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Abstract. We calculate the Jacobi Eisenstein series of weight k ≥ 3 for a certain representation of the
Jacobi group, and evaluate these at z = 0 to give coefficient formulas for a family of modular forms Qk,m,β
of weight k ≥ 5/2 for the (dual) Weil representation on an even lattice. The forms we construct have rational
coefficients and contain all cusp forms within their span. We explain how to compute the representation

numbers in the coefficient formulas for Qk,m,β and the Eisenstein series of Bruinier and Kuss p-adically to

get an efficient algorithm. The main application is in constructing automorphic products.

1. Introduction

Let (V, 〈−,−〉) be a vector space of finite dimension e = dimV , with nondegenerate bilinear form of
signature (b+, b−). We denote by q(x) := 1

2 〈x, x〉, x ∈ V the associated quadratic form. Let Λ ⊆ V be a
lattice with q(v) ∈ Z for all v ∈ Λ. Recall that the Weil representation associated to the discriminant
group Λ′/Λ is a unitary representation

ρ : Γ̃ := Mp2(Z) −→ AutC(C[Λ′/Λ])

defined by

ρ(T )eγ = e
(
q(γ)

)
eγ

and

ρ(S)eγ =
e((b− − b+)/8)√

|Λ′/Λ|

∑
β

e
(
− 〈γ, β〉

)
eβ ,

where eγ , γ ∈ Λ′/Λ is the natural basis of the group ring C[Λ′/Λ], and S, T are the usual generators of Γ̃;
and e(x) = e2πix. We will mainly consider the dual representation ρ∗.

Several constructions of modular forms for ρ∗ are known. The oldest and best-known is the theta function

ϑ(τ) =
∑

γ∈Λ′/Λ

∑
v∈Λ

e
(
− τ · q(γ + v)

)
eγ ,

which is a modular form for ρ∗ of weight e/2 = b−/2 when q is negative definite. (We use a negative definite
form q to get modular forms for the dual representation.) The theta function is fundamental in the analytic
theory of quadratic forms and is the motivating example for the Weil representation above. Various gener-
alizations (for example using harmonic, homogeneous polynomials) can be used to construct other modular
forms; all of these are straightforward applications of Poisson summation.

In [5], Bruinier and Kuss describe a formula for the coefficients of the Eisenstein series

Ek,0(τ) =
∑

M∈Γ̃∞\Γ̃

e0

∣∣∣
k,ρ∗

M

when 2k − b− + b+ ≡ 0 mod 4, and Γ̃∞ is the subgroup of Γ̃ generated by T and (−I, i). (Note that this

differs slightly from the definition in [5], where Γ̃∞ is the subgroup generated by only T . In particular, Ek,0
will always have constant term e0 in this note, rather than 2e0.)
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In this note we use methods similar to [5] to derive expressions for the coefficients of another family of
modular forms for ρ∗, namely the “Poincaré square series”, which we define by

Qk,m,β =
∑
λ∈Z

Pk,λ2m,λβ , β ∈ Λ′/Λ, m ∈ Z− q(β), m > 0,

where Pk,m,β is the Poincaré series of exponential type as in [3] (and we set Pk,0,0 = Ek,0). These are
interesting because the space they span always contains all cusp forms just as Pk,m,β span all cusp forms,
as one can see by Möbius inversion. (To get the entire space of modular forms, we also need to include all
Eisenstein series.) In most cases, Qk,m,β is the zero-value of an appropriate Jacobi Eisenstein series. We
use this fact to derive a formula for the coefficients of Qk,m,β ; the result is presented in section 8. Simi-
larly to the Eisenstein series of [5], this formula involves representation numbers of quadratic polynomials
modulo prime powers; we also explain how to use p-adic techniques (in particular, the calculations of [7]) to
calculate them rapidly. A program in SAGE to calculate these is available on the author’s university webpage.

The main application of these formulas is in the construction of automorphic products. Under the
Borcherds lift, nearly-holomorphic modular forms (poles at cusps being allowed) for the Weil representa-
tion are the input functions from which automorphic products are constructed. Modular forms of weight
2 + k for the dual ρ∗ play the role of obstructions to finding nearly-holomorphic modular forms F of weight
−k for ρ, as explained in section 3 of [2], and we can always span all obstructions by finitely many series
Qk,m,β . Also, we can compute the nearly-holomorphic modular form F by multiplying by an appropriate
power of ∆ and searching for it among cusp forms for ρ, which itself is the dual Weil representation for
the quadratic form −q and therefore is also spanned by Poincaré square series. This method can handle
arbitrary lattices (with no restriction on the level or the dimension of the space of cusp forms). We give an
example of this in section 9.

There are other known methods of constructing (spanning sets of) modular forms in Mk(ρ∗); for example,
the averaging method of Scheithauer (see for example [12], theorem 5.4) or an algorithm of Raum [11] that
is also based on Jacobi forms. However, the method described in this note seems essentially unrelated to
them. The general idea of these results may already be known to experts, but the details do not seem to be
readily available in the literature.

Acknowledgments: I am grateful to Richard Borcherds, Jan Hendrik Bruinier, Sebastian Opitz and
Martin Raum for helpful discussions.
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2. Notation

Λ denotes an even lattice with quadratic form q. Often we take Λ = Zn, with q(v) = 1
2v
TSv for a Gram

matrix S (a symmetric integral matrix with even diagonal). The signature of Λ is (b+, b−) and its dimension
is e = b+ + b−. The dual lattice is Λ′. The natural basis of the group ring C[Λ′/Λ] is denoted eγ , γ ∈ Λ′/Λ.
Angular brackets 〈−,−〉 denote the scalar product on C[Λ′/Λ] making eγ , γ ∈ Λ′/Λ an orthonormal basis.

H denotes the Heisenberg group; Γ̃ denotes the metaplectic group; and J denotes the meta-Jacobi group.
σβ is the Schrödinger representation; ρ is the Weil representation; and ρβ is a representation of J that arises
as a semidirect product of σβ and ρ. The representations σ∗β , ρ∗ and ρ∗β are unitary duals of σβ , ρ, ρβ . The
subgroup J∞ is the stabilizer of e0 under any representation ρ∗β . The elements

S =
((

0 −1
1 0

)
,
√
τ
)
, T =

((
1 1
0 1

)
, 1
)
, Z =

((−1 0
0 −1

)
, i
)

are given special names.

Ek = Ek,0 denotes the Eisenstein series (as in [5], but normalized to have constant coefficient 1); more

generally, Ek,β denotes the Eisenstein series with constant term
eβ+e−β

2 . With three arguments in the sub-
script, Ek,m,β denotes the Jacobi Eisenstein series of weight k and index m for the representation ρβ . Pk,m,β
denotes the Poincaré series of weight k that extracts the coefficient of qmeβ from cusp forms. Finally, Qk,m,β
denotes the Poincaré square series. Round brackets (−,−) denote the Petersson scalar product of cusp forms.
The symbols |k,ρ∗ and |k,m,ρ∗β denote Petersson slash operators.

We will commonly use the abbreviation e(x) = e2πix. Complex numbers restricted to the upper half-plane
are denoted by τ = x+ iy; other complex numbers are denoted by z = u+ iv.

3. The Weil and Schrödinger representations

The metaplectic group Γ̃ = Mp2(Z) is the double cover of SL2(Z) consisting of pairs (M,φ), where M

is a matrix M =

(
a b
c d

)
∈ SL2(Z) and φ is a branch of

√
cτ + d on the upper half-plane

H = {τ = x+ iy ∈ C : y > 0}.

We will typically suppress φ and denote pairs (M,φ) by simply giving the matrix M .

Recall that Γ̃ is presented by the generators

T =
((1 1

0 1

)
, 1
)
, S =

((0 −1
1 0

)
,
√
τ
)
,

(where
√
τ is the “positive” square root Im(

√
τ) > 0, τ ∈ H), subject to the relations S8 = id and

S2 = (ST )3 = Z = (−I, i).

We will also consider the integer Heisenberg group H, which is the set Z3 with group operation

(λ1, µ1, t1) · (λ2, µ2, t2) = (λ1 + λ2, µ1 + µ2, t1 + t2 + λ1µ2 − λ2µ1).

There is a natural action of Γ̃ on H (from the right) by

(λ, µ, t) ·
(
a b
c d

)
= (aλ+ cµ, bλ+ dµ, t),

and we call the semidirect product

J = Ho Γ̃
3



by this action the meta-Jacobi group. It can be identified with a subgroup of Mp4(Z) through the
embedding

J →Mp4(Z),

(
λ, µ, t,

(
a b
c d

))
7→


a 0 b aµ− bλ
λ 1 µ t
c 0 d cµ− dλ
0 0 0 1

 ,

under which the suppressed square root φ(τ) of cτ + d is sent to φ̃
((

τ1 z
z τ2

))
= φ(τ1).

The action of Mp4(Z) on the Siegel upper half-space H2 restricts to an action of J on H× C:(
λ, µ, t,

(
a b
c d

))
· (τ, z) =

(aτ + b

cτ + d
,
λτ + z + µ

cτ + d

)
.

It can also be shown directly that this defines a group action.

Recall that a discriminant form is a finite abelian group A together with a nondegenerate quadratic
form q : A→ Q/Z, i.e. a function with the properties
(i) q(λx) = λ2q(x) for all λ ∈ Z and x ∈ A;
(ii) 〈x, y〉 = q(x+ y)− q(x)− q(y) is bilinear and nondegenerate.
The typical example is the discriminant group of an even lattice Λ ⊆ V in a finite-dimensional space with
bilinear form 〈−,−〉; “even” meaning that 〈x, x〉 ∈ 2Z for all x ∈ Λ. Here, we define the dual lattice

Λ′ = {y ∈ V : 〈x, y〉 ∈ Z for all x ∈ Λ}

and take A to be the quotient A = Λ′/Λ, and set q(y) = 〈y,y〉
2 mod 1 for y ∈ A. Conversely, every discrimi-

nant form arises in this way.

We will review the important representations of H, Γ̃ and J on the group ring C[A] of any discriminant
form. C[A] is a complex vector space for which a canonical basis is given by eγ , γ ∈ A. (We will not need
the ring structure.) It has a scalar product〈∑

γ

λγeγ ,
∑
γ

µγeγ

〉
=
∑
γ

λγµγ .

Definition 1. Let (A, q) be a discriminant form and β ∈ A. The Schrödinger representation of H on
C[A] (twisted at β) is the unitary representation

σβ : H → AutC[A],

σβ(λ, µ, t)eγ = e
(
µ〈β, γ〉+ (t− λµ)q(β)

)
eγ−λβ .

It is straightforward to check that this actually defines a representation.

Definition 2. Let (A, q) be a discriminant form. The Weil representation of Γ̃ on C[A] is the unitary
representation ρ defined on the generators S and T by

ρ(T )eγ = e
(
q(γ)

)
eγ ,

ρ(S)eγ =
e((b− − b+)/8)√

|Λ′/Λ|

∑
β

e
(
− 〈γ, β〉

)
eβ .

Here, (b+, b−) is the signature of any lattice with A as its discriminant group; the numbers b+, b− are
themselves not well-defined, but the difference b− − b+ mod 8 depends only on A.

In particular,

ρ(Z)eγ = ib
−−b+e−γ .

Shintani gave in [13] an expression for ρ(M), for any M ∈ Γ̃. We will need this later.
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Proposition 3. Let M =

(
a b
c d

)
∈ Γ̃, and denote by ρ(M)β,γ the components

ρ(M)β,γ = 〈ρ(M)eγ , eβ〉.

Suppose that A is the discriminant group of an even lattice Λ of signature (b+, b−).
(i) If c = 0, then

ρ(M)β,γ =
√
i
(b−−b+)(1−sgn(d))

δβ,aγe
(
abq(β)

)
.

(ii) If c 6= 0, then

ρ(M)β,γ =

√
i
(b−−b+)sgn(c)

|c|(b−+b+)/2
√
|A|

∑
v∈Λ/cΛ

e
(aq(v + β)− 〈γ, v + β〉+ dq(γ)

c

)
.

Here, δβ,aγ = 1 if β = aγ and 0 otherwise. Note in particular that ρ factors through a finite-index

subgroup of Γ̃. (Formulas for ρ(M) that are easier to calculate explicitly appear in chapter 4 of [12] in many
cases and in [14] in all cases, but the formula above is sufficient for our purposes.)

The following lemma describes the interaction between the Schrödinger and Weil representations:

Lemma 4. Let (A, q) be a discriminant form and fix β ∈ A. For any M ∈ Γ̃ and ζ = (λ, µ, t) ∈ H,

ρ(M)−1σβ(ζ)ρ(M) = σβ(ζ ·M).

Proof. It is enough to verify this when M is one of the standard generators S or T . When M = T , this is
easy to check directly. When M = S, ρ(S) is essentially the discrete Fourier transform and this statement
is the convolution theorem. �

This implies that σβ and ρ can be combined to give a unitary representation of the meta-Jacobi group,
which we denote by ρβ :

ρβ : J → AutC[A],

ρβ(ζ,M) = ρ(M)σβ(ζ)

for M ∈ Γ̃ and ζ ∈ H.
We will more often be interested in the dual representations σ∗β , ρ∗ and ρ∗β . Since all the representations

considered here are unitary, we obtain the dual representations essentially by taking complex conjugates
everywhere possible.

4. Modular forms and Jacobi forms

Fix a lattice Λ.

Definition 5. Let k ∈ 1
2Z. A modular form of weight k for the (dual) Weil representation on Λ is a

holomorphic function f : H→ C[Λ′/Λ] with the following properties:

(i) f transforms under the action of Γ̃ by

f(M · τ) = (cτ + d)kρ∗(M)f(τ), M ∈ Γ̃,

where if k is half-integer then the branch of the square root is prescribed by M as an element of Γ̃. Using
the Petersson slash operator, this can be abbreviated as

f |k,ρ∗M = f where f |k,ρ∗M(τ) = (cτ + d)−kρ∗(M)−1f(M · τ).

(ii) f is holomorphic in ∞. This means in the Fourier expansion of f ,

f(τ) =
∑

γ∈Λ′/Λ

∑
n∈Z−q(γ)

c(n, γ)qneγ q = e2πiτ ,

all coefficients c(n, γ) are zero for n < 0.
5



(That such a Fourier expansion exists follows from the fact that f(τ + 1) = ρ∗(T )f(τ).)

The vector space of modular forms will be denoted Mk(ρ∗), and the subspace of cusp forms (those f
for which c(0, γ) = 0 for all γ ∈ Λ′/Λ) is denoted Sk(ρ∗). Both spaces are always finite-dimensional and
their dimension (at least for k ≥ 2) can be calculated with the Riemann-Roch formula. A fast formula for
computing this under the assumption that 2k + b+ − b− ≡ 0 (4) was given by Bruinier in section 2 of [4].
We will not make direct use of the formula in this note, but it is essential for implementing the algorithm
described here.

Proposition 6. Define the Gauss sums

G(a,Λ) =
∑

γ∈Λ′/Λ

e
(
aq(γ)

)
, a ∈ Z,

and define the function B(x) = x− bxc−b−xc2 . Let d = #(Λ′/Λ)/± I be the number of pairs ±γ, γ ∈ Λ′/Λ.
Define

B1 =
∑

γ∈Λ′/Λ

B
(
q(γ)

)
, B2 =

∑
γ∈Λ′/Λ
2γ∈Λ

B
(
q(γ)

)
and

α4 = #{γ ∈ Λ′/Λ : q(γ) ∈ Z}/± I.
Then

dimMk(ρ∗) =
d(k − 1)

12

+
1

4
√
|Λ′/Λ|

e
(2k + b+ − b−

8

)
Re[G(2,Λ)]

− 1

3
√

3|Λ′/Λ|
Re
[
e
(4k + 3(b+ − b−)− 10

24

)
(G(1,Λ) +G(−3,Λ))

]
+
α4 +B1 +B2

2
,

and dimSk(ρ∗) = dimMk(ρ∗)− α4.

Definition 7. (i) The Petersson scalar product on Sk(ρ∗) is

(f, g) =

∫
Γ̃\H
〈f(τ), g(τ)〉yk−2 dx dy, τ = x+ iy.

Note that 〈f(τ), g(τ)〉yk−2 dxdy is invariant under Γ̃.
(ii) For any γ ∈ Λ′/Λ and any n ∈ Z− q(γ), n > 0, the Poincaré series of index (n, γ) is

Pk,n,γ(τ) =
∑

M∈Γ̃∞\Γ̃

(
e(nτ)eγ

)∣∣∣
k,ρ∗

M =
1

2

∑
c,d

(cτ + d)−ke
(
n(M · τ)

)
ρ∗(M)−1eγ ,

where Γ̃∞ is the subgroup of Γ̃ generated by T and Z, and c, d run through all pairs of coprime integers.

The series Pk,n,γ are studied in [3], where (rather complicated) expressions for their Fourier coefficients
are derived. It follows from the definition that these are cusp forms of weight k. More importantly, these
series essentially represent the functionals that extract Fourier coefficients from cusp forms with respect to
the Petersson scalar product:

Proposition 8. For any cusp form f(τ) =
∑
γ,n c(n, γ)qneγ ∈ Sk(ρ∗),

(f, Pk,n,γ) =
Γ(k − 1)

(4πn)k−1
c(n, γ).

It follows that the Poincaré series Pk,n,γ span Sk(ρ∗) as (n, γ) runs through all valid indices, as any cusp
form orthogonal to all of them must be identically zero.
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Proof. This is a well-known argument (called the “unfolding argument” in [3]; see also the beginning of

section 5 of [1]) which we quickly reproduce here. Using the fact that f |k,ρ∗M = f for any M ∈ Γ̃,

(f, Pk,n,γ) =

∫
Γ̃\H

∑
M∈Γ̃∞\Γ

〈
f
∣∣∣
k,ρ∗

M(τ), e(nτ)eγ

∣∣∣
k,ρ∗

M(τ)
〉
yk−2 dxdy

=

∫ 1/2

−1/2

∫ ∞
0

∑
j∈Q

∑
β∈Λ′/Λ

〈e(jτ)c(j, β)eβ , e(nτ)eγ〉yk−2 dy dx

=
∑

j∈Z−q(γ)

[
c(j, γ)

∫ 1/2

−1/2

e((j − n)x) dx ·
∫ ∞

0

e((j + n)y)yk−2 dy
]

= c(n, γ)

∫ ∞
0

e−4πnyyk−2 dy

=
Γ(k − 1)

(4πn)k−1
c(n, γ). �

Now we define Poincaré square series:

Definition 9. The Poincaré square series Qk,m,β is the series

Qk,m,β =
∑
λ∈Z

Pk,λ2m,λβ .

Here, we set Pk.0,0 to be the Eisenstein series Ek,0. In other words, Qk,m,β is the unique modular form
such that Qk,m,β − Ek,0 is a cusp form and

(f,Qk,m,β) =
2 · Γ(k − 1)

(4mπ)k−1

∞∑
λ=1

c(λ2m,λβ)

λ2k−2

for all cusp forms f(τ) =
∑
γ,n c(n, γ)qneγ .

The name “Poincaré square series” appears to be due to Ziegler in [16], where he refers to a scalar-valued
Siegel modular form with an analogous definition by that name.

Remark 10. The components of any cusp form f =
∑
n,γ c(n, γ)eγ can be considered as scalar-valued

modular forms of higher level. Although the Ramanujan-Petersson conjecture is still open in half-integer
weight, nontrivial bounds on the growth of c(n, γ) are known. For example, Bykovskii [6] gives the bound
c(n, γ) = O(nk/2−5/16+ε) for all n and any ε > 0. This implies that the series∑

λ6=0

(f, Pk,λ2m,λβ) =
∑
λ 6=0

Γ(k − 1)

(4πλ2m)k−1
c(λ2m,λβ)

converges for k ≥ 5/2. Since Sk(ρ∗) is finite-dimensional, the weak convergence of
∑
λ 6=0 Pk,λ2m,λβ actually

implies its uniform convergence on compact subsets of H. On the other hand, the estimate∑
λ∈Z

∣∣∣e(mλ2 aτ + b

cτ + d

)∣∣∣ =
∑
λ∈Z

e
−2πmλ2 y

|cτ+d|2

≈
∫ ∞
−∞

e
−2πmt2 y

|cτ+d|2 dt

=
|cτ + d|√

2my
, y = Im(τ)

implies that as a triple series,

Qk,m,β(τ) =
1

2

∑
λ∈Z

∑
gcd(c,d)=1

(cτ + d)−ke
(
mλ2 aτ + b

cτ + d

)
ρ∗(M)−1eλβ

converges absolutely only when k > 3.

Proposition 11. The span of all Poincaré square series Qk,m,β, m ∈ N, β ∈ Λ′/Λ contains all of Sk(ρ∗).
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Proof. Since Span(Qk,m,β) is finite-dimensional, it is enough to find all Poincaré series as weakly convergent
infinite linear combinations of Qk,m,β . Möbius inversion implies the formal identity

Pk,m,β =
1

2

(
Pk,m,β + Pk,m,−β

)
=

1

2

∑
d∈N

µ(d)
[
Qk,d2m,dβ − Ek,0

]
.

The series on the right converges (weakly) in Sk(ρ∗) because we can bound∣∣∣(f,Qk,d2m,dβ)
∣∣∣ ≤∑

λ∈Z

Γ(k − 1)

(4πλ2d2m)k−1

∣∣∣c(λ2d2m,λdβ)
∣∣∣ ≤ C · d−9/8+ε

for an appropriate constant C and all cusp forms f(τ) =
∑
γ

∑
n c(n, γ)qneγ , where we again use the bound

c(n, γ) = O(nk/2−5/16+ε). �

Finally, we will need to define Jacobi forms. We will consider Jacobi forms for the representation ρ∗β
defined in section 3. The book [9] remains the standard reference for (scalar-valued) Jacobi forms, and much
of the following work is based on the calculations there.

Definition 12. A Jacobi form for ρ∗β of weight k and index m is a holomorphic function Φ : H × C →
C[Λ′/Λ] with the following properties:

(i) For any M =

(
a b
c d

)
∈ Γ̃,

Φ
(aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

( mcz2

cτ + d

)
· ρ∗(M)Φ(τ, z);

(ii) For any ζ = (λ, µ, t) ∈ H,

Φ(τ, z + λτ + µ) = e
(
−mλ2τ − 2mλz −m(λµ+ t)

)
· σ∗β(ζ)Φ(τ, z);

(iii) If we write out the Fourier series of Φ as

Φ(τ, z) =
∑

γ∈Λ′/Λ

∑
n,r∈Q

c(n, r, γ)qnζreγ , q = e2πiτ , ζ = e2πiz,

then c(n, r, γ) = 0 whenever n < r2/4m.

We define a Petersson slash operator in this setting as follows: for M ∈ Γ̃ and ζ ∈ H,

Φ
∣∣∣
k,m,ρ∗β

(ζ,M)(τ, z)

= (cτ + d)−ke
(
mλ2τ + 2mλz +m(λµ+ t)− cm(z + λτ + µ)2

cτ + d

)
· ρ∗β(ζ,M)−1

[
Φ
(aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)]
.

Then conditions (i),(ii) of being a Jacobi form can be summarized as

Φ
∣∣∣
k,m,ρ∗β

(ζ,M) = Φ

for all (ζ,M) ∈ J .

Remark 13. We will consider some basic consequences of the transformation law under J for a Jacobi form
Φ(τ, z) =

∑
γ,n,r c(n, r, γ)qnζreγ . First, letting ζ = (0, 0, 1) ∈ H, we see that

Φ = e
(
−m− q(β)

)
Φ

so there are no nonzero Jacobi forms unless m ∈ Z− q(β). Also,∑
γ

∑
n,r

c(n, r, γ)e(n)qnζreγ = Φ(τ + 1, z) = ρ∗(T )Φ(τ) =
∑
γ

∑
n,r

c(n, r, γ)e(−q(γ))qnζreγ
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implies that c(n, r, γ) = 0 unless n ∈ Z− q(γ). Similarly,∑
γ

∑
n,r

c(n, r, γ)e(r)qnζreγ = Φ(τ, z + 1) = σ∗β(0, 1, 0)Φ(τ, z) =
∑
γ

∑
n,r

c(n, r, γ)e
(
− 〈β, γ〉

)
qnζreγ

implies that c(n, r, γ) = 0 unless r ∈ Z− 〈γ, β〉. The transformation under Z implies∑
n,r,γ

c(n, r, γ)qnζ−reγ = Φ(τ,−z) = (−1)kρ∗(Z)Φ(τ, z) = i2k+b+−b−
∑
n,r,γ

c(n, r, γ)qnζre−γ ,

so there are no nonzero Jacobi forms unless 2k + b+ − b− ∈ 2Z. (We will always make the assumption

2k + b+ − b− ∈ 4Z,

since the e0-component of any Jacobi form will otherwise vanish identically. In this case c(n, r, γ) =
c(n,−r,−γ) for all n, r, γ.) Finally, we remark that the transformation under ζ = (λ, 0, 0) implies∑

n,r,γ

c(n, r, γ)qn+rλζreγ = Φ(τ, z + λτ)

= q−mλ
2

ζ−2mλσ∗β(λ, 0, 0)Φ(τ, z)

=
∑
n,r,γ

c(n, r, γ)qn−mλ
2

ζr−2mλeγ−λβ

and therefore c(n, r, γ) = c(n+ rλ+mλ2, r + 2mλ, γ + λβ) for all λ ∈ Z.

5. The Jacobi Eisenstein series

Fix a lattice Λ. Let J∞ denote the subgroup of J that fixes the constant function e0 under the action
|k,m,ρ∗β . This is independent of β and it is the group generated by T,Z ∈ Γ̃ and the elements of the form

(0, µ, t) ∈ H in the Heisenberg group.

Definition 14. The Jacobi Eisenstein series twisted at β ∈ Λ′ of weight k and index m ∈ Z− q(β) is

Ek,m,β(τ, z) =
∑

(M,ζ)∈J∞\J

e0

∣∣∣
k,m,ρ∗β

(M, ζ)(τ, z).

It is clear that this is a Jacobi form of weight k and index m for the representation ρ∗β . More explicitly, we
can write it in the form

Ek,m,β(τ, z) =
1

2

∑
c,d

(cτ + d)−k
∑
λ∈Z

e
(
mλ2(M · τ) +

2mλz

cτ + d
− cmz2

cτ + d

)
ρ∗(M)−1σ∗β(λ, 0, 0)−1e0.

Remark 15. This series converges absolutely when k > 3. In that case the zero-value Ek,m,β(τ, 0) is the
Poincaré square series Qk,m,β(τ), as one can see by swapping the order of the sum over (c, d) and the sum
over λ.

Ek,m,β has a Fourier expansion of the form

Ek,m,β(τ, z) =
∑

γ∈Λ′/Λ

∑
n∈Z−q(γ)

∑
r∈Z−〈γ,β〉

c(n, r, γ)qnζreγ .

We will calculate its coefficients. The contribution from c = 0 and d = ±1 is∑
λ∈Z

e
(
mλ2τ + 2mλz

)
eλβ .

We denote the contribution from all other terms by c′(n, r, γ); so

Ek,m,β(τ, z) =
∑
λ∈Z

e
(
mλ2τ + 2mλz

)
eλβ +

∑
γ∈Λ′/Λ

∑
n∈Z−q(γ)

∑
r∈Z−〈γ,β〉

c′(n, r, γ)qnζreγ .
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Write τ = x+ iy and z = u+ iv. Then c′(n, r, γ) is given by the integral

c′(n, r, γ)

=
1

2

∫ 1

0

∫ 1

0

∑
c6=0

gcd(c,d)=1

∑
λ

(cτ + d)−ke
(
mλ2(M · τ) +

2mλz

cτ + d
− cmz2

cτ + d

)
e(−nτ − rz)〈ρ∗(M)−1σ∗β(λ, 0, 0)−1e0, eγ〉dx du

=
1

2

∑
c6=0

∑
d (c)∗

∑
λ

ρ(M)λβ,γ

∫ ∞
−∞

∫ 1

0

(cτ + d)−ke
(
− nτ − rz +mλ2(M · τ) +

2mλz

cτ + d
− cmz2

cτ + d

)
dudx.

Here, the notation
∑
d (c)∗ implies that the sum is taken over representatives of

(
Z/cZ

)×
. The double integral

simplifies to ∫ ∞
−∞

∫ 1

0

(cτ + d)−ke
(
− nτ − rz +mλ2(M · τ) +

2mλz

cτ + d
− cmz2

cτ + d

)
dudx

= c−ke
(amλ2 + nd

c

)∫ ∞
−∞

τ−k
∫ 1

0

e
(
− nτ − rz −m(cz − λ)2/(c2τ)

)
dudx

by substituting τ − d/c into τ.

The inner integral over u is easiest to evaluate within the sum over λ. Namely,∑
λ∈Z

ρ(M)λβ,γe
(amλ2

c

)∫ 1

0

e
(
− rz −m (cz − λ)2

c2τ

)
du

=
∑
λ∈Z

ρ(M)λβ,γe
(amλ2 − rλ

c

)∫ 1−λ/c

−λ/c
e
(
− rz −mz2/τ

)
du

after substituting z + λ/c into z. Note that

ρ(M)λβ,γe
(amλ2 − rλ

c

)
=

√
i
(b−−b+)sgn(c)

|c|(b−+b+)/2
√
|Λ′/Λ|

∑
v∈Λ/cΛ

e
(aq(v + λβ)− 〈v + λβ, γ〉+ dq(γ) + amλ2 − rλ

c

)

=

√
i
(b−−b+)sgn(c)

|c|(b−+b+)/2
√
|Λ′/Λ|

∑
v∈Λ/cΛ

e
(aλ2[m+ q(β)] + λ[a〈v, β〉 − 〈β, γ〉 − r] + aq(v)− 〈v, γ〉+ dq(γ)

c

)
depends only on the remainder of λ mod c, because m+ q(β) and r+ 〈β, γ〉 are integers. Continuing, we see
that ∑

λ∈Z
ρ(M)λβ,γe

(amλ2 − rλ
c

)∫ 1−λ/c

−λ/c
e
(
− rz −mz2/τ

)
du

=

√
i
(b−−b+)sgn(c)

|c|(b−+b+)/2
√
|Λ′/Λ|

∑
v∈Λ/cΛ
λ∈Z/cZ

e
(aλ2[m+ q(β)] + λ[a〈v, β〉 − 〈β, γ〉 − r] + aq(v)− 〈v, γ〉+ dq(γ)

c

)
×

×
∫ ∞
−∞

e
(
− rz −mz2/τ

)
du.

The Gaussian integral is well-known:∫ ∞
−∞

e
(
− rz −mz2/τ

)
du = e

(
r2τ/4m

)√
τ/2im.
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We are left with

c′(n, r, γ) =
1

2
√

2im

∑
c6=0

√
i
(b−−b+)sgn(c)

|c|(b−+b+)/2
√
|Λ′/Λ|

c−kKc(β,m, γ, n, r)

∫ ∞
−∞

τ1/2−ke
(
τ(r2/4m− n)

)
dx,

where Kc(β,m, γ, n, r) is a Kloosterman sum:

Kc(β,m, γ, n, r)

=
∑
d (c)∗

∑
v∈Λ/cΛ
λ∈Z/cZ

e
(aλ2[m+ q(β)] + λ[a〈v, β〉 − 〈β, γ〉 − r] + aq(v)− 〈v, γ〉+ dq(γ) + dn

c

)

=
∑

v∈Λ/cΛ
λ∈Z/cZ

∑
d (c)∗

e
(d
c

[
λ2(m+ q(β)) + λ(〈v, β〉 − 〈γ, β〉 − r) + q(v)− 〈v, γ〉+ q(γ) + n

])

=
∑

v∈Λ/cΛ
λ∈Z/cZ

∑
d (c)∗

e
(d
c

[
q(v + λβ − γ) +mλ2 − rλ+ n

])
.

(In the second equality we have replaced v and λ by d · v and d · λ.)

The integral
∫∞
−∞ τ1/2−ke

(
τ(r2/4m− n)

)
dx is 0 when r2/4m− n ≥ 0, since the integral is independent

of y = Im(τ) and tends to 0 as y →∞. When r2/4m− n < 0, we deform the contour to a keyhole and use
Hankel’s integral

1

Γ(s)
=

1

2πi

∮
γ

eττ−s dτ

to conclude that ∫ ∞
−∞

τ1/2−ke
(
τ(r2/4m− n)

)
dx =

2πi · (2πi(r2/4m− n))k−3/2

Γ(k − 1/2)

and therefore

c′(n, r, γ) =
(2πi)k−1/2(r2/4m− n)k−3/2

2 · Γ(k − 1/2)
√

2im|Λ′/Λ|

∑
c6=0

√
i
(b−−b+)sgn(c)

|c|(b−+b+)/2
c−kKc(β,m, γ, n, r)

=
(−i)kπk−1/2(4mn− r2)k−3/2

2k−3mk−1Γ(k − 1/2)
√
|Λ′/Λ|

∑
c 6=0

√
i
(b−−b+)sgn(c)

|c|(b−+b+)/2
c−kKc(β,m, γ, n, r).

We can use

√
i
(b−−b+)sgn(c)

sgn(c)k(−i)k = (−1)(2k−b−+b+)/4

and the fact that Kc(β,m, γ, n, r) = K−c(β,m, γ, n, r) to write this as

c′(n, r, γ) =
(−1)(2k−b−+b+)/4πk−1/2(4mn− r2)k−3/2

2k−2mk−1Γ(k − 1/2)
√
|Λ′/Λ|

∞∑
c=1

c−k−e/2Kc(β,m, γ, n, r).

Remark 16. Using the evaluation of the Ramanujan sum,∑
d (c)∗

e
(d
c
N
)

=
∑

a|(c,N)

µ(c/a)a,
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where µ is the Möbius function, it follows that

Kc(β,m, γ, n, r)

=
∑
a|c

µ(c/a)a ·#
{

(v, λ) ∈ (Λ⊕ Z)/(c) : q(v + λβ − γ) +mλ2 − rλ+ n = 0 (c)
}

=
∑
a|c

µ(c/a)a(c/a)e+1 ·#
{

(v, λ) ∈ (Λ⊕ Z)/(a) : q(v + λβ − γ) +mλ2 − rλ+ n = 0 (c)
}

= ce+1
∑
a|c

µ(c/a)a−eN(a),

where we define

N(a) = #
{

(v, λ) ∈ (Λ⊕ Z)/a(Λ⊕ Z) : q(v + λβ − γ) +mλ2 − rλ+ n ≡ 0 (a)
}

and we use the fact that this congruence depends only on the remainder of v and λ mod a (rather than c).

Remark 17. If we identify Λ = Zn and write q as q(v) = 1
2v
TSv with a symmetric integer matrix S with

even diagonal (its Gram matrix), then we can rewrite

λ2m+ q(v + λβ − γ)− rλ+ n

=
1

2
(ṽ − γ̃)T

(
S Sβ

(Sβ)T 2(m+ q(β))

)
(ṽ − γ̃) + ñ

with ṽ = (v, λ) and γ̃ = (γ,− r
2(m+q(β)) ) and ñ = n + r

2(m+q(β)) 〈γ, β〉 −
r2

4(m+q(β)) . Therefore, N(a) equals

the representation number Nγ̃,ñ(a) in the notation of [5]. The analysis there does not seem to apply to this
situation because γ̃ has no reason to be in the dual lattice of this larger quadratic form, and because ñ can
be negative or even zero.

In the particular case β = 0, the coefficient c(n, r, γ) does in fact occur as the coefficient of

(ñ, γ̃) = (n− r2/4m, (γ, r/2m))

in the Eisenstein series Ek−1/2,0 attached to the lattice with Gram matrix

(
S 0
0 2m

)
. This can be seen as

a case of the theta decomposition, which gives more generally an isomorphism between Jacobi forms for
a trivial action of the Heisenberg group and vector-valued modular forms, and identifies Jacobi Eisenstein
series with vector-valued Eisenstein series.

Remark 18. We consider the Dirichlet series

L̃(s) =

∞∑
c=1

c−sKc(β,m, γ, n, r).

Since Kc is ce+1 times the convolution of µ(a) and a−eN(a), it follows formally that

L̃(s+ e+ 1) = ζ(s)−1L(s+ e)

where we have defined

L(s) =

∞∑
c=1

c−sN(c).

Since N(a) is multiplicative (for coprime a1, a2, a pair (v, λ) solves the congruence modulo a1a2 if and only
if it does so modulo both a1 and a2), L(s) can be written as an Euler product

L(s) =
∏

p prime

Lp(s) with Lp(s) =

∞∑
ν=0

N(pν)p−νs.
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The functions Lp(s) are always rational functions in p−s and in particular they have a meromorphic extension
to C; and it follows that c′(n, r, γ) is the value of the analytic continuation of

(−1)(2k−b−+b+)/4πk−1/2(4mn− r2)k−3/2

2k−2mk−1Γ(k − 1/2)ζ(s− e)
√
|Λ′/Λ|

∏
p prime

Lp(s)

at s = k + e/2− 1.

6. Evaluation of Lp(s)

In this section we review the calculation of Igusa zeta functions of quadratic polynomials due to Cowan,
Katz and White in [7] and apply it to calculate the Euler factors Lp(k + e/2− 1).

Definition 19. Let f ∈ Zp[X1, ..., Xe] be a polynomial of e variables. The Igusa zeta function of f at a
prime p is the p-adic integral

ζIg(f ; p; s) =

∫
Zep
|f(x)|s dx, s ∈ C.

In other words,

ζIg(f ; p; s) =

∞∑
ν=0

Vol
(
{x ∈ Zep : |f(x)|p = p−ν}

)
p−νs,

where Vol denotes the Haar measure on Zep normalized such that Vol(Zep) = 1.

Igusa proved [10] that ζIg(f ; p; s), which is a priori only a formal power series in p−s, is in fact a rational
function of p−s. In particular, it has a meromorphic continuation to all of C.

Our interest in the Igusa zeta function is due to the identity of generating functions

1− p−sζIg(f ; p; s)

1− p−s
=

∞∑
ν=0

Nf (pν)p−ν(s+e),

where Nf (pν) denotes the number of solutions

Nf (pν) = #
{
x ∈ Ze/pνZe : f(x) ≡ 0 mod pν

}
.

In particular,

Lp(s) =
1− p−s+e+1ζIg(f ; p; s− e− 1)

1− p−s+e+1

for the polynomial of (e+ 1) variables

f(v, λ) = λ2m+ q(v + λβ − γ)− rλ+ n.

The calculation of ζIg(f ; p; s) will be stated for quadratic polynomials in the form

f =
⊕
i∈N0

piQi ⊕ L+ c,

where Qi are unimodular quadratic forms, L is a linear form involving at most one variable, and c ∈ Zp.
The notation

⊕
implies that no two terms in this sum contain any variables in common. To any qua-

dratic polynomial g, there exists a polynomial f as above that is “isospectral” to g at p, in the sense that
Nf (pν) = Ng(p

ν) for all ν ∈ N0. Consult section 4.9 of [7] for an algorithm to compute f . We will say that
polynomials f as above are in normal form.

Proposition 20. Let p be an odd prime. Let f(X) =
⊕

i∈N0
piQi(X)⊕L(X) + c be a Zp-integral quadratic

polynomial in normal form, and fix ω ∈ N0 such that Qi = 0 for i > ω. Define

ri = rank(Qi) and di = disc(Qi), i ∈ N0
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and
r(j) =

∑
0≤i≤j
i≡j (2)

ri and d(j) =
∏

0≤i≤j
i≡j (2)

di, j ∈ N0,

and also define

p(j) = p
∑

0≤i<j r(i) , j ∈ N0.

Define the helper functions Ia(r, d)(s) by

Ia(r, d)(s) =



(1− p−s−r) p−1
p−p−s : r odd, p|a;

[
1 + p−s−(r+1)/2

(
ad(−1)(r+1)/2

p

)]
p−1
p−p−s − p

−r − p−(r+1)/2
(
ad(−1)(r+1)/2

p

)
: r odd, p - a;

[
1− p−r/2

(
(−1)r/2d

p

)]
·
[
1 + p−s−r/2

(
(−1)r/2d

p

)]
p−1
p−p−s : r even, p|a;

[
1− p−r/2

(
(−1)r/2d

p

)]
·
[

p−1
p−p−s + p−r/2

(
(−1)r/2d

p

)]
: r even, p - a,

where
(
a
p

)
is the quadratic reciprocity symbol on Zp. Then:

(i) If L = 0 and c = 0, let r =
∑
i∈N0

ri; then

ζIg(f ; p; s) =
∑

0≤ν<ω−1

I0(r(ν),d(ν))

p(ν)
p−νs+

[I0(r(ω−1),d(ω−1))

p(ω−1)
p−(ω−1)s+

I0(r(ω),d(ω))

p(ω)
p−ωs

]
·(1−p−2s−r)−1.

(ii) If L(x) = bx with b 6= 0 and vp(c) ≥ vp(b), let λ = vp(b); then

ζIg(f ; p; s) =
∑

0≤ν<λ

I0(r(ν),d(ν))

p(ν)
p−νs +

p−λs

p(λ)
· p− 1

p− p−s
.

(iii) If L = 0 and c 6= 0, or if L(x) = bx with vp(b) > vp(c), let κ = vp(c); then

ζIg(f ; p; s) =
∑

0≤ν≤κ

Ic/pν (r(ν),d(ν))

p(ν)
p−νs +

1

p(κ+1)
p−κs.

Proof. This is theorem 2.1 of [7]. We have replaced the variable t there by p−s. �

Remark 21. Since the constant term here is never 0, we are always in either case (ii) or case (iii). It follows
that the only possible pole of ζIg(f ; p; s) is at s = −1, and therefore the only possible poles of Lp(s) are at
e or e+ 1. Therefore, the value k + e/2− 1 is not a pole of Lp, with the weights k = e/2 + 1 or k = e/2 + 2
as the only possible exceptions. In fact, k = e/2 + 1 can occur as a pole but this is ultimately cancelled out
by the corresponding Euler factor of ζ(k − e/2− 1) in the denominator of c′(n, r, γ), and k = e/2 + 2 never
occurs as a pole (as one can show by bounding N).

An easy, if unsatisfying, proof that e/2 + 2 could not occur as a pole is that the problem can be avoided
entirely by appending hyperbolic planes (or other unimodular lattices) to Λ, which does not change the
discriminant group and therefore does not change the coefficients of Ek,m,β , but makes e arbitrarily large.

Remark 22. Identify Λ = Zn and q(v) = 1
2v
TSv where S is the Gram matrix. We will use proposition 20

to calculate

Lp(k + e/2− 1) =
1− p−k+e/2+2ζIg(f ; p; k − e/2− 2)

1− p−k+e/2+2

for “generic” primes p - these are primes p 6= 2 at which

det(S), d2
βm, or ñ := d2

βd
2
γ(n− r2/4m)

have valuation 0. Here, dβ and dγ denote the denominators of β and γ, respectively. Since p - det(S), it
follows that dβ and dγ are invertible mod p; so we can multiply the congruence

λ2m+ q(v + λβ − γ)− rλ+ n ≡ 0 (pν)
14



by d2
βd

2
γ and replace dβdγv + λdβdγβ − dβdγγ by v to obtain

N(pν) = #
{

(v, λ) : d2
βd

2
γmλ

2 + q(v)− d2
βd

2
γrλ+ d2

βd
2
γn ≡ 0 (pν)

}
.

Here, d2
βm, d

2
γn, dβdγr ∈ Z. By completing the square and replacing λ− dβ dγdβr2d2βm

by λ, we see that

N(pν) = #
{

(v, λ) ∈ (Z/pνZ)e+1 : q(v) + d2
βmλ

2 + d2
βd

2
γ(n− r2/4m) ≡ 0 (pν)

}
= #

{
(v, λ) ∈ (Z/pνZ)e+1 : vTSv + 2d2

βmλ
2 + 2ñ ≡ 0 (pν)

}
.

The polynomial f(v, λ) = vTSv+2d2
βmλ

2 +2ñ is p-integral and in isospectral normal form so proposition

20 (specifically, case 3) applies. The Igusa zeta function is

ζIg(f ; p; s) =
1

pe+1
+ I2ñ(e+ 1, |det(S)|)(s).

For even e, this is

ζIg(f ; p; s) =
[
1 + p−e/2−1−s

(D′
p

)]
· p− 1

p− p−s
− p−e/2−1

(D′
p

)
,

where D′ = md2
β(−1)e/2+1ñdet(S), and after some algebraic manipulation we find that

1− p−sζIg(f ; p; s)

1− p−s
=

1

1− p−s−1

[
1 +

(D′
p

)
p−s−e/2−1

]
and therefore

Lp(k + e/2− 1) =
1

1− p−k+e/2+1

[
1 +

(D′
p

)
p1−k

)]
.

For odd e, it is

ζIg(f ; p; s) =
p− 1

p− p−s
+ p−(e+1)/2

(D′
p

)[
1− p− 1

p− p−s
]
,

where D′ = 2md2
β(−1)(e+1)/2det(S), and it follows that

1− p−sζIg(f ; p; s)

1− p−s
=

1

1− p−s−1

[
1−

(D′
p

)
p−s−(e+1)/2−1

]
and therefore

Lp(k + e/2− 1) =
1

1− p−k+e/2+1

[
1−

(D′
p

)
p1/2−k

]
.

Proposition 23. Define the constant

αk,m(n, r) =
(−1)(2k+b+−b−)/4πk−1/2(4mn− r2)k−3/2

2k−2mk−1Γ(k − 1/2)
√
|det(S)|

.

Define the set of “bad primes” to be

{2} ∪
{
p prime : p|det(S) or p|d2

βm or vp(ñ) 6= 0
}
.

(i) If e is even, then define

D = D′ ·
∏

bad p

p2 = md2
β(−1)e/2+1ñdet(S)

∏
bad p

p2.

For 4mn− r2 > 0,

c(n, r, γ) =
αk,m(n, r)LD(k − 1)

ζ(2k − 2)

∏
bad p

[1− p−k+e/2+1

1− p2−2k
Lp(k + e/2− 1)

]
.

(ii) If e is odd, then define

D = D′ ·
∏

bad p

p2 = 2md2
β(−1)(e+1)/2det(S)

∏
bad p

p2.

15



For 4mn− r2 > 0,

c(n, r, γ) =
αk,m(n, r)

LD(k − 1/2)

∏
bad p

[
(1− p−k+e/2+1)Lp(k + e/2− 1)

]
.

Here, LD and LD denote the L-series

LD(s) =

∞∑
c=1

c−s
(D
c

)
, LD(s) =

∞∑
c=1

c−s
(D
c

)
,

where
(
D
c

)
and

(
D
c

)
is the Kronecker symbol.

Proof. This follows immediately from the Euler products

LD(s) =
∏
p

(
1−

(D
p

)
p−s
)−1

, LD(s) =
∏
p

(
1−

(D
p

)
p−s
)−1

,

which are valid because D and D are discriminants (congruent to 0 or 1 mod 4) and therefore
(
D
a

)
and

(
D
a

)
define Dirichlet characters of a modulo |D| resp. |D|. �

In particular, c(n, r, γ) is always rational.

The factors Lp(k + e/2− 1) are easy to evaluate for bad primes p 6= 2 using proposition 20. To calculate
the factor at p = 2, we need a longer formula. This is described in the appendix.

7. Poincaré square series of weight 5/2

An application of the Hecke trick shows that the Poincaré square series of weight 3 is still the zero-value
of the Jacobi Eisenstein series of weight 3. This result is not surprising and the derivation is essentially
the same as the weight 5/2 case below, so we omit the details. However, the result in the case k = 5/2 is
somewhat more complicated.

Definition 24. For k = 5/2, we define the nonholomorphic Jacobi Eisenstein series of weight 5/2, twisted
at β ∈ Λ′/Λ, of index m ∈ Z− q(β), by

E∗5/2,m,β(τ, z, s) =
1

2

∑
c,d

(cτ+d)−5/2|cτ+d|−2s
∑
λ∈Z

e
(
mλ2(M ·τ)+

2mλz

cτ + d
− cmz2

cτ + d

)
ρ∗(M)−1σ∗β(λ, 0, 0)−1e0.

This defines a holomorphic function of s in the half-plane Re[s] > 0.

We write the Fourier series of E∗5/2,m,β in the form

E∗5/2,m,β(τ, z, s) =
∑
n,r,γ

c(n, r, γ, s, y)qnζreγ .

As before, the contribution from c = 0 and d = ±1 is∑
λ∈Z

e
(
mλ2τ + 2mλz

)
eλβ .

(Here, the coefficients depend on y, since E∗5/2,m,β is not holomorphic in τ .) We denote the contribution

from all other terms by c′(n, r, γ, s, y), so

E∗5/2,m,β(τ, z, s) =
∑
λ∈Z

e
(
mλ2τ + 2mλz

)
eλβ +

∑
n,r,γ

c′(n, r, γ, s, y)qnζreγ .

A derivation similar to section 5 gives

c′(n, r, γ, s, y) =
1

2
√

2im

∑
c 6=0

√
i
(b−−b+)sgn(c)

|c|e/2
√
|Λ′/Λ|

c−5/2|c|−2sKc(β,m, γ, n, r)

∫ ∞+iy

−∞+iy

τ−2|τ |−2se
(
τ(r2/4m−n)

)
dx.

16



Substituting τ = y(t+ i) in the integral yields∫ ∞+iy

−∞+iy

τ−2|τ |−2se
(
τ(r2/4m− n)

)
dx

= y−1−2se
(
iy(r2/4m− n)

)∫ ∞
−∞

(t+ i)−2(t2 + 1)−se
(
yt(r2/4m− n)

)
dt.

We use
√
i
(b−−b+)sgn(c)

sgn(c)−5/2 = (−1)(5−b−+b+)/4i5/2 = (−1)(1−b−+b+)/4
√
i

and conclude that

c′(n, r, γ, s, y) =
(−1)(1+b+−b−)/4√

2m|Λ′/Λ|
I(y, r2/4m− n, s)

∞∑
c=1

c−5/2−2s−e/2Kc(β,m, γ, n, r)

=
(−1)(1+b+−b−)/4√

2m|Λ′/Λ|
I(y, r2/4m− n, s)L̃(5/2 + e/2 + 2s),

where I(y,N, s) denotes the integral

I(y,N, s) = y−1−2se−2πNy

∫ ∞
−∞

(t+ i)−2(t2 + 1)−se(Nyt) dt,

and

L̃(s) =

∞∑
c=1

c−sKc(β,m, γ, n, r)

as before.

Remark 25. When r2 6= 4mn, we were able to express L̃(s) up to finitely many holomorphic factors as
1

LD(s−e/2−1/2) , and it follows that L̃(s) is holomorphic in 5/2 + e/2. In particular, if r2 6= 4mn, then the

coefficient c′(n, r, γ, 0, y) is independent of y and given by

c′(n, r, γ, 0, y) =
αk,m(n, r)

LD(2)

∏
bad p

[1− p−3/2+e/2

1−
(
D
p

)
p−2

Lp(3/2 + e/2)
]

if 4mn− r2 > 0,

and c′(n, r, γ, 0, y) = 0 if 4mn− r2 < 0, just as for k ≥ 3. This analysis does not apply when r2 = 4mn and

indeed L̃ may have a (simple) pole in 5/2 + e/2 in that case.

We will study the coefficients c′(n, r, γ, 0, y) when 4mn = r2. The integral I(y, 0, s) is zero at s = 0, and
its derivative there is

∂

∂s

∣∣∣
s=0

I(y, 0, s) = −y−1

∫ ∞
−∞

(t+ i)−2 log(t2 + 1) dt = −π
y
.

This cancels the possible pole of L̃(5/2 + e/2 + 2s) at 0, and therefore we need to know the residue of

L̃(5/2 + e/2 + 2s) there. As before, L̃ factors as

L̃(5/2 + e/2 + 2s) = ζ(2s+ 3/2− e/2)−1L(3/2 + e/2 + 2s)

where L(s) has an Euler product

L(s) =
∏

p prime

Lp(s), with Lp(s) =

∞∑
ν=0

N(pν)p−νs,

and N(pν) is the number of zeros of the polynomial f(v, λ) = q(v + λβ − γ) +mλ2 − rλ+ n mod pν .

Remark 26. Identify Λ = Zn and q(v) = 1
2v
TSv where S is the Gram matrix. We will calculate Lp(s) for

primes p dividing neither det(S) nor d2
βm. In this case, it follows that

N(pν) = #
{

(v, λ) ∈ (Z/pνZ)e+1 : vTSv + 2d2
βmλ

2 ≡ 0 (pν)
}
.

17



We are in case (i) of proposition 20 and it follows that

ζIg(f ; p; s) =
[
1− p−(e+1)/2

(D′
p

)]
·
[
1 + p−s−(e+1)/2

(D′
p

)]
· p− 1

(p− p−s)(1− p−2s−e−1)

with D′ = 2md2
β(−1)(e+1)/2det(S). After some algebraic manipulation, we find that

1− p−sζIg(f ; p; s)

1− p−s
=

1−
(
D′

p

)
p−s−1−(e+1)/2

(1− p−s−1)(1−
(
D′

p

)
p−s−(e+1)/2)

,

so

Lp(3/2 + e/2 + 2s) =
1−

(
D′

p

)
p−2−2s

(1− pe/2−3/2−2s)(1−
(
D′

p

)
p−1−2s)

.

This immediately implies the following lemma:

Lemma 27. In the situation treated in this section, define D = D′ ·
∏

bad p p
2; then

L̃(5/2 + e/2 + 2s) =
LD(2s+ 1)

LD(2s+ 2)

∏
bad p

[
(1− pe/2−3/2−2s)Lp(3/2 + e/2 + 2s)

]
.

Notice that LD(2s+ 1) is holomorphic in s = 0 unless D is a square, in which case it is the Riemann zeta
function with finitely many Euler factors missing.

Proposition 28. If 4mn− r2 = 0, then c′(n, r, γ, 0, y) = 0 unless D is a square, in which case

c′(n, r, γ, 0, y) =
(−1)(1+b+−b−)/4√

2m|Λ′/Λ|
· 3

πy

∏
p|D

[
(1− p(e−3)/2)Lp((e+ 3)/2)

]
.

Proof. Assume that D is a square. As s→ 0,

lim
s→0

c′(n, r, γ, s, y) =
(−1)(1+b+−b−)/4√

2m|Λ′/Λ|
· ∂
∂s

∣∣∣
s=0

I(y, 0, s) · Res
(
L̃(5/2 + e/2 + 2s); s = 0

)
.

We calculated
∂

∂s

∣∣∣
s=0

I(y, 0, s) = −π
y

earlier. The residue of L̃(5/2 + e/2 + 2s) at 0 is

1

LD(2)

∏
bad p

[
(1− pe/2−3/2)Lp(3/2 + e/2)

]
· Res(LD(2s+ 1); s = 0),

and using

LD(2s+ 1) = ζ(2s+ 1)
∏
p|D

(1− p−2s−1)

and the fact that ζ(s) has residue 1 at s = 1, it follows that

Res(LD(2s+ 1); s = 0) =
1

2

∏
p|D

(1− p−1).

We write

LD(2) = ζ(2)
∏
p|D

(1− p−2) =
π2

6

∏
p|D

(1− p−2).

Since the “bad primes” are exactly the primes dividing D (by construction of D), we find

Res
(
L̃(5/2 + e/2 + 2s); s = 0

)
=

3

π2

∏
p|D

[ (1− pe/2−3/2)(1− p−1)

1− p−2
Lp(3/2 + e/2)

]
,

which gives the formula. �
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Denote the constant in proposition 28 by

An =
(−1)(5+b+−b−)/4√

2m|Λ′/Λ|
· 3

π

∏
p|D

[ (1− p(e−3)/2)(1− p−1)

1− p−2
Lp((e+ 3)/2)

]
,

such that E∗5/2,m,β(τ, z) + 1
yϑ is holomorphic, where ϑ is the theta function

ϑ(τ, z) =
∑

γ∈Λ′/Λ

∑
4mn−r2=0
n∈Z−q(γ)
r∈Z−〈γ,β〉

Anq
nζreγ .

Even when D is not square, this becomes true after defining An = 0 for all n.

Lemma 29.

ϑ(τ, z) =
∑

γ∈Λ′/Λ

∑
4mn−r2=0
n∈Z−q(γ)
r∈Z−〈γ,β〉

Anq
nζreγ

is a Jacobi form of weight 1/2 and index m for the representation ρ∗β.

Proof. We give a proof relying on the transformation law of E∗5/2,m,β . Denote by

E5/2,m,β(τ, z) = E∗5/2,m,β(τ, z, 0) +
1

y
ϑ(τ, z)

the holomorphic part of E∗5/2,m,β . For any M =

(
a b
c d

)
∈ Γ̃,

E5/2,m,β

(aτ + b

cτ + d
,

z

cτ + d

)
− |cτ + d|2

y
ϑ
(aτ + b

cτ + d
,

z

cτ + d

)
= E∗5/2,m,β

(aτ + b

cτ + d
,

z

cτ + d
, 0
)

= (cτ + d)5/2e
( mcz2

cτ + d

)
ρ∗(M)E∗5/2,m,β(τ, z, 0)

= (cτ + d)5/2e
( mcz2

cτ + d

)
ρ∗(M)E5/2,m,β(τ, z)− (cτ + d)5/2

y
e
( mcz2

cτ + d

)
ρ∗(M)ϑ(τ, z).

In particular,

1

y
|cτ + d|2ϑ

(aτ + b

cτ + d
,

z

cτ + d

)
− (cτ + d)5/2e

( mcz2

cτ + d

)
ρ∗(M)ϑ(τ, z)

= E5/2,m,β

(aτ + b

cτ + d
,

z

cτ + d

)
− (cτ + d)5/2e

( mcz2

cτ + d

)
ρ∗(M)E5/2,m,β(τ, z).

Using the identity |cτ+d|2
y = (cτ+d)2

y − 2ic(cτ + d) and differentiating both sides of this equation with respect

to τ leads to

(cτ + d)2ϑ
(aτ + b

cτ + d
,

z

cτ + d

)
− (cτ + d)5/2e

( mcz2

cτ + d

)
ρ∗(M)ϑ(τ, z) = 0,

which implies the modularity of ϑ under M . One can verify the transformation law under the Heisenberg
group by a similar argument. �

We can now compute Q5/2,m,β . Let ϑ(τ) denote the zero-value ϑ(τ, 0).

Proposition 30. The Poincaré square series of weight 5/2 is

Q5/2,m,β(τ) = E5/2,m,β(τ, 0) + 4iϑ′(τ).
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Proof. Using the modularity of E∗5/2,m,β and ϑ, we find that E5/2,m,β(τ, 0) transforms under Γ̃ by

E5/2,m,β

(aτ + b

cτ + d
, 0
)

= ρ∗(M)
[
(cτ + d)5/2E5/2,m,β(τ, 0)− 2ic(cτ + d)3/2ϑ(τ)

]
.

Differentiating the equation ϑ(M · τ) = (cτ + d)1/2ρ∗(M)ϑ(τ) gives the similar equation

ϑ′(M · τ) = ρ∗(M)
[
(cτ + d)5/2ϑ′(τ) +

1

2
c(cτ + d)3/2ϑ(τ)

]
.

This implies that E5/2,m,β(τ, 0) + 4iϑ′(τ) is a modular form of weight 5/2.

Now we prove that it equals Q5/2,m,β by showing that it satisfies the characterization of Q5/2,m,β with
respect to the Petersson scalar product. First, we remark that E∗5/2,m,β(τ, 0, 0), although not holomorphic,

satisfies that characterization: for any cusp form f(τ) =
∑
γ

∑
n c(n, γ)qn, and any Re[s] > 0,〈

f(τ), E∗5/2,m,β(τ, 0, s)
〉
y1/2+2s dxdy

is invariant under Γ̃, and we integrate:∫
Γ̃\H
〈f(τ), E∗5/2,m,β(τ, 0, s)〉y1/2+2s dx dy

=
∑

γ∈Λ′/Λ

∑
λ∈Z

∑
n

∫ 1/2

−1/2

∫ ∞
0

〈c(n, γ)eγ , eλβ〉e
(
n(x+ iy)−mλ2(x− iy)

)
y1/2+2s dx dy

=
∑
λ6=0

c(λ2m,λβ)

∫ ∞
0

e−4πmλ2yy1/2+2s dy

=
∑
λ6=0

c(λ2m,λβ)
Γ(3/2 + 2s)

(4πmλ2)3/2+2s
.

Taking the limit as s→ 0, we get

lim
s→0

∫
Γ̃\H
〈f(τ), E∗5/2,m,β(τ, 0, s)〉y1/2+2s dxdy =

∑
λ6=0

c(λ2m,λβ)
Γ(3/2)

(4πmλ2)3/2
.

The difference (
E5/2,m,β(τ, 0) + 4iϑ′(τ)

)
− E∗5/2,m,β(τ, 0, 0) = 4iϑ′(τ) +

1

y
ϑ(τ)

is orthogonal to all cusp forms, because: when we integrate against a Poincaré series

P5/2,n,γ(τ) =
1

2

∑
c,d

(cτ + d)−ke
(
n(M · τ)

)
ρ∗(M)−1(eγ),

we find that (
4iϑ′ +

1

y
ϑ, P5/2,n,γ

)
= 4i

∫ 1/2

−1/2

∫ ∞
0

〈ϑ′(τ), e(nτ)eγ〉y1/2 dy dx+

∫ 1/2

−1/2

∫ ∞
0

〈ϑ(τ), e(nτ)eγ〉y−1/2 dy dx

=
∑

r∈Z−〈β,γ〉

δ4mn−r2An

(
4i · (2πin)

Γ(3/2)

(4πn)3/2
+

Γ(1/2)

(4πn)1/2

)
= 0,

since 4i · (2πin) Γ(3/2)
(4πn)3/2

+ Γ(1/2)
(4πn)1/2

= 0 for all n. Here, δN denotes the delta function δN =

{
1 : N = 0;

0 : N 6= 0.

Finally, the fact that E5/2,m,β(τ, 0) + 4iϑ′(τ) and Q5/2,m,β both have constant term 1 · e0 implies that
their difference is a cusp form that is orthogonal to all Poincaré series and therefore zero. �
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Example 31. Consider the quadratic form with Gram matrix S =
(
−2
)
. The space of weight 5/2 modular

forms is 1-dimensional, spanned by the Eisenstein series

E5/2(τ) =
(

1− 70q − 120q2 − ...
)
e0 +

(
− 10q1/4 − 48q5/4 − 250q9/4 − ...

)
e1/2.

The nonmodular Jacobi Eisenstein series of index 1 and weight 5/2 is

E5/2,1,0(τ, z) =
(

1 + q(ζ−2 − 16ζ−1 − 16− 16ζ + ζ2) + q2(ζ−2 − 32ζ−1 − 24− 32ζ + ζ2) + ...
)
e0

+
(
− 4q1/4 + q5/4(−4ζ−2 − 8ζ−1 − 24− 8ζ − 4ζ2) + ...

)
e1/2,

and setting z = 0, we find

E5/2,1,0(τ, 0) =
(

1− 46q− 120q2− 240q3− 454q4− ...
)
e0 +

(
− 4q1/4− 48q5/4− 196q9/4− 240q13/4− ...

)
e1/2.

This differs from E5/2 by exactly(
− 24q − 96q4 − ...

)
e0 +

(
− 6q1/4 − 54q9/4 − ...

)
e1/2 = 4iϑ′(τ).

For comparison, the Jacobi Eisenstein series of index 2 (which is a true Jacobi form) is

E5/2,2,0(τ, z) =
(

1 + q(−10ζ−2 − 16ζ−1 − 18− 16ζ − 10ζ2)+

+ q2(ζ−4 − 16ζ−3 − 12ζ−2 − 16ζ−1 − 34− 16ζ − 12ζ2 − 16ζ3 + ζ4) + · · ·
)
e0

+
(
q1/4(−2ζ−1 − 6− 2ζ) + q5/4(−2ζ−3 − 4ζ−2 − 14ζ−1 − 8− 14ζ − 4ζ2 − 2ζ3) + · · ·

)
e1/2,

and we see that E5/2,2(τ, 0) = Q5/2,2(τ) = E5/2(τ) as predicted.

8. Coefficient formula for Qk,m,β

For convenience, the results of the previous sections are summarized here.

Proposition 32. Let k ≥ 5/2. The coefficients c(n, γ) of the Poincaré square series Qk,m,β,

Qk,m,β(τ) =
∑

γ∈Λ′/Λ

∑
n∈Z−q(γ)

c(n, γ)qneγ ,

are given as follows:
(i) If n < 0, then c(n, γ) = 0.
(ii) If n = 0, then c(n, γ) = 1 if γ = 0 and c(n, γ) = 0 otherwise.
(iii) If n > 0, then

c(n, γ) = δ +
(−1)(2k−b−+b+)/4πk−1/2

2k−2mk−1Γ(k − 1/2)ζ(2k − 2)
√
|det(S)|

×

×
∑

−
√

4mn<r<
√

4mn

(
LD(k − 1)

∏
bad p

[1− p−k+e/2+1

1− p2−2k
Lp(k + e/2− 1)

])
if e is even, and

c(n, γ) = ε5/2 + δ +
(−1)(2k−b−+b+)/4πk−1/2

2k−2mk−1Γ(k − 1/2)
√
|det(S)|

×

×
∑

−
√

4mn<r<
√

4mn

( 1

LD(k − 1/2)

∏
bad p

[
(1− p−k+e/2+1)Lp(k + e/2− 1)

])
if e is odd. Here, for each r, we define the set of “bad primes” to be

{bad primes} = {2} ∪
{
pprime : p|d2

βmdet(S) or vp(d
2
βd

2
γ(n− r2/4m)) 6= 0

}
,
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and we define

D = md4
βd

2
γ(−1)e/2+1(n− r2/4m)det(S)

∏
bad p

p2

if e is even and

D = 2md2
β(−1)(e+1)/2det(S)

∏
bad p

p2

if e is odd; LD and LD denote the L-series

LD(s) =

∞∑
a=1

(D
a

)
a−s, LD(s) =

∞∑
a=1

(D
a

)
a−s;

and Lp is the L-series

Lp(s) =

∞∑
ν=0

N(pν)p−νs,

where

N(pν) = #
{

(v, λ) ∈ Zn+1/pνZn+1 : q(v + λβ − γ) +mλ2 − rλ+ n = 0 ∈ Z/pνZ
}
.

Finally,

δ =

{
2 : n = mλ2 for some λ ∈ Z, and γ = λβ;

0 : otherwise;

and ε5/2 = 0 unless k = 5/2, in which case

ε5/2 =


∑
r∈Z−〈γ,β〉
r2=4mn

24n·(−1)(5+b
+−b−)/4√

2m·det(S)

∏
bad p

[
(1−p(e−3)/2)(1−p−1)

1−p−2 Lp((e+ 3)/2)
]

: D = �

0 : otherwise;

where D = � means that D is a rational square.

Proof. For k > 5/2, since Qk,m,β(τ) = Ek,m,β(τ, 0), we get the coefficients of Qk,m,β by summing the
coefficients of Ek,m,β over r. δ accounts for the contribution from the term∑

λ∈Z
e
(
mλ2τ + 2mλz

)
eλβ .

When k = 5/2, ε5/2 accounts for 4i times the derivative of the theta series

ϑ(τ) =
∑

γ∈Λ′/Λ

∑
4mn−r2=0
n∈Z−q(γ)
r∈Z−〈γ,β〉

Anq
neγ .

�

9. Example - calculating an automorphic product

The notation in this section is taken from [1].

Since Qk,m,β can be calculated efficiently, we can automate the process of searching for automorphic
products. This method can handle arbitrary even lattices (with no restrictions on the level or the dimension
of the cusp space Sk(ρ∗)).

Let Λ be an even lattice of signature (2, n). Recall that Borcherds’ singular theta correspondence [1] sends
a nearly-holomorphic modular form with integer coefficients

f(τ) =
∑
γ

∑
n

c(n, γ)eγ
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of weight k = 1− n/2 for the Weil representation to a meromorphic automorphic form Ψ on the Grassman-

nian of Λ. The weight of Ψ is c(0,0)
2 , and Ψ is holomorphic when c(n, γ) is nonnegative for all γ and n < 0.

Automorphic products Ψ of singular weight n/2− 1 are particularly interesting, since in this case most
of the Fourier coefficients of Ψ must vanish: the nonzero Fourier coefficients correspond to vectors of norm
zero.

Tensoring nearly-holomorphic modular forms of weight k for ρ and weight 2 − k for ρ∗ gives a scalar-
valued (nearly-holomorphic) modular form of weight 2, or equivalently an invariant differential form on H,
whose residue in ∞ must be 0. This implies that the constant term in the Fourier expansion must be
zero. Also, the coefficients c(n, γ) of a nearly-holomorphic modular form must satisfy c(n, γ) = c(n,−γ) for
all n and γ, due to the transformation law under Z. As shown in [2] and [3], this is the only obstruction
for a sum

∑
n<0

∑
γ c(n, γ)eγ+c(0, 0)e0 to occur as the principal part of a nearly-holomorphic modular form.

The lattice A1(−2) + A1(−2) + II1,1 + II1,1 produces an automorphic product of singular weight. This
product also arises through an Atkin-Lehner involution from an automorphic product attached to the lattice
A1 ⊕A1 ⊕ II1,1 ⊕ II1,1(8), found by Scheithauer in [12].

Using the dimension formula (proposition 6), for the lattice Λ = Z2 with Gram matrix

(
−4 0
0 −4

)
, we

find

dimM3(ρ∗) = 4, dimS3(ρ∗) = 2.

The Eisenstein series of weight 3 is

E3,(0,0)(τ) =
(

1− 24q − 164q2 − 192q3 − ...
)
e(0,0)

+
(
− 1/2q1/8 − 73/2q9/8 − 145q17/8 − ...

)
(e(1/4,0) + e(3/4,0) + e(0,1/4) + e(0,3/4))

+
(
− 10q1/2 − 48q3/2 − 260q5/2 − ...

)
(e(1/2,0) + e(0,1/2))

+
(
− 2q1/4 − 52q5/4 − 146q9/4 − ...

)
(e(1/4,3/4) + e(3/4,1/4) + e(1/4,1/4) + e(3/4,3/4))

+
(
− 13q5/8 − 85q13/8 − 192q21/8 − ...

)
(e(1/2,1/4) + e(1/2,3/4) + e(1/4,1/2) + e(3/4,1/2))

+
(
− 44q − 96q2 − 288q3 − ...

)
e(1/2,1/2).

We find two linearly independent cusp forms as differences between E3 and particular Poincaré square series:
for example,

2

3

(
Q3,1/8,(1/4,0) − E3

)
=
(
q1/8 + 9q9/8 − 30q17/8 + ...

)
(e(1/4,0) + e(3/4,0) − e(0,1/4) − e(0,3/4))

+
(

6q5/8 − 10q13/8 − 42q29/8 − ...
)

(e(1/2,1/4) + e(1/2,3/4) − e(1/4,1/2) − e(3/4,1/2))

+
(

8q1/2 − 48q5/2 + 72q9/2 + ...
)

(e(1/2,0) − e(0,1/2)),

and

1

3

(
Q3,1/4,(1/4,1/4)−E3

)
=
(
q1/4− 6q5/4 + 9q9/4 + 10q13/4 + ...

)
(e(1/4,1/4) + e(3/4,3/4)− e(1/4,3/4)− e(3/4,1/4)).

The other Eisenstein series E3,(1/2,1/2) can be easily computed by averaging E3,(0,0) over the Schrödinger
representation (as in the appendix), but Eisenstein series other than Ek,0 never represent new obstructions
so we do not need them.

We see that the sum

q−1/8(e(1/4,0) + e(3/4,0) + e(0,1/4) + e(0,3/4)) + 2e(0,0)
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occurs as the principal part of a nearly-holomorphic modular form, and the corresponding automorphic
product has weight 1 (which is the singular weight for the lattice Λ⊕ II1,1 ⊕ II1,1 of signature (2, 4)).

A brute-force way to calculate the nearly-holomorphic modular form F is to search for ∆ ·F among cusp
forms of weight 11 for ρ. Since ρ is also the dual Weil representation ρ∗ of the lattice with Gram matrix(

4 0
0 4

)
, we can use the same formulas for Poincaré square series. This is somewhat messier since the cusp

space is now 8-dimensional. Using the coefficients

α0 =
1222146606526920765211168

665492278281307137675
, α1 = − 814700552816424434236

1996476834843921413025
, α2 = −5383641094234426568192

133098455656261427535
,

α3 =
77190276919058739618292

665492278281307137675
, α4 = −3816441333371605691531264

1996476834843921413025
,

a calculation shows that

F =
α0E11,0 + α1Q11,1,0 + α2Q11,2,0 + α3Q11,3,0 + α4Q11,4,0

∆

=
(

2 + 8q + 24q2 + 64q3 + 152q4 + ...
)

(e(0,0) − e(1/2,1/2))

+
(
q−1/8 + 3q7/8 + 11q15/8 + 28q23/8 + ...

)
(e(1/4,0) + e(3/4,0) + e(0,1/4) + e(0,3/4))

+
(
− 2q3/8 − 6q11/8 − 18q19/8 − 44q27/8 − ...

)
(e(1/4,1/2) + e(3/4,1/2) + e(1/2,1/4) + e(1/2,3/4)).

Once enough coefficients have been calculated, it is not hard to identify these components: the coefficients
come from the weight −1 eta products

2η(2τ)2

η(τ)4
= 2 + 8q + 24q2 + 64q3 + 152q4 + ...

and
η(τ/2)2

η(τ)4
= q−1/8 − 2q3/8 + 3q7/8 − 6q11/8 + 11q15/8 − 18q19/8 + ...

We will calculate the automorphic product using theorem 13.3 of [1], following the pattern of the examples
of [8]. Fix the primitive isotropic vector z = (1, 0, 0, 0, 0, 0) and z′ = (0, 0, 0, 0, 0, 1) and the lattice K =
Λ ⊕ II1,1. We fix as positive cone the component of positive-norm vectors containing those of the form
(+, ∗, ∗,+). This is split into Weyl chambers by the hyperplanes α⊥ with α ∈ {±(0, 1/4, 0, 0),±(0, 0, 1/4, 0)}.
These are all essentially the same so we will fix the Weyl chamber

W = {(x1, x2, x3, x4) : x1, x2, x3, x4, x1x4 − 2x2
2 − 2x2

3 > 0} ⊆ K ⊗ R.
The Weyl vector attached to F and W is the isotropic vector

ρ = ρ(K,W,FK) = (1/4, 1/8, 1/8, 1/4),

which can be calculated with theorem 10.4 of [1].
The product

Ψz(Z) = e
(
〈ρ, Z〉

) ∏
λ∈K′
〈λ,W 〉>0

(
1− e((λ, Z))

)c(q(λ),λ)

has singular weight, and therefore its Fourier expansion has the form

Ψz(Z) =
∑
λ∈K′
〈λ,W 〉>0

a(λ)e
(
〈λ+ ρ, Z〉

)
where a(λ) = 0 unless λ+ ρ has norm 0. Since Ψz(w(Z)) = det(w)Ψz(w) for all elements of the Weyl group
w ∈ G, we can write this as

Ψz(w(Z)) =
∑
w∈G

det(w)
∑
λ∈K′
λ+ρ∈W
〈λ,W 〉>0

a(λ)e
(
〈w(λ+ ρ), Z〉

)
.
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As in [8], any such λ must be a positive integer multiple of ρ; and in fact to be in K ′ it must be a multiple
of 4ρ. Also, the only terms in the product that contribute to a(λ) come from other positive multiples of 4ρ;
i.e.

e
(
〈ρ, Z〉

) ∏
m>0

[
1− e

(
〈4mρ,Z〉

)]c(0,4mρ)
=

∑
λ∈K′
〈λ,W 〉>0

λ+ρ∈W

a(λ)e
(
〈λ+ ρ, Z〉

)
.

Here, c(0, 4mρ) = 2 · (−1)m, so∑
λ

a(λ)e
(
〈λ+ ρ, Z〉

)
= e
(
〈ρ, Z〉

) ∏
m>0

[
1− e

(
〈4mρ,Z〉

)]2(−1)m

,

so we get the identity

Ψz(Z) = e
(
〈ρ, Z〉

) ∏
λ∈K′
〈λ,W 〉>0

(
1−e(〈λ, Z〉)

)c(q(λ),λ)

=
∑
w∈G

det(w)e
(
〈w(ρ), Z〉

) ∞∏
m=1

[
1−e

(
4m〈w(ρ), Z〉

)]2(−1)m

.

Note that the product on the right is an eta product

q

∞∏
m=1

[
1− q4m

]2(−1)m

=
η(8τ)4

η(4τ)2
,

so we can write this in the more indicative form

e
(
〈ρ, Z〉

) ∏
λ∈K′
〈λ,W 〉>0

(
1− e(〈λ, Z〉)

)c(q(λ),λ)

=
∑
w∈G

det(w)
η(8〈w(ρ), Z〉)4

η(4〈w(ρ), Z〉)2
.

10. Example - computing Petersson scalar products

One side effect of the computation of Poincaré square series is another way to compute the Petersson scalar
product of (vector-valued) cusp forms numerically. This is rather easy so we will only give an example, rather
than state a general theorem. Consider the weight 3 cusp form

Θ(τ) =
∑
n,γ

c(n, γ)qneγ

=
(
q1/6 + 2q7/6 − 22q13/6 + 26q19/6 + ...

)
(e(1/6,2/3) + e(1/3,5/6) + e(2/3,1/6) + e(5/6,1/3) − 2e(1/6,1/6) − 2e(5/6,5/6))

+
(
− 6q1/2 + 18q3/2 + 0q5/2 − 12q7/2 − ...

)
(e(1/2,0) + e(0,1/2) − 2e(1/2,1/2)),

which is the theta series with respect to a harmonic polynomial for the lattice with Gram matrix

(
−4 −2
−2 −4

)
.

The component functions are

q1/6 + 2q7/6 − 22q13/6 + 26q19/6 + ... = η(τ/3)3η(τ)3 + 3η(τ)3η(3τ)3

and

−6q1/2 + 18q3/2 + 0q5/2 − 12q7/2 + ... = −6η(τ)3η(3τ)3.

To compute the Petersson scalar product (Θ,Θ), we write Θ as a linear combination of Eisenstein series and
Poincaré square series; for example,

Θ = E3,0 −Q3,1/6,(1/6,1/6).
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It follows that

(Θ,Θ) = −(Θ, Q3,1/6,(1/6,1/6))

= − 9

2π2

∞∑
λ=1

c(λ2/6, (λ/6, λ/6))

λ4

=
9

π2

[ ∑
λ≡1,5 (6)

a(λ2/2)

λ4
− 6

∑
λ≡3 (6)

a(λ2/2)

λ4

]
,

where a(n) is the coefficient of n in η(τ)3η(3τ)3. This series converges rather slowly but summing the first
150 terms seems to give the value (Θ,Θ) ≈ 0.24. We get far better convergence for larger weights.

For scalar-valued forms (i.e. when the lattice Λ is unimodular), applying this method to Hecke eigenforms
gives the same result as a well-known method involving the symmetric square L-function. For example, the
discriminant

∆ = q − 24q2 + ... =

∞∑
n=1

c(n)qn ∈ S12

can be written as

∆ =
53678953

304819200
(Q12,1,0 − E12)

which gives the identity

(∆,∆) =
131 · 593 · 691

223 · 3 · 7 · π11

∞∑
n=1

c(n2)

n22
.

This identity is equivalent to the case s = 22 of equation (29) of [15]:

∞∑
n=1

c(n)2

n22
=

7 · 11 · 422 · π33 · ζ(11)

2 · 23 · 691 · 22! · ζ(22)
(∆,∆),

since
∞∑
n=1

c(n)2

n22
= ζ(11)

∞∑
n=1

c(n2)

n22
,

which can be proved directly using the fact that ∆ is a Hecke eigenform.

11. Appendix - averaging operators

For applications to automorphic products, we do not need the Eisenstein series Ek,β for any nonzero
β ∈ Λ′/Λ with q(β) ∈ Z. This is essentially because the constant terms eβ , β 6= 0 are not counted towards
the principal part of the input function F in Borcherds’ lift. However, the Ek,β are still necessary in order
to span the full space of modular forms.

It seems difficult to apply the formula for Ek,β in [5] directly since the Kloosterman sums there do not
reduce to Ramanujan sums. A brute-force way to find Ek,β is to search for ∆ ·Ek,β as a linear combination of
Poincaré square series, but this is usually messy. Instead, we mention here that averaging over Schrödinger
representations allows one in many (but not all) cases to read off the coefficients of all Ek,β from those of
Ek,0.

Definition 33. Let β ∈ Λ′/Λ have denominator dβ . The averaging operator attached to β is

Aβ : Mk(ρ∗)→Mk(ρ∗)

AβF (τ) =
1

dβ2

∑
λ,µ∈Z/d2βZ

σ∗β(λ, µ, 0)F (τ).
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This is well-defined because σ∗β(λ, µ, 0) depends only on the remainder of λ and µ mod d2
β ; and it defines

a modular form because (
σ∗β(ζ)F

)
|k,ρ∗M(τ) = σ∗β(ζ ·M)F (τ)

for all ζ ∈ H and M ∈ Γ̃.

Explicitly, if the components of F are written out as

F (τ) =
∑

γ∈Λ′/Λ

fγ(τ)eγ ,

then

AβF (τ) =
1

d2
β

∑
γ∈Λ′/Λ

∑
λ∈Z/d2βZ

∑
µ∈Z/d2βZ

e
(
− µ〈β, γ〉+ λµ · q(β)

)
fγ(τ)eγ−λβ .

The sum over µ is nonzero exactly when 〈β, γ〉 − λq(β) ∈ Z, in which case it becomes d2
β ; therefore,

AβF (τ) =
∑

λ∈Z/d2βZ

∑
γ∈Λ′/Λ

〈β,γ〉−λq(β)∈Z

fγ(τ)eγ−λβ .

In the special case that q(β) ∈ Z, this is a constant multiple of the modified averaging operator

A′βF (τ) =
∑

γ∈Λ′/Λ
〈β,γ〉∈Z

( ∑
λ∈Z/dβZ

fγ+λβ(τ)
)
eγ ,

making this easier to compute.

When F = Ek,0 is the Eisenstein series

Ek,0(τ) =
1

2

∑
c,d

(cτ + d)−kρ∗(M)−1e0,

then we get

AβEk,0(τ) =
1

2d2
β

∑
c,d

(cτ + d)−k
∑

λ,µ∈Z/d2βZ

σ∗β(λ, µ, 0)ρ∗(M)−1e0

=
1

2d2
β

∑
c,d

(cτ + d)−k
∑

λ,µ∈Z/d2βZ

e
(
λµq(β)

)
ρ∗(M)−1e−λβ

=
∑

λ∈Z/d2βZ
λq(β)∈Z

Ek,λβ .

In many cases this makes it possible to find all the Eisenstein series Ek,β .

Example 34. Let S be the Gram matrix S =
(
−8
)
. The Eisenstein series of weight 5/2 is

E5/2,0(τ) =
(

1− 24q − 72q2 − 96q3 − ...
)
e0

+
(
− 1

2
q1/16 − 24q17/16 − 72q33/16 − ...

)
(e1/8 + e7/8)

+
(
− 5q1/4 − 24q5/4 − 125q9/4 − ...

)
(e1/4 + e3/4)

+
(
− 25

2
q9/16 − 121

2
q25/16 − 96q41/16 − ...

)
(e3/8 + e5/8)

+
(
− 46q − 48q2 − 144q3 − ...

)
e1/2.
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Averaging over the Schrödinger representation attached to β = (1/2) gives

E5/2,0(τ) + E5/2,1/2(τ) =
(

1− 70q − 120q2 − 240q3 − ...
)

(e0 + e1/2)

+
(
− 10q1/4 − 48q5/4 − 250q9/4 − ...

)
(e1/4 + e3/4),

from which we can read off the Fourier coefficients of E5/2,1/2(τ).

12. Appendix - calculating the Euler factors at p = 2

We will summarize the calculations of Appendix B in [7] as they apply to our situation.

Proposition 35. Let f(X) =
⊕

i∈N0
2iQi(X)⊕L+ c be a Z2-integral quadratic polynomial in normal form,

and assume that all Qi are given by Qi(v) = vTSiv for a symmetric (not necessarily even) Z2-integral matrix
Si. For any j ∈ N0, define

Q(j) :=
⊕

0≤i≤j
i≡j (2)

Qi, r(j) = rank(Q(j)), p(j) = 2
∑

0≤i<j r(i) .

Let ω ∈ N0 be such that Qi = 0 for all i > ω. Then:
(i) If L = 0 and c = 0, let r =

∑
i rank(Qi); then the Igusa zeta function for f at 2 is

ζIg(f ; 2; s) =
∑

0≤ν<ω−1

2−νs

p(ν)
I0(Q(ν),Q(ν+1), Qν+2) +

+
[2−s(ω−1)

p(ω−1)
I0(Q(ω−1),Q(ω), 0) +

2−ωs

p(ω)
I0(Q(ω),Q(ω−1), 0)

]
· (1− 2−2s−r)−1.

(ii) If L(x) = bx for some b 6= 0 with v2(b) = λ and if v2(b) ≤ v2(c), then

ζIg(f ; 2; s) =
∑

0≤ν<λ−2

2−νs

p(ν)
I0(Q(ν),Q(ν+1), Qν+2)+

+
∑

max{0,λ−2}≤ν<λ

2−νs

p(ν)
Iλ−ν0 (Q(ν),Q(ν+1), Qi+2) +

2−λs

p(λ)
· 1

2− 2−s
.

(iii) If L(x) = bx with b 6= 0 and v2(c) < v2(b) ≤ v2(c) + 2, let κ = v2(c); then

ζIg(f ; 2; s) =
∑

0≤ν<λ−2

2−νs

p(ν)
Ic/2ν (Q(ν),Q(ν+1), Qν+2)

+
∑

max{0,λ−2}≤ν≤κ

2−νs

p(ν)
Iλ−νc/2ν (Q(ν),Q(ν+1), Qν+2) +

1

p(κ+1)
2−κs.

(iv) If L = 0 or L(x) = bx with v2(b) > v2(c) + 2, let κ = v2(c); then

ζIg(f ; 2; s) =
∑

0≤ν≤κ

2−νs

p(ν)
Ic/2ν (Q(ν),Q(ν+1), Qν+2) +

1

p(κ+1)
2−κs.

Here, Iba(Q0, Q1, Q2)(s) are helper functions that we describe below, and we set Ia(Q0, Q1, Q2) = I∞a (Q0, Q1, Q2).
Note that not every unimodular quadratic form Qi over Z2 can be written in the form Qi(v) = vTSiv; but
2 ·Qi can always be written in this form, and replacing f by 2 · f only multiplies ζIg(f ; 2; s) by 2−s, so this
does not lose generality.

Every unimodular quadratic form over Z2 that has the form Qi(v) = vTSiv is equivalent to a direct sum
of at most two one-dimensional forms a · Sq(x) = ax2; at most one elliptic plane Ell(x, y) = 2x2 + 2xy+ 2y2;
and any number of hyperbolic planes Hyp(x, y) = 2xy. This decomposition is not necessarily unique. It will
be enough to fix one such decomposition.
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The following proposition explains how to compute Iba(Q0, Q1, Q2)(s).

Proposition 36. Define the function

Ig(a, b, ν) =

{
2−νs

2−2−s : v2(a) ≥ min(b, ν);

2−v2(a)s : v2(a) < min(b, ν).

(Here, v2(0) =∞.) For a unimodular quadratic form Q of rank r, fix a decomposition into hyperbolic planes,
at most one elliptic plane and at most two square forms as above. Let ε = 1 if Q contains no elliptic plane
and ε = −1 otherwise. Define functions H1(a, b,Q), H2(a, b,Q) and H3(a, b,Q) as follows:

(i) If Q contains no square forms, then

H1(a, b,Q) = (1− 2−r)Ig(a, b, 1);

H2(a, b,Q) =
(

1− 2−r/2ε
)
·
(

Ig(a, b, 1) + 2−r/2εIg(a, b, 2)
)

;

H3(a, b,Q) = 0.

(ii) If Q contains one square form cx2, then

H1(a, b,Q) = Ig(a, b, 0)− 2−rIg(a, b, 1);

H2(a, b,Q) = (1− 2−(r−1)/2ε)Ig(a, b, 0)− 2−rIg(a, b, 2) + 2−(r+1)/2ε(Ig(a, b, 2) + Ig(a+ c, b, 2));

H3(a, b,Q) = 2−r(Ig(a+ c, b, 3)− Ig(a+ c, b, 2)).

(iii) If Q contains two square forms cx2, dx2 and c+ d ≡ 0 (4), then

H1(a, b,Q) = Ig(a, b, 0)− 2−rIg(a, b, 1);

H2(a, b,Q) = Ig(a, b, 0)− 2−r/2εIg(a, b, 1) + (2−r/2ε− 2−r)Ig(a, b, 2);

H3(a, b,Q) = (−1)(c+d)/42−r(Ig(a, b, 3)− Ig(a, b, 2)).

(iv) If Q contains two square forms cx2, dx2 and c+ d 6≡ 0 (4), then

H1(a, b,Q) = Ig(a, b, 0)− 2−rIg(a, b, 1);

H2(a, b,Q) = (1− 2−(r−2)/2ε)Ig(a, b, 0) + 2−r/2ε(Ig(a, b, 1) + Ig(a+ c, b, 2))− 2−rIg(a, b, 2);

H3(a, b,Q) = −21−rIg(a, b, 1) + 2−r(Ig(a, b, 2) + Ig(a+ c+ d, b, 3)).

Let ε1 = 1 if Q1 contains no elliptic plane and ε1 = −1 otherwise, and let r1 denote the rank of Q1. Then
Iba(Q0, Q1, Q2) is given as follows:
(1) If both Q1 and Q2 contain at least one square form, then

Iba(Q0, Q1, Q2) = H1(a, b,Q0).

(2) If Q1 contains no square forms but Q2 contains at least one square form, then

Iba(Q0, Q1, Q2) = H2(a, b,Q0).

(3) If both Q1 and Q2 contain no square forms, then

Iba(Q0, Q1, Q2) = H2(a, b,Q0) + 2−r1/2ε1H3(a, b,Q0).

(4) If Q1 contains one square form cx2, and Q2 contains no square forms, then

Iba(Q0, Q1, Q2) = H1(a, b,Q0) + 2−(r1+1)/2ε1(H3(a, b,Q0) +H3(a+ 2c, b,Q0)).

(5) If Q1 contains two square forms cx2 and dx2 such that c+ d ≡ 0 (4), and Q2 contains no square forms,
then

Iba(Q0, Q1, Q2) = H1(a, b,Q0) + 2−r1/2ε1H3(a, b,Q0).

(6) If Q1 contains two square forms cx2 and dx2 such that c+ d 6≡ 0 (4), and Q2 contains no square forms,
then

Iba(Q0, Q1, Q2) = H1(a, b,Q0) + 2−r1/2ε1H3(a+ c, b,Q0).
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Proof. In the notation of [7],

Ig(a, b, ν) = Ig(za+2bZ2+2νZ2)

and

H1(a, b,Q) = Ig
(
za+2bZ2ĤQ(z)

)
and

H2(a, b,Q) = Ig
(
za+2bZ2H̃Q(z)

)
and

H3(a, b,Q) = Ig
(
za+2bZ2(HQ(z)− H̃Q(z))

)
.

This calculation of Iba(Q0, Q1, Q2) is available in Appendix B of [7]. Finally, the calculation of ζIg(f ; 2; s) is
given in theorem 4.5 loc. cit. �
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