anr,

where

1: D= Dyandr = ry mod2m;
d(n,r) =

0: otherwise;

and where a,,, is the series

7DD’

_ kT I\k/2—3/4 k
Qpyp =1 (D/D") g sgn(c)”Jy_3 2<—>Hm,c(n,r, N0, T0)
vam AT
c#0

i which

Hm,c(nv r,No, TO)

A d
= |c|73/2 Z Z exp (27rz'g(no + roA + mA?) — omill — omie m@>
c c

C cm
de(Z/cZ)* NeZ]c

18 a “Kloosterman-type” sum.

Proof. Py mng.r, can be expanded as a Fourier series in almost exactly the same way as
the Jacobi Eisenstein series Ej,,. Using the coset representatives for J..,\J from that
computation, we have

Priming.ro (T, 2) Z (Z 2mim(A2T+2\z) [anHO)‘Cm i (_1)kqn07TOAC7TOD

MeT o \I'  AeZ

— 1 Z <qn0+ro)\+m)\2cro+2m)\ + (_1)kqn0+’r"0)\+m)\2<—r0+2m)\>
2

M

k,m

)\eZ
b
—2mim - c-r+d 2mimA? Z:j:d +4mimA —=— c7—+d
+ (et +d)” e
c=1 d€eZ AEZ
ged(e,d)=1

. b . . b -
% 1 62W1(n0+)\7‘0)g11d+2ﬂ'“”0ﬁ + (_1)k:627r1(n07)\r0)Z:idf%rzroﬁ ]
2
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Z) belongs to SLy(Z).

The first summand is already a Fourier series, and it contributes 3 (6(n, r)+d(n, —r))
to the formula for the Fourier coefficients. If we write the second summand above as

> an.q"¢"
n,r

Here a, b are any numbers such that ((Z

then we have:

w—+oo 1
w3t S8
c#0 de(Z/cZ)* \EL

2\ at+b .
(7_ + d/C)_ —2mim m_+d+2m(n0+m)\+m)\ ) emi(ro+2mA) 2 —2mi(nT+r2) dz dr

for any basepoint w € H.

We can write
ar+b a 1/c

cr+d ¢ cr+d
and substitute 7 — 7 — d/c to obtain

_ § —k E E 27r7, n0+7"o/\+m)\2)+27rz n

c;éO €(Z/cZ)* NEZ

w400
b —omimZ _omi 2y 1 ; 2 _9m
/ / T ke 2mimZ-—2mi(no+roA+mA )527_+27rz(r0+2m)\) = —2mi(nT+rz) dz dr.

The effect of substituting z — z + 1 is to replace

2
1
—mz——(no—l—ro)\+m)\2)2—+(ro+2m)\)i—rz
T cAr cr
by
z+ 1) 1 z+1
- mu — (no + 7oA + mA?) = + (r0 4 2m) —r(z+1)
T cAr cr
22 9 9y 1 z
= —m— — (ng + 7oA + mA" — roc — 2mAc +mc”) = + (ro + 2mA — 2mc)— —rz —1;
T cr cr

so, up to addition by an integer, it is the same as substituting A — A\ — ¢. Therefore we
can write

_ 1 —k 27m n0+r0/\+m)\2)+27rz n
e =5 ) ¢ e

c#0 de(Z/cZ)* NeZ]c

w00
/ / T—k 72mm—72ﬂ'z(n0+r0/\+m)\2) +27rz(r0+2m)\)—727m(n‘r+rz dz dr.

The integral over z is a special case of the Gaussian integral

/ e w b Qg = \/g . 6b2/4a, (Rela] > 0).
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w+00 o'}
/ —k 727mm—72m(n0+r0)\+m)\2) +27m(r0+2m)\)—727r1(n7'+rz dzdr

T Ve
w—0oo —00
w—+00 . 2
. . —2Am—

= 7k g 2mi(notrodtma?) 1/ ,LeM(CTszc2L: o 4r

wW—00 2im

. 1 ror W00 v e
— V2 miiomith T2 oxp (—(r2 —dmn)T + (ra — 4mn0)) dr.

V2m W00 2 2¢2T

The integral over 7 can be calculated by means of Schlafli’s integral for the Bessel
J-function. For Re[b] > 0,

/w+°° TV exp (_27”'@7'—27#&) dr = —2mi ( B Zﬁ) o i (47“/%) + Rela] > 0;

T

w—00 0: Rela] <0,
where J is the Bessel J-function. With a = D/4 > 0 and b = D’/4c¢* we have

w00 ; )
/ T*k+1/2 eXp <—%DT— Uy D/> dT — 27T(_Z.)k71/2(D/D/)k/273/4’C|k73/2'g]]€_3/2<

W\/W)'

w—o0 2T |
Altogether,
s T DD
anm — (D/D/ k/2-3/4 Jk 5 2< >
2V 2m ; / ’ ‘

A d
x sgn(c) 7F|e| 732 Z Z exp (27rz'%(no + 7oA + mA?) — 271'2% - 27rz%> exp < - m%)
de(Z/cZ)* NeZ/c
O

Remark 7.16. The expression for Py .n,.r, as a Fourier series is also well-defined when
k = 2, and it converges to a Jacobi cusp form that satisfies the characterization with

respect to the Petersson inner product: for any f =" c(n,7)¢"¢" € Jy,",
1

2v/4mng — r2

<f7 PQ,m;no,To> = C(n()? TO) ’

This is not at all obvious.

7.4. The holomorphic kernel

Let Dy < 0 be a negative fundamental discriminant.

Definition 7.17. Let k be an odd integer. For 7,w € H and z € C, define the

seriedd
Qokpo (1, 2,w) = Y (DDo)* ™2 fy. py p(w)g" ("
D<0 n,r€Z
dn—r2=—D

%This is D§71/2 times the function in G-K-Z.
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The series that defines {29, p, can be thought of as an infinite linear combination of
the modular forms fi p, p € Sax. It converges (with respect to any metric; Sy is finite-
dimensional, so all Hausdorff linear topologies on it are the same), since for any fixed
N the Fourier coefficient of €™ in (D Dg)*~/2 . p, p(w) grows at most polynomially
in D. Clearly €, p, transforms like a modular form of weight 2k with respect to the
variable w.

With respect to the variables 7 and z, the notation is meant to suggest that Qg p,
behaves like a Jacobi form of index one. This turns out to be true. More precisely:

7

Theorem 7.18.

(20)*+17k| Do|F—1/2 & .
(k—1)! + D T Pes1pipg (7, 2)e™

N=1

Qok, 0o (T, 2, W) =

In particular, Qg p, satisfies the weight (k + 1) Jacobi transformation law

Qor, Dy ( - 17 z; w) = ThHle2mT Do(T, 2, w).

T'T

It seems to be difficult to prove the Jacobi transformation law for s p, with re-

spect to its (7, z)-variables directly (in any case, I do not know how to do it). We will

basically follow Gross—Kohnen—Zagier, specialized to index 1, and prove the claim by

matching up Fourier coefficients of {2y p, with certain linear combinations of Jacobi
Poincaré series. In particular the proof is somewhat technical.

We can write

Qok.p, (T, 2, W)
2k+3/2 k+1 0

(k 1) ZNk 1/22 Z DD k/2—1/4 (74)

D<04n—r2=D
8 Z < Z x([a, b, (b* — DDO)/4G])(3MNb/a)a1/2Jk_1/2<7TN : DDO) n T p2miNw

bmod 2a
b2=D Dy mod 4a

+ 2 Z Z N’D ’/ (27”)k (DO) Nkfl Z ncre%rin
0 1)' ,_‘Dol 5 q )

=1 §|N dn—r2=(N/§)2 Do

with the sum in the final row accounting for the correction to the coefficient formula
when Dé% = DyN? and A = DDy = (NDy/§)%.

Proof. Since Dy is a fundamental discriminant, the right-hand side of the claim is given
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(formally) by

o0
2miNw
E TN Pri1,1;0,(T, 2)e
N=1

= 1 (Do D riNw
=S (B S (B) P
N=1 8N
Recall that we can write
Pk+1,1;D0 = Z anT + Z an,r(DO)anr
4n—r2=Dy n,r
with the coefficients

W\/D—Do)

]

0nr(Dy) = 72 (D /DY oy
c=1

A d
X[ 30 ST exp (2% (no + rod + N?) - 2mi = — 2mite — mi).

c
de(Z/c)* AEL]c

So
Z Tn Pey1,1:0, (T, 2)e2™ N
N=1
> D , ,
_ k—1 ¢k 0 n ~r 2miNw 2 n ~r 2miNw
= Z ZN ) (N_(S) [ Z q C € + Zanyr((S D(])q C e ]
N=1 §|N 4n—r2=§2Dy n,r

= i Z N2k*15*k (%) |: Z anT€27rin 4 Z anm((N/é)QDO)anTGZTrin} )

N=1 §|N 4n—12=(N/8)? Do
If we first look only at the first summands,

Sy (2)] 5 o

N=1 §|N dn—r2=(N/§)2Dg

(27”‘)’“! | Do|#=1/2, we get exactly the “correction

and multiply by the constant factor 21 - )

term”

< k (2mi)" Dy k—1 n v 2miNw
2 VDol M(T>N S g

N=1§|N dn—r2=(N/8)2Dq

The coefficient of 2™V in the remaining part of the series is

SNt (20 (/0D

SIN

. Do) - sy NP Dy
— N* 1/27T\/§Zk+1z <7) ) 1/2(D/D0)k/2 1/42%71/2(—)

co
O|N c=1

X Hy c(n,r,ng,ro).
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To match this (after multiplication by the factor 2i - ((zizl))k, | Dy|*=1/2) with the result of
Equation (7.4]),

k+3/2 k41
(k—1)

<3 Y (b (7 — DDy)/Hal)e

a=1 bmod 2a
b2=DDgmod 4a

Nk:fl/Z(DDO)k/2fl/4

miNb/a,~1/2 A <7TN\/DDO ) ’
a

we write a = ¢d; then it is enough to show the following identity:

, D
Z X([av b? (b2 - DDO)/4a])€MNb/aail/2 = Z (70) 571/2[—[1,0,/5(”7 T, No, 7aO)'

bmod 2a dl(a,N)
b2=DDg mod 4a

This follows from the following technical lemma, which we cite without prooiﬂ n

Lemma 7.19. The genus chamcter can be expressed as the following Gauss sum.
Suppose Dy = 13 — 4ny and D = r* — 4n and that b* = DDy mod 4a. Then

X([a’7 b7 (b2 - DDO)/4G])

1 Dy
-2(3) > %
dla €(Z/(a)8))* \ue(Z/(a/d))
ror — b

exp (2%2—()\2 + 1o 4+ nop® + A+

7 u+n)>.

7.5. The Shimura lift

Let D be a fixed fundamental discriminant and let £ > 3 be an odd integer.
For any fixed w € H, the kernel function Qg p(7, 2, w) defines a Jacobi cusp form of
weight k + 1 and index 1. In particular if f € J.'\7 then the Petersson inner product

<f> sz,D(T, 2y w))

is well-defined, and is still a function of w.

Since the inner product (f, Qo p(7, 2, w)) involves taking the complex conjugate of
Qo the function w — (f, Qox p(7, 2, w)) actually transforms like the complex conjugate
of a modular form. So it is natural to replace w by —w. This leads to the following
definition:

Definition 7.20. The D-th Shimura lift is the map

Sp : Jiyt1 — Sak(SLa(Z)),  f = (f, Qo (T, 2, —0)).

4This is a special case of Proposition 2 of section 1.2 of Gross-Kohnen-Zagier.
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Using the Fourier expansion of Qg p(7, 2, w) with respect to w, we immediately
obtain the following formula:

Theorem 7.21. Suppose f is a Jacobi eigenform with eigenvalues Ay and Fourier
coefficients c;(D) (i.e. c;(D) is the coefficient of any q"C" with r* — 4n = D).

Then .
SD(f) 41 k( )k+1 (2:_—12>ﬂ_ ) Cf(D) . Z )\N€2me~
N=1

Proof. Recall that

(22)k+1 k—1/2 27er'w
WlD‘ ZTNPk+11D(T 2)6
N=1

Since f is an eigenform and all Ty are self-adjoint, we have

I'(k—1/2 _
(T Prsr .0} = (T f. Pesr o) = Awes(D) - oo LD ppisacs

sz,D(T, Z, w)

Therefore
—92 k—l—l,n_k D k—1/2 oo N
SD(f) = ( )(k’— ]‘_)‘| : Z<f7TNPk+1,1;D>627nN
’ N=1
(_Qi)Hlﬂka F(k - 1/2) 1/2—k = 2miN
= : — 2 DV e (D) Y AN, O
(k—1)ly/|D] 2712 szl

Since T'(k — 1/2) = (2]“—2\/_ this simplifies to

4F—T(k—1)!
2k — 2)! > .
41—k(_i)k+1 Ek: 7]' Cf Z 27erw'
N=1

Corollary 7.22. Suppose f is a Jacobi eigenform of weight k + 1 and index 1
with eigenvalues A\x. Then Y nv_ ANe*™M% is a cusp form for SLy(Z) of weight
2k.

Proof. This almost follows immediately from the theorem, but we still have to show
that there is some fundamental discriminant D for which cf(D) # 0. If all ¢4(D), D a
fundamental discriminant, were zero then the formula

T f(7,2) be "¢,

where
0=b(D)= 3 epl@atles((N/a)D)
a|N?
(N/a|)2D6A
for all fundamental discriminants, implies that c¢;(D) = 0 for all non-fundamental
discriminants as well. So f is identically zero, which is a contradiction. O]
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Corollary 7.23. Every Shimura lift
SD : J]:islljl — S2k<SL2(Z))

defines a map that sends a Jacobi eigenform of weight k + 1 and index 1 to a
classical eigenform of weight 2k with the same eigenvalues. For each k there is a
linear combination of the Sp that is an isomorphism.
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8. Jacobi forms and lattices

8.1. Integral lattices

Definition 8.1. An integral lattice is a free Z-module L of finite rank, together
with an integer-valued, symmetric, nondegenerate bilinear form

(—,=):LxL—Z.

By choosing a basis we may assume without any loss of generality that L = Z"™ with
bilinear form
<$ ) y> =z'S Yy
for some matrix S (the Gram matrix of the bilinear form in the basis). The conditions
integral, symmetric, nondegenerate are equivalent to S € Z"*" satisfying ST = S and

det(S) # 0.

The lattice L is called even if (x,z) € 2Z for every x € L (equivalently, if its Gram
matrix in any basis has even numbers on the diagonal). In this case the quadratic
form attached to L is

Quil—7, Q)=o)

By the polarization identity
(z,y) = Qu(z +y) — Qr(z) — Qr(y)

for every z,y € L. The Gram matrix with respect to any basis is recovered as the

Hessian matrix of ()7, in those coordinates.

The dual lattice of L is
L'={yeL®Q: (x,y) € Zfor every x € L}.

(L' is usually not integral with respect to (—, —).) There is a natural identification of
Z-modules
L' 2 Hom(L,Z)

under which y € L’ corresponds to the map = +— (z,y). Clearly L C L’ is a subgroup;
the index is denoted by
det(L) = |L'/L|
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and it is |det(S)| for any Gram matrix S for L. (In the exceptional case L = {0} with
basis ) we define det(L) = 1.)

For a fixed lattice L (integral or not) and N # 0 we write L(N) for the Z-module
L equipped with the bilinear form

(‘Tay) = N - <3L’,y>

The lattice L is called N-modular if L' = L(N); if N = 1 (by far the most important
case) it is called unimodular.

After changing coefficients to R, it is always possible to find an orthogonal basis
V1, ..., Uy Where Qp(vy) = ... = Qr(v,) = 1 and Qp(v,41) = ... = Qr(v,) = —1. The
integers r and s = n — r are uniquely determined and are called the signature of L.

L is positive-definite if its signature is (n,0) with n € Ny.

8.2. Jacobi forms of lattice index

Let L be a positive definite even lattice and let L = L ® C be the C-vector space
spanned by L.

Experience shows that many interesting Jacobi forms come in families indexed by
the vectors of a lattice. So we make the following definition:

Definition 8.2. An unrestricted Jacobi form of weight k£ and lattice index L

is a holomorphic function
f H X Le — C

with the following property: for any lattice vector v € L, the function
fo HxC —C, f,(1,2):=f(1,0® 2)

is an unrestricted Jacobi form of weight k& and index Qr(v).

Recall that unrestricted means without any vanishing condition for Fourier coeffi-
cients.

Example 8.3. (Unrestricted) Jacobi forms f of index m € N are exactly the same as
(unrestricted) Jacobi forms of lattice index L,, (and the same weight), where L,, is the
lattice Z with the quadratic form

Qr, (r) =m - 2”

The defining property [8.2]is that f(7,nz) must be a Jacobi form of index mn? for every
n € Z, which is true: these are the images of f under the operator U,.

Before going any further we state the following lemma for completeness, which
implies that f is determined uniquely by its evaluations f, along lattice vectors:
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Lemma 8.4. Suppose f : Lc — C is a holomorphic function with the property
flv® z) =0 for every lattice vector v € L. Then f =0 identically.

Proof. f is zero on L ® Q since every element of L ® Q is already a pure tensor i.e. of
the form v ® 2z with v € L and 2z € Q. By continuity it is zero on L®R. By the identity
theorem it is identically zero on L @ C. H

Proposition 8.5. Let f : H x Lc — C. The following are equivalent:
(1) f is an unrestricted Jacobi form of weight k and lattice index L;
(i1) f satisfies the transformation laws

) = (er + d)kemict=2/(er+d) g1 2, <(Z Z) € SLy(Z)

f(a7'+b z
cr+d er+d

and
frz 4+ X+ p) =TTV f(72), A e L.

Proof. By the Lemma, condition (ii) is equivalent to each evaluation f, along v ® C
satisfying the transformation laws

at +0b z . )
o —, — d k _2miQr (v)cz?/(cT+d) ;
f<c¢+d c¢—|—d> (er +d)"e Jo(7:2)

and
Folruz 4 A7 4 ) = OIS () A ez,
where z now belongs to C. In other words, it is equivalent to f, being an (unrestricted)

Jacobi form of index @ (v) for every v € L. O

The transformation laws f(7+ 1,2) = f(7,2) and f(7,2 + pu) = f(7,2) (for p € L)
imply that f has a Fourier decomposition with respect to both variables, with the
expansion with respect to z running over Hom(L,Z) = L

f(r,2) = Z Z cp(n,r)eX™ T - ci(n,r) € C.
neZ rel’
It is convenient to use the notation
f<T’ Z) = Z Z cf(n’ T)Q"Cr,
nez rel/

2miT 27 r,z)

where ¢ = e and where (" formally stands for e .

Remark 8.6. For Jacobi forms in the usual sense (index m € N) this is a slightly
different way of writing the Fourier series. The lattice L,, = Z with quadratic form
ma? has bilinear form (r,z) = 2mrz and dual lattice L/, = ;-Z. So the expansion

above becomes ‘
f(r,2) = Z Z cp(n,r)gne? ™ @mrz),

nez rEﬁZ
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Definition 8.7. Let f(7,2) = >, 7 > e ¢f(n,7)g"¢" be an unrestricted Jacobi
form of lattice index L.

(i) f is a weak Jacobi form if cf(n,r) = 0 whenever n < 0.

(ii) f is a (holomorphic) Jacobi form if ¢f(n,r) = 0 whenever n < Qr(r).

(iii) f is a Jacobi cusp form if c¢(n,r) = 0 whenever n < Q. (7).

Note that the Fourier series of f, is just
D=L Dl =3 3 ertmn)ac
neZ rel’ ne€zZ LeZ  (ryw)
If f satisfies (i) then clearly each f, is a weak Jacobi form.

Suppose f satisfies (ii) and v # 0. Suppose (n, £) is an index such that 4Q, (v)n—¢* < 0,
and r € L' with (r,v) = £. By the Cauchy—Schwarz inequality,

4Qr(v)n < % = (r,v)? < (r,r) - (v,v) = 4QL(v)QL(r),

and therefore n—Qp(r) > 0. Therefore c¢;(n,r) = 0 for all such r, so f, is a holomorphic
Jacobi form.
Similarly, if f satisfies (iii) then every f, is a Jacobi cusp form.

Jacobi forms behave well with respect to embeddings of lattices:

Proposition 8.8. Suppose L and M are positive-definite even lattices and that
t: L — M is an isometric embedding, i.e. Qp(x) = Qu(t(x)) for every x € L.
If f is an unrestricted Jacobi form of weight k and lattice index M, then

Cf(r,2) == f(T,12)

15 an unrestricted Jacobi form of weight k and lattice index L.
If f is weak / holomorphic / cusp then o*f is also.

Proof. For any v € L the “evaluation along v” of /* f is just

(L*f )v = f )
hence an unrestricted Jacobi form of index Qs (tv) = Qr(v). The vanishing conditions
for the Fourier coefficients of +* f follow easily from those of f. O

In terms of Fourier series, remember that ¢ induces a dual map
o M = Hom(M,Z) — Hom(L,Z) = L'
defined by (t*z,y) = (z,wy) for all x € M" and y € L. We have

Cf(rz) = ZZ(Zcan)qC

neZ rel’ teM’
l=r
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Example 8.9. In particular the orthogonal group

O(L) = {linear maps o : L — L such that Qro = Q}

of L acts on Jacobi forms of that lattice index by

o f(r,z):= f(1,02),
and if f(7,2) =3_, cp(n,r)g"¢" then

o f(r,z) = Z cr(n,o'r)q"¢".

n,r

8.3. Properties of Jacobi forms of lattice index

Many of the properties of Jacobi forms carry over to the general setting of Jacobi forms
of lattice index (often by slightly modifying the proof). We will mostly omit proofs here.

Let L be an even integral lattice.

Proposition 8.10. For every integer k, the space J,Zf%ak of weak Jacobi forms of
lattice index L is finite-dimensional. It contains the subspaces Jyp and J.7° of
Jacobi forms and Jacobi cusp forms.

If k < grank(L) then Jip = J;° = {0}.

The point is that Jacobi forms of weight k& can be identified with certain vector-
valued modular forms of weight k— irank(L), which do not exist if that number is nega-
tive. There do exist nontrivial examples of Jacobi forms of weight exactly k = Srank(L).

Viewing Jacobi forms as modules over the graded ring of modular forms, we have
the following:

Proposition 8.11. The C[Ey, Eg]-modules

weak weak
J*,L — @ Jk,L

kEZ

as well as J. 1, and J.T" are free with det(L) generators.

This implies (but is not implied by) the fact that there are Laurent polynomials
Pveak(t) € Z[t, 1] and P(t) € Z[t] such that

. Pweak(t) e . P(t)
d weak . tk — d d . tk = .
% im Jp'f A= — 1) an kz; im Jy, 1, A= =)

One major difference between regular Jacobi forms and lattice-index Jacobi forms
is that the latter do not have an obvious ring structure. But there are various senses
in which lattice-index Jacobi forms can be multiplied.
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The following definition is natural:

Definition 8.12. Let L and M be positive-definite even lattices and k, ¢ € Z.
Then there are maps
@ J;Zfiak 2 Jﬁ?k — Jz?i?,kL@M
defined by
(f®@g)(rz0w) = f(r,2)  g(r,w).

If f and g are holomorphic Jacobi forms then f ® g is also a holomorphic Jacobi
form. If in addition either f or g is a cusp form then f ® g is a cusp form.

Proposition 8.13. []® defines an isomorphism of C[Ey, Eg)-modules

. Tweak weak ™~ weak
Q : ST QCiEyEe) Jort — JiLom-

%Theorem 2.4 of Wang, H. and Williams, B. On weak Jacobi forms of rank two. J. Algebra
634 (2023), 722-754

In particular the Laurent polynomials PP (t) satisfy PPeay = Pyesk . pyeak,

Proposition 8.14. For any even integer k with k > 2+ irank(L), the Eisenstein
series

Ek,L(T, 2) = Z (cr + d)fk o~ 2micQL (2)/(cT+d) Z e2m’g;jgQL(A)+2m<A,z>/(CT+d)
¢, dez AL
ged(e,d)=1

¢>0 or ¢=0,d=1

converges absolutely and defines a (holomorphic) Jacobi form of weight k and
lattice index L. All of its Fourier coefficients are rational numbers. It satisfies
0*Ey 1, = Ey 1, for every o € O(L). The “singular Fourier coefficients” (meaning
cr(n,r) where n =Qr(r)) are 1 ifr € L and 0 ifr ¢ L.

There is a formula for the Fourier coefficients of Ej, [f] but they can sometimes be

computed in a more elementary way by evaluating along lattice vectors.

Example 8.15. Let L = A, be the lattice Z? with Gram matrix

—1

2
1 9 ) The dual

lattice L' consists of vectors (a/3,b/3) with a = —b mod 3. There is one vector r € L'
of norm 0 (the zero vector); there are 6 vectors

r=(1/3,2/3),(2/3,1/3),(1/3,-1/3) € I/

1J.H. Bruinier and M. Kuss, Eisenstein series attached to lattices and modular forms on orthogonal

groups, Manuscripta Math. 106 (2001), 443-459
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with (r,7) = 2/3; and 6 vectors with
= £(1,0),(0,1),(1,1) € L’

with (r,r) = 2 (i.e. roots), and in these cases the vectors of the same norm are equivalent
under O(L). Due to the vanishing condition on the Fourier coefficients, the Eisenstein
series )y j, has Fourier expansion of the form

Eii(r,2) _1+(ZC+A Z ¢+ B+ 0(¢?)

)=2/3

for some constants A and B.

Suppose we fix a root ry € L of Ay. Then the inner products (rg, ) with the six
vectors with (r,r) = 2/3 are —1,—1,0,0,1,1 and the inner products (rg,r) with the
roots (r,r) =2 are —2,—1,—1,1,1,2. So evaluating F, 1, along ry yields

Eyr(r,ro®2) =1+ (C‘2 20 420 CHA (20 2420 + B>q+ O(q?).

Since this is a Jacobi form of weight 4 and index Qr(r¢) = 1, it must be exactly the
Jacobi Eisenstein series

Comparing coefficients yields 2 +2A = 56 and 2A + B = 126, i.e. A =27 and B = 72,
SO

Eyi(r,?) _1+< Z ST CT+72>q+O(q2).
(rr)=2/3
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Proposition 8.16. (i) For every N € N, the Hecke U -operator
Uy : JXeLak—>JXia(1;V2)a UNf(T7Z> = f(T7NZ)

18 well-defined. It maps holomorphic and cusp Jacobi forms to holomorphic and
cusp Jacobi forms.
(i1) For every N € N, the Hecke V -operator

. Tweak weak
VN : Jk,L Jk,L(N)a

VNf(T, Z) — Nkfl Z (CT + d)fkef27ricQL(z)/(cr+d)f<

MeAN

ar +b Nz>
ct+d er+d/)’

a

where M = b) runs through representatives of {det(M) = N} modulo

d
SLo(Z), is well-defined. It maps holomorphic and cusp Jacobi forms to holo-
morphic and cusp Jacobi forms. If

f(r,2z) = Z Z cp(n,r)q"¢"

n€eZ rel’

k=3 (2 a e (D) )are

nr - al(n,r,N)

then

where a|(n,r, N) means that n/a, N/a € N and r/a € L.

There are also self-adjoint Hecke operators T that map Ji 1 into itself but the

convention for them depends strongly on whether rank(L) is even or odd.

8.4. Theta functions

Let L be a positive-definite even integral lattice.

The theta function
i) = a0

rel

is the generating series whose coefficients count lattice vectors of a given norm, and it

is known to be modular with respect to a subgroup of SLy(Z): if N is the level of L,
N =min{N € N: L/(N) is an even integral lattice}

then 0y, is a modular form of weight rank(L) for the subgroup I'y(N).
We consider the “Jacobi” versions of these functions.
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Definition 8.17. Forr € Hand z € L ® C,

_ Z q<r,r>/2Cr _ Z 677i(r,r)7'+271'i(r,z).

reL rel

More generally, for cosets v € L'/L,

QLWTZ = Z qrr/2C _ Z ’L'r‘7‘>7'+27m<rz>

rey+L rey+L

The quadratic form @y : L — 7Z, x — {22 descends to a quadratic form
Qr: L)L — Q/Z, x—{—Ll—)QL(x)—i-Z;

in other words the exponents of ¢ in 6, all have the same fractional part. That is
what we need for the translation-invariance part of modularity:

Op (7 +1,2) = 2™QLO) .9, (7, 2).
Since r runs through L +~ C L', we have (r, u) € Z for every pu € L, hence
Or(T, 2+ 1) = 0p4(7, 2).
Finally, substituting z — z + A7 with A € L leads to

QL,'y(’r;Z + )\7_) _ Z eﬂi(r,r+2/\>7+27ri<r,z>
rey+L

_ Z eilr AT ENTR2TIr=A2) (s )

rey+L
i (AN T—27i (A,
—e T (AN T—2mi(\,2) QL,w(Ta 2)

That covers the elementary transformation laws of 0, . The behavior under

(1,2) = (—=1/7,2/7)

is not as obvious and it will be useful to first introduce some notation. Let e, be formal
basis elements attached to the cosets v € L'/ L, such that

C[L'/L] = span(e, : v € L'/L).

We define the discrete Fourier transform on the space C[L’/L] to be the linear map F
with
F-e,=

m > exp (= 2miy,8))es

BeL’ /L
So

F2.e ey = det Z Z exp —27”’7/6)_27”(57 >)

a€l//L BeL'/L

g 6_,77

135



since ) gc /g exp(—2mi(y, B) — 2mi(B,a)) is a character sum that vanishes unless
(v +a, B) = 0 identically in 3, i.e. if y+a € (L) = L.

7

Proposition 8.18 (Poisson summation for lattices). Suppose h: LR — C is a

Schwartz function (smooth with rapidly decreasing derivatives of all orders) with
Fourier transform

h(y) == / h(x)e~ 2=y dg,
LR

Here dx is the Haar measure that gives any fundamental domain of L the volume

Vdet L. Then
> h@esi = F - (D hwleyss).

zeL’ yelL’

Proof. Consider the function

fiLOR—C[L/L], f(x):=> hz+r)e. L.

Then f(x 4 p) = f(x) for every u € L, so f has a Fourier series

flx) =Y e(w)e™ ), c(u) € C[L/L]

pelL’

in which the coefficients are integrals

ac)e’%”'(“’f"”> dx

1
C =
() Vi det (L®R)/

T+ +7r)e,e 2 4y (F a fundamental domain for L)
Ty f

~yeL'/L reL
27Tz (s 'y / h(l’)@iQﬂi(u,I) dz
\/ det L GLZ,/L LBR
1 R .
= Z h(—p)e* e,
vdet L eDL

Evaluating f at x = 0 yields

S hr)ers =3 elp) = 3 e(—p)

rel’ ,uel/ pelL’

- T 5, 3, e

ueL’ ~EL'/L

=7 (X il(/i)equL)- .

peL’
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Proposition 8.19 (Theta transformation formula). The theta function

@L H x Le — C[L//L],
Or(t,2) = Z 0r,(T, 2)ey
~yeL'/L

satisfies the formula

@L< . l’ z) _ Trank(L)/Qeﬂ'i(z,z)/T . 6—7rirank(L)/4 . ]:@L(Ta Z)
T T

where F is the discrete Fourier transform on C[L'/L].

Proof. Fix 1 € H and z € L ® C and let h be the function
h:LOR — (C’ h(&?) — €7Ti<$,1‘>T+27Ti<$,Z>7

such that ©p(7,z) = > __;, h(x)eys . The Fourier transform of h is

zel’!

h(y) _ / 67ri(a:,a:>7’+27ri(z,z)—27ri(x,y) der.
L®R

We complete the square by writing z = u + *-= such that

(o2 4+ 20,2 — ) = ()T~ ~y— 2,9~ )

and then
B(y) _ e—m'%(y—z,y—z) . / T Jq,
L®R
Over R, (—, —) is diagonalizable and the normalization of du is such that the integral

breaks up upon diagonalization into a product of simple Gauss integrals:

rank(L)

. o0 -2
/ eﬂ'z(u,u)T du = (/ T dl’z>
B raﬁL) 1
o VT

_ emﬁrank(L)/4 . T—rank(L)/2.

Using Poisson summation for C[L’/L]-valued functions we obtain

61(r.2) = F- (D hy)eys)

yel!
_ 6m‘rank(L)/47_—rank(L)/2]_- . <Z e—m‘%(y—z,y—dey_’_L)
yeL’
. , 1
_ errzrank(L)/47_—rank(L)/26—7r1<z,z>/7 F. @L( - E) )
T T
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The claim follows after substituting (7, z) + (—1/7, 2/7) and using O (7, —z) = OL(7, 2).
[

In other words, O, satisfies

OL(r +1.2) = pu(T)0s(r.2). O, =2, 2) = pu(S)O(r.2).

T T

where pr(T) and pr(S) are the linear automorphisms of C[L'/L] defined by
pr(T)e, = e We e L'/L

and ,
e (rank(L)/4)

—_—— (& €3.
Vdet L 2 7

BeL!/L

pL(S)€7 _ e—m-(rank(L)/4)JT_'e’y _

One can show that these fit together to a representation py, of Mp,(Z) (if this were not
the case then a function transforming like ©, as above could not exist). Together with
the behavior of © under lattice translations, we have:

Theorem 8.20. Oy is a Jacobi form of weight %rank(L) and index L with respect
to the multiplier system pr. In other words

b : b
o, (CLT 4 % ) = (Ver 1 d)rnkD)rictza)/ (er+d). p< (CCL ) 7 \/m) OL(r, )

ct+d et +d d

for each ((Ccl Z) ,Ver +d) in Mpy(Z), and

@L(T,Z T+ Iu) — e—ﬂi(/\,>\)7—2ﬂ'i<>\72’>@L(T’ Z)

for any A\, u € L.

The functions © occur in a generalization of the theta decomposition of Jacobi
forms:
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Theorem 8.21. Let ¢ € Ji} be an unrestricted Jacobi form of weight k and
index L. Then there are uniquely determined functions f, : H — C, v € L'/L

such that
p(7,2) = Z f7(7)0L17(77 z)

YeL'/L

and the vector function

F(r)= Y f(7)e,

~eL'/L

satisfies

et +d c d

F(CLT + b) _ (M)Qkfrank(lz)ﬁ< (a b) ,\/m>F(T) (8.1)

for each ((i Z) Vet +d) in Mpy(Z). Conversely, if F = (fy)yer/ satisfies

then
o(r,2) = > f(T)BLA(T,2)

vyeL'/L

is an unrestricted Jacobi form.

Moreover, ¢ is a holomorphic Jacobi form if and only if F' is bounded at co and
@ 1s a cusp form if and only if F' vanishes at co.

Bear in mind however that restricting this equation along lines through lattice vec-
tors z € v - C does not produce the theta decomposition of the index @ (v) Jacobi
forms

901)(7_7 Z) = (p(T, V& Z)

The relationship between the modular forms f,(7) and the theta decomposition of ¢,
is not entirely trivial.

The proof of Theorem [8.21] is similar to theta decomposition in index m € N, so we
omit it. Note that the Fourier expansion of F is

L= ) e,

n€Z—Qr(v)

where ¢, (n) = c¢(n+ (r,r)/2,r) for any vector r € L 4+ v and where

p(rz) =Y Y eln,r)g"¢".

n€eZ rel’

8.5. Unimodular lattices

The results of the previous section have a special meaning in the case that L is a uni-
modular even positive-definite lattice: L' = L, as in this case the theta transformation
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formula does not involve vector-valued functions and multiplier systems.

Such lattices do exist. The most famous example is the Eg root lattice, the maximal
lattice containing Z8 that is even with respect to the quadratic form Q(z1, ..., xg) = > 7.
(Strictly speaking there are several such lattices but they are all equivalent.) Of course
the rank zero lattice {0} is also unimodular.

Even integral lattices that are unimodular are often also called Type II unimodular
lattices (Type I meaning odd unimodular lattices).

For unimodular lattices the theta decomposition reduces to the following proposi-
tion:

Proposition 8.22. Suppose L is an even positive-definite unimodular lattice.
(i) The theta function

Or(r,2) = Zq<T’r>/2C’", TeH, ze LQC

relL

s a holomorphic Jacobi form of weight %rank(L) and indez L.
(ii) The holomorphic and weak Jacobi forms of index L are precisely the products
of 01, with modular forms:

Jer = JXeLak ={f(7)-0.(7,2) : f € My_rank(r)2(SL2(Z))}

for every k € Z.

In particular there are no weak Jacobi forms of unimodular index and negative
weight. This is in stark contrast to the situation for Jacobi forms of index m € N (or
most lattice indices for that matter).

Proof. (i) Since L is even unimodular and positive-definite, its rank is a multiple of 8.
Proof of that claim: suppose not. By passing from L to L & L if necessary we can
assume that rank(L) is even; then the theta transformation formula does not involve
square roots of ¢r + d and py, is a true representation (in fact a character) of SLy(Z).

By construction, the action of T' = <(1) 1) and S = <(1) 01> through py, is by

oL (T)eo = e, pL(S)GO — 6—7rirank(L)/4

where ¢q is the single basis element of C[L'/L] = C. But then S* = (T'S)? = I implies
p(S)tes = p(S)’eo = p(I)e

—mi-rank(L)/4 _ 1.

€o,

and therefore p(S)ey = ep; in other words e
So the representation py, is trivial and the theta transformation formula simply says

6)L(a7'+b z

_ d rank(L)/2 mi(z,2)/T 2] .
c7‘—|—d’c7‘—|—d> (er+d) ‘ Lr )
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(ii) The vector-valued modular form attached to ¢ € Ji 1 is F(7) = f(7) - e, and
its associated representation is py which is also trivial. So

at +by rank(L)/2
f<CT—|—d)_(CT+d) '

Both growth conditions (holomorphic or weak Jacobi form) are equivalent to the Fourier
series of f beginning in exponent ¢°, i.e. f € M, rank(r)/2- O
Example 8.23. With L = Fs, we have the theta series
QES(T z)= 1_'_ ( Z C >q_|’ ( Z CT)QQ_'_O(QS) S J4,E8'
(r,r)y=2 (ryr)=4
—— ——
240 terms 2160 terms
For any fixed root v € Eg, the restricted function 0g,(7,v ® 2) is a Jacobi form of
weight 4 and index 1 and therefore equals the Eisenstein series Fy;:
1+ (C2+56¢7" +126 + 56¢ + (g
+ (126¢ 2 + 576¢ ' + 756 + 576 + 126¢*)¢* + O(q?).
The coefficients of (°¢"™ in F,; therefore count numbers of vectors in the Fy lattice
orthogonal to v with a given norm. In other words they count vectors in the E; root
lattice of norm n.
Letting v instead have (v,v) = 4 or (v,v) = 6 gives a similar interpretation of the

coefficients of the Jacobi Eisenstein series Iy o and F43 as enumerating vectors in the
D7 and A7 root lattices according to their norms.

Example 8.24. Suppose L # {0} is a positive-definite even unimodular lattice of rank
N € 8N and let v € L be a vector, and define

f(r,2) :=0L(r,v®2) € J%

) %<v7v> :

So

= Z Zc(n,r)q"(’r, cn,r)y=#{x € L: (x,z) =2n, (x,v) =r}.

n=0 r

Then the first development coefficients of f are,

Dof = ZZc(n,r)q

n=0 r
=D ¢ =0u(7);
z€eL

Dof = Z Z(kr2 — (v,v)n)c(n,r)q", k= %rank(L)

n=0 r

= o 3 (W) — (o)) g

zeLl
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Duf = i Z[(k +2)(k + )r* — 12(k + Dr*mn + 12m*n?c(n, r)¢"

n=0 r

= i > ((N +4)(N + 2)(z,0)* = 6(N + 2)(x, v)*(v, v){z, z) + 3{v, v)*(z, x)?)quz,

zeLl

and D, f is a modular form of weight & + v (and a cusp form if v # 0).
These are generalized theta functions of the form

bu.p(r) = 3 Pla)g™"

reLl

where P is a homogeneous polynomial (depending on the choice of v). The definition
of D, is such that the polynomials P that appear in this way are spherical for L, which
means that in orthonormal coordinates x; they are annihilated by the Laplace operator
A=), 88—;2, and which is the condition for the theta function 6;.p to transform correctly

7

under SLy(Z). (A direct proof that these P are spherical is given in Theorem 7.2 in
Eichler—Zagier.)

8.6. Root systems and Jacobi forms

Although the notion of Jacobi forms makes sense for any positive-definite lattice in-
dex, the most geometrically interesting cases are lattices attached to root systems.
These lead to a significant generalization of the Jacobi triple product. We will follow
Borcherds?] and Gritsenko-Skoruppa-Zagier|

Let V be a finite-dimensional inner product space.

2Section 6 of Borcherds, R. Automorphic forms on Osy22(R) and infinite products. Invent. Math.
120, 161-213 (1995)

3Sections 10 and 11 of Gritsenko, V. and Skoruppa, N.P. and Zagier, D. Theta blocks. J. Eur.
Math. Soc., in press.
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Definition 8.25. A root system R C V is a set of vectors with the following
properties:

(i) span(R) = V;

(ii) No multiples of » € R belong to r other than +r;

(iii) For any roots r, s € R, the number

is integral,
(iv) For any root r € R, the reflection

(@),
(r,7)

o V=V, x—x—

maps R into R.

Root systems appear in a number of classification problems throughout mathemat-
ics; for example, they occur in the classification of semisimple Lie algebras, in the
classification of du Val singularities of algebraic surfaces, and via the McKay corre-
spondence in the classification of finite subgroups of SLy(C).

In most cases what we are actually interested in is a system of positive roots: a
subset Ry C R that is closed under addition (i.e. if x and y are positive roots and = +y
is a root at all, then it is also positive) and that contains exactly one of each pair of
roots £r. Such a set can be obtained by defining

R, ={reR: (rjv) >0}

for a vector v € V' that is not orthogonal to any root; the choice is not unique. Among
a fixed set of positive roots, the simple roots A are those which cannot be written as
the sum of two or more positive roots.

The Dynkin diagram is the partially directed graph whose vertices are the set of
simple roots A and where x,y € A are connected by

(z,y)

o )

= 5(x,y)ﬁ(y,x) € I\IO

edges. If in addition z is longer than y i.e. (z,x) > (y,y) then any edges between x
and y are directed from z towards y.

A root system R is called reducible if it can be partitioned as R = Ry U Ry with
Ry, Ry nonempty and (z,y) = 0 for all x € Ry, y € Rs; otherwise it is irreducible. In
this case the Dynkin diagram of R (with respect to any system of simple roots) is the
disjoint union of those of Ry and Rs. The Dynkin diagrams of irreducible root systems
consist of four infinite families
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(8] ) Tn—1 Tn
(B)o—o— — 0 = O
(&1 ) Tn—1 Tn
(C,)O— 0 — —O0 < 0
r1 T Tn—1 Tn
O
Tn
(D) Q—0— - —0—o0,
1 (] T'n—2 Tn-1

and five exceptional examples

O
|7
(Eﬁ)o—o—o—o—o7
T1 ) rs T4 s
O
|7
(E7)O—O—O—O—O—o’
1 ) rs T4 s Ts
)
rs
(EB)O—O—O—O—O—O—O
T1 T2 3 T4 Ts Ts 7
(F4)O—o = 0—O0
(&1 L&) rs T4

(G2) 0= ©.

T T
The Weyl group Wg is the group generated by the reflections o, along the roots
r € R.

The root lattice Ly associated to the root system R is the integral lattice in V'
spanned by the roots, with the bilinear form rescaled such that the shortest simple root
r has (r,r) = 2.

For an irreducible root system R and any system of positive roots R., define the

number .
h = — .
rank(R) Z (r.r)

reRy

(If the norm is rescaled such that the longest root has (r,r) = 2, then h" is the dual
Cozxeter number of the root system.)
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R | |R| |Wkg| Lr | WY C Simple Lie algebra
A, [nn+1) | (n+1)! A, |[n+1 |n+1 |sly

B, | 2n? 2" . n! AP [ 2n —1 | 4n — 2 | 509,41

C, | 2n? 2" . pl D, |n+1 |2n+2]sp,,

D, | 2n(n—1) | 21 . n! D, |2n—2|2n—2| so,,

B, | 72 51840 E, |12 12 ¢

E; | 126 2903040 E; 18 18 e7

Es | 240 696729600 | Ey 30 30 es

Fy | 48 1152 Dy |9 18 a

G2 12 12 AQ 4 12 d2

Table 8.1: Data for irreducible Dynkin diagrams. The index C' is defined below.

Lemma 8.26. Let R C V' be an irreducible root system with system of positive
roots Ry. For anyx €'V,

Z(x,r>2 =2 Z (x,7)? =2hY - (z,2).

reR reERL

. J

Proof. Consider the function

f:V—R z-— Z<I’T>2:%Z<$’T>2'

reRy reR

Then f is constant on the unit sphere S = {x : (x,x) = 1}, because: suppose not.
The vectors x € S where f takes its maximal value are precisely the eigenvectors for
the maximal eigenvalue of a Gram matrix of the quadratic form f and therefore span
a proper subspace of V. Since f is invariant under the Weyl group Wg, that subspace
is invariant under Wy also. However the Weyl group of an irreducible root system acts
on the ambient space V' without proper invariant subspaces, which is a contradiction.

It follows that

Z (x,7)* =C - (x,7)

reRy

for some constant C'. To compute C' we let ey, ..., e, be any orthonormal basis of V;

then
C -rank(R) = ZC<€7L7€¢> = Z Z {es,T)2.

i=1 reR

By the Pythagorean theorem Y_,(e;, r)? = (r,r) for each root r, hence

Z Z (e;,r)* = Z (r,r)* = h¥ - rank(R),

i=1 reRy reR

so C'=h". O
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More generally, following Borcherds a multiset of positive vectors (vectors may occur
with multiplicities) R in an even integral lattice L is called a vector system of index C
if
(i) R spans L;

(ii) Each of +r, —r occurs in R with equal multiplicity, for any r € L;
(iii) The identity

Z(x,r)Q =2C - (z,x)

reR
holds for all x € L ® R.
(More rigorously, R is a set of vectors together with a multiplicity function ¢ : R — Nj.)
By abuse of notation the vectors r € R will still be called roots. A set R satisfying
(1)-(iii) (or more precisely the nonzero vectors in R) is also called a eutactic star.

So an irreducible root system, scaled such that the shortest root has norm (r,r) = 2,
is a vector system of index

C=r-h"

where hY is the dual Coxeter number and r € {1,2,3} is the highest number of edges
between two vertices in its Dynkin diagram. (Reducible root systems are not generally
vector systems.) More generally, the weights of an irreducible representation of a simple
Lie algebra form a vector system.

For any vector v € V' not orthogonal to any nonzero r € R, one obtains a splitting
of R into positive and negative vectors and some number of copies of the zero vector:

R=R,UR_U{0,..,0}, whereR, ={re R: (rv) > 0}.

The vector system identity has the following bilinear variant:

Lemma 8.27. Suppose R C L is a vector system of index C. Then

Z<I7T><y7’r> =2C"- <I,y>

reR

forallz,y eV.

Proof. This is because

(z+y,x+y) —(r,7) = (y,9)

{z,y) = 5
= CZ<[E +y,7)% — C’Z(w,r)z — CZ(.%T)Q
:C-Z(x,r)(y,r>. L

[ Lemma 8.28. Suppose R C L is a vector system. Then the index C' is an integer. ]
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Proof. Let N be the g.c.d. of all inner products (A, ) where A\, € L. Then
<CL’, T> <y, T) + <I7 _T> <y7 _T> € 2N2Z

for every x,y € L and every nonzero root r. Taking the sum over all nonzero roots we
obtain
2C(z,y) € 2N*Z

for every z,y € L. By definition of N this means 2C N € 2N27Z and therefore C € NZ.
]

Vector systems (and root systems) are related to weak Jacobi forms as follows:

Theorem 8.29. Suppose L is a positive-definite even lattice and

ZZ nr ncre Weak

n=0 reL’

is a weak Jacobi form of weight 0. Then the coefficients c¢(0,r) satisfy the identity

Zc(O,r)(x,r)Q =2C-(z,x), z€L®R

rel’

with the number

1
C:= 9 Z c(0,r).

rel’

In particular if L has level N and all ¢(0,7) € Ny, then the rescaled dual lattice
L'(N), where each r € L' is counted with multiplicity c¢(0,7), is a vector system
R, in LR of index N? - C.

Note that this vector system is finite since ¢(0,7) = 0 for all but finitely many r € L’
In fact if ¢(0,7) # 0 and x € r + L is any other vector in the same L-coset, then the
quasi-periodicity of ¢ implies

C(<$,£> - <r7 T>,ZL‘) = C(O,T) 7é 0,

which (since ¢ is a weak Jacobi form) forces (z,z) > (r,7). So R, consists at most of
vectors r € L’ which have minimal length within their coset r + L.

Proof. The proof follows Gritsenkoﬂ Both sides of the claim define holomorphic func-
tions of z € L ® C so by the identity theorem it is enough to prove this for lattice
vectors x = v € L. Consider the pullback function

(T, 2) = (1,0 ® 2) ZZ( Z ) q"¢’

n=0 beZ rel’
(ryv)y=b

4Proposition 2.2 of V. Gritsenko, 24 faces of the Borcherds modular form ®5, arXiv:1203.6503
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which is a weak Jacobi form of weight 0 and index %(v, v). The modified Taylor coeffi-
cients (in the sense of section 5.1) are given by

o= 3 (- L me) Do)

a,b>0
2a+b=n

and they define modular forms of weight n for SLy(Z). In particular

(v, v)
24

and the constant term in its Fourier series is

—% Z c(0,7) + Z(r, v)2¢(0, 1)

rel’! rel’

where D, = 2m Bz’
co 1s zero. But

E2( )901)(7—7 0) + D2(pv(7— 0)

CQ(T) = —

which is exactly what we wanted to prove. ]

Example 8.30. The simplest example has L = Z with quadratic form z2. The level is
N = 4. In this case we have the weak Jacobi form

§b0 L€ Jweak Jweak
) 0,1

of weight 0 and index 1 whose Fourier expansion (as a Jacobi form of lattice index)
begins

¢017’Z ZZ OT’nCT

nOreZ

= (V2410 + M) + (107 — 64¢ Y2 4108 — 64¢% +10¢)g + O(¢).

The vector system attached to ¢, consists of {£1/2} and 10 copies of the zero vector.
After rescaling and throwing out the zero vector we have the A; root system.

The following theorem shows that conversely one can construct Jacobi forms out of
vector systems. Recall that 9 = #;; is the odd theta function

19(7’ Z) — Z (_1>n—1/267rin27'+27rinz — Z (_1)n—1/2qn2/2<~n

n€Z+1/2 nezZ+1/2

and it satisfies the Jacobi triple product in the form
e}
I(r,2) = ¢"*(¢"* = ¢V H 1—¢")(1—q"Q)(1—q"¢").

Let n(t) = ¢"/** ]2, (1 — ¢") be the Dedekind eta function, such that n* = ;=9'(r,0).
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Theorem 8.31. Let R C L be a vector system of index C' and let R, C R be a
system of positive vectors. Let p be the Weyl vector

Then

r>0 n:l

is a weak Jacobi form of weight 0 and index L'(C') for some character.

As always L’ is the dual lattice. Note that L'(C') might not be an even lattice, in
which case ¥y transforms under lattice translations with a character as well.

Proof. Since n(T:rlS) 6”/679((;) we have

Up(T 4 1,2) = em#ED/OG (1 7).
Also, the theta transformation formula implies

(-1 - NP
( /7—7 Z/T> _ efm/Q . eﬂ'lZQ/T (T7 Z)
n(=1/7) n(7)
and therefore
Ur(—1/7,2/7) = e TFRD2 . T iren, <Z’T>2/T‘I’R(T, 2)
_ e—wi(#RJr)/Q . €7riC'<z,z>/7'\:[IR(T7 Z).

(In the last line we use the vector system identity.)
Finally we check the quasiperiod laws. For A € L' we have

Up(r,z+ A7) = ] I, (2,7) + (7))

R n(7)
_ H (_1)()\,7')e*ﬂi()\,r>27—727ri()\,r)<z,r) ) I(7, 2)
R, n(7)

_ (_1)<A,2p>e—m‘C(,\,,\>2T—27ric<A,z> . \I/R(T, z)
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as well as

W(r, (z,7) + (A, 1))

Up(r,z+A) = ]

reRy ?7(7—)
_ 1\ Q9(7-7 <Z7 T>)
gf Y n(7)

= (=)W R(7, 2).

8.7. The Macdonald identities

In the previous section we constructed an infinite product ¥y attached to any vector
system R and showed that it transforms like a Jacobi form of weight zero (up to some
character). Now we work out in more detail what happens when R is an irreducible
root system.

Let R C V be an irreducible root system in the ambient vector space V' with Weyl

group Wg, and let C' be the index of the associated vector system. Let L be the lattice

generated by C times the coroots r¥ = ﬁr for r € R:

2
L= 7 -
E <T,T>C T

reR
this is an integral (but not necessarily even) lattice with respect to the inner product

(@.1) = o)

due to the identity

() = o) = 5 55 L))

the fact that (z,r) and (y,r) € CZ for each root r (as this is true if x or y is C' times
a coroot) and because roots r € R come in %+ pairs.
Let Lo, C L be the even sublattice

Loy ={x € L: (x,z) € 2Z};
this is either L itself (if L is even) or has index two in it (if L is odd).

Let p = %Zre R T be the Weyl vector of R with respect to any system of positive
roots.
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Definition 8.32. Define the theta function

Or(T,2) == Z gAN/2 Z sgn(¢g)¢9, 7€M, z€ L®C.

Aep+Ley gew

Here ¢ means €2™9*2) The sign of ¢ € W is the determinant of ¢ as a map on

Vit is (—1)™ if g is a product of n reflections.
In other words,

Or =Y sgn(9)OL., (T, 92)

gew

is the theta function of L., attached to the coset of p, symmetrized over the Weyl
group. Note that p belongs to the dual (Le,)" because: 2p certainly does (being an
integer combination of roots) and

2-(p.2) = 3 (r,2)

reRy
= Z (r,z)? (mod 2)
reR
1
= E <Ta 33>2
reRy
1
= E<x7x> = (‘Tal‘)

is even for each x € L., by the definition of Le,. So Op, , is a well-defined theta
function in the sense of the previous lectures.

Theorem 8.33. Let R be an wrreducible root system of rank N. Then Og satisfies
the transformation rules

(i) Or(T + 1, 2) = e™PP)OR(T, 2);

(i) Or(—1/1,2/7) = e=3™UpP) . T N[2emi(22)/TQ (1, 2);

(i4i) Or(T, z + A1) = e TANT2MNAQ L (1, 2), A € Ley;

(iv) Or(T, 2+ A) = Or(7,2), A E Ley.

Proof. (i), (iii) and (iv) are more or less trivial.

Point (ii) is essentially the theta transformation formula, but the fact that that for-
mula reproduces O and not a sum involving all of the shifted theta series Op_, ,
(v € L.,/ Ley) depends on a property of the Weyl vector p and the action of the Weyl
group (in the terminology of Gritsenko—Skoruppa—Zagier, the eutactic star R defined
by an irreducible root system is extremal) and it is not trivial at all. See sections 10
and 11 of Gritsenko—Skoruppa—Zagier. O]

Properties (i)-(iv) are the defining equations for a (holomorphic) Jacobi form of
weight N/2 and lattice index L.y, together with a character. Since the Dedekind eta
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function satisfies (7 + 1) = e™/12(7) and n(—1/7) = e~™/471/25(7), that character is
the 12(p, p)-th power of n’s multiplier system.

By contrast, Theorem shows that 7™V - ¥y transforms like a Jacobi form of
weight N/2 and lattice index L, (which is the even sublattice of the index indicated
there) and the (N + 2#R. )-th power of i’s multiplier system.

The multiplier systems are the same by the following fact from Lie algebra theory:

Lemma 8.34 (Freudenthal-de Vries “strange formula”). The Weyl vector satis-
fies
N +2#R,
(pa P) = T

If R is the root system of the simple Lie algebra g then N + 2#R, is (by the root
space decomposition) the dimension dim g.

The construction of O is such that for any root r € R with attached reflection o,,
Or(T,0,2) = —Og(T, 2).

So if z belongs to the hyperplane orthogonal to r then 0.2 = 2z and therefore
ORr(1,2z) = 0. By quasiperiodicity, O(, z) vanishes more generally whenever (r, z)
belongs to the lattice Z @ Zr.

The hyperplanes 7+ are pairwise distinct as r runs through a system of positive
roots because no nontrivial multiples of  belong to R;. Since ¥(r, (z,7)) has simple
zeros exactly on the hyperplane r and its translations, it follows that for any fixed
7 € H, the function

e R(T , 2 )

[Ler, 9(r,(z,7))

Or(T,2)

‘IIR(Tv Z)
is holomorphic in z. Since Or and Vi have the same transformation under lattice
translations z +— z + A7 and z — 2z + X\ (for A € L) it follows that Or/Vg is a

constant in z (but still depends on 7). Due to the behavior under SLy(7Z) it follows
further that

and therefore

Or(T,2)
" (T)Vr(T, 2)
is a modular function that is holomorphic for 7 € H, i.e. it belongs to the ring C[j],
where j is the j-invariant.

Finally note that ©x(7, z) has g-expansion beginning in exponent ¢»*)/2 i.e. p has
minimal length in its Le,-coset. This is related to extremality of the eutactic star R.
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By the Freudenthal-de Vries strange formula, ¢»?)/2 = ¢N/?*+#E)/12 ig exactly
the leading exponent in the g-expansion of n™(7)Wg(7,2). Therefore the quotient is
actually a constant (which turns out to be 1). Altogether:

Theorem 8.35 (Macdonald identities). Let R be an irreducible root system with

system of positive roots Ry and Weyl vector p = %ZTER+ r. Then

n( rank —#R4 H 19 _ Z q()\,)\)/2 Zdet(g)gg)\

TER+ )\Ep“l‘Lev gEW

Remark 8.36. Macdonald’s identities include other identities attached to affine root
systems which are not contained in the above result but also have Jacobi form inter-
pretations. For example the Watson quintuple product

77(7)% q1/24 1/2 _}_g 1/2 H 1— q 1 +an)(1 +qn§—1)(1 o q2n—1§2)<1 . (]2n_1<_2)

Z n 2/24 Cn/2+C n/2)

where x(n) = ({3) is 1 if n = +1 mod 12 and —1 if n = £5 mod 12 and 0 otherwise, is
the Macdonald identity attached to the affine root system of type BCj.

Example 8.37. For R = A; viewed as Z with inner product (z,z) = 222, we have
rank(R) = #R, = 1, and L, = 2Z. As positive roots take R, = {1} with Weyl vector
p =1/2. The index C' = 2 and the Weyl group is W = {£1}. The Macdonald identity

is
2 _
> =,
AeL+2Z
Example 8.38. Let R = A, viewed as follows. Let V' C R3 be the space of vectors
whose entries sum to zero together with the Euclidean norm, and let

R=+(1,-1,0),+(0,1,~1), %(1,0, —1).

The choices with sign + form a system of positive roots with Weyl vector p = (1,0, —1).
The vector system has index C' = 3. The lattice L., consists of vectors (a, b, c) with
a+b+c=0and a = b = ¢ = 0 mod 3 together with the Euclidean inner product divided
by 3, and the Weyl group is the group of permutations. Therefore the Macdonald
identity for A, is

n(T) (T, 21 — 2)9(T, 20 — 23)0(T, 21 — 23)
=Y (GGG + GGG + GGG — GG — ¢ — Gl

a,b,c€Z3

a+b+c=0
(a,b,c)=(1,0,—1) mod 3

where (; means e*™%
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8.8. Theta blocks

The fact that the left-hand side of the Macdonald identity for an irreducible root system
R,
(s T o(r (r.2)

reRy

defines a holomorphic Jacobi form leads to a powerful way to construct Jacobi forms
of scalar index and low weight.
Another way to state it is as follows:

Theorem 8.39. Let R be a root system of rank n attached to the semisim-
ple complex Lie algebra g, let R, C R be a system of positive roots and
A ={ay,...,an} C Ry the system of simple roots. For any r € R, let 7,; € Ny,
it =1,...,n be its coordinates with respect to A, such that

n
r= E Vri Q-
i=1

Then the function

oa(r,2) = ey # ] 9(n 3 e

reRy

defines a holomorphic Jacobi form of weight n/2, with multiplier system the
N = dimg = n + 2#R, -th power of the n function’s multiplier system, and of
lattice index equal to L = 7™ with quadratic form

(1, ey @), (X1, ey Tp)) = Z <i%7izi>2.

reRy =1

Note that the irreducible case easily implies the general theorem, because if R splits
orthogonally as R; U Ry then ®p = ®p, - Ppg,.

The practical aspect is that one can restrict along lattice vectors to produce lots of
holomorphic Jacobi forms of scalar index, all having product expansions (due to the
Jacobi triple product), and sometimes of quite low weight. This is the method of theta
blocks of Gritsenko—Skoruppa—Zagier.

To construct Jacobi forms without a multiplier system, we have to restrict to
semisimple Lie algebras whose dimension is a multiple of 24.

Among the semisimple Lie algebras of rank four, which produce Jacobi forms of
weight two, there are exactly four whose dimension is a multiple of 24 (and in all four
cases the dimension is exactly 24): namely Ay, A; & Bs, A; & C5 and By & G3. (Note
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R | Simple Lie algebra | Dimension
A, | sl n(n + 2)
Bn 509511 n(2n + 1)
Chn | 8P, n(2n + 1)
D,, | sos, n(2n —1)
Eg | ¢ 78

E7 (44 133

Eg €g 248

Fy | fa 52

Gy | g2 14

Table 8.2: Dimensions of simple Lie algebras

that By = C5.) These yield the following four families of holomorphic Jacobi forms of
weight two (where 9, stands for J(7,nz) for n € N):
(i) (R = A4)
f(r,2) = 7776ﬁaﬁa+b19a+b+079a+b+c+dﬁbﬁb+cﬁb+c+dﬁcﬁc+dﬁd € Jom
where m = 2a® + 3ab + 2ac + ad + 3b* + 4bc + 2bd + 3¢ + 3cd + 2d?;
(ii) (R= A1 @ By)
f(r,2) = 77_679aﬁbﬁb+c§b+c+d19b+c+2d19b+2c+2d19c?9c+d19c+2d79d € Jom
a?+5b2+10bc+10bd+10c2+20cd+15d>

where m = 5 . (Note that m can be half-integral, in which
case f transforms with a character under lattice translations.)

(iii) (R = A, @ Cy)
f(7,2) = 79,9004 Dt craPpr2e+aV201 20+ a0Vt aV2c4a¥a € Jom
where m = 3a* 4 4b* + 8bc + 4bd + 8¢* + 8cd + 3d*.
(iv) (R = By & Gy)
f(7,2) == 07909019060 e dV et 0aV ey 300213094 € Jom
where m = 3a® 4 3ab + 3b% + 4¢? + 12cd + 12d°.

Example 8.40. Taking a = b = c=d =1 in the theta block attached to A4 produces

the Jacobi form
f(T, Z) = 7]7619[11193793194 c J2’25.

This is a one-dimensional space spanned by a Jacobi Eisenstein series Fs o5, attached
to a primitive Dirichlet character x mod 5, which implies the product formula

I, 2)93 (1, 22)0%(7, 32)9(T, 42)

Basix(n2) = )
=g = PP T HTHQACT =24 )
< JT[0= ) (=g O (= ¢ (1= ") (1 = "¢ 2

X (1—=¢"¢CP(1—q"¢ )1 — "¢ (1 — "¢

155



Example 8.41. Taking a = b = ¢ = 1 and d = 2 in the theta block attached to A4
produces the Jacobi cusp form

f(r,2) = 0720905050405 € Jogr = Jyl57

of weight 2 and index 37.
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