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Abstract. We state conjectures that relate Hermitian modular forms of degree two and
algebraic modular forms for the compact group SO(6). We provide evidence for these
conjectures in the form of dimension formulas and explicit computations of eigenforms.

1. Introduction

In this paper, we conjecture a correspondence between Hermitian modular forms of degree
two and algebraic modular forms for the spin groups of certain quadratic forms in 6 variables.

Whenever linear algebraic groups G and G′ over Q satisfy G⊗Q C ∼= G′ ⊗Q C, the Lang-
lands philosophy predicts the existence of a correspondence between automorphic forms for
G and G′ that is equivariant with respect to the actions of their Hecke algebras. The most
familiar example of this sort of correspondence is between classical modular forms and cer-
tain harmonic polynomials in three or four variables, which can be regarded as algebraic
modular forms for the group SU(2). This is a classical result of Eichler [14], which was later
generalized by Shimuzu [50] to the case of Hilbert modular forms and by Jacquet–Langlands
[34] to the more general setting of automorphic representations of GL(2). For Sp(2,R) and
its compact twist Sp(2), there is also a correspondence of this type between paramodular
forms and algebraic modular forms for Sp(2). This was first conjectured by Ibukiyama [27],
[29] and Ibukiyama–Kitayama [30], and has now been proved by van Hoften [55] and Rösner-
Weissauer [48].

Our paper is a continuation of this line of thought. Our concern is not general automor-
phic representations; instead, we aim to give a correspondence between concretely described
spaces of automorphic forms. Since the compact twist of SU(2, 2) is SU(4), it would be nat-
ural to consider algebraic modular forms with respect to automorphism groups of hermitian
lattices of rank 4. Here we instead consider algebraic modular forms with respect to automor-
phism groups of rank six lattices, because we have the classical isogeny SU(4)/{±14} ∼= SO(6)
(such that SU(4) becomes the Spin group Spin(6)). The other instances mentioned above
have the similar descriptions SU(2)/{±12} ∼= SO(3), SU(2) × SU(2)/{±(12, 12)} ∼= SO(4),
Sp(2)/{±12} ∼= SO(5).

Algebraic modular forms for spin groups and orthogonal groups appear similar but they
are actually quite different. For example, for certain ternary lattices the class numbers of
SO(3) over Q are type numbers of quaternion algebras (i.e. numbers of isomorphism classes
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of maximal orders) while for Spin(3) they are class numbers of maximal orders. Generally,
if we denote by Γe(Q) the even Clifford group of a quadratic form Q over Q, then we have
Γe(Q)/Q× ∼= SO(Q), and if we denote by Spin(Q) the subgroup of elements in Γe(Q) of
spinor norm 1, then the image of Spin(Q) in SO(Q) is much smaller than SO(Q) in general.
To pick out the spinor norm 1 part of SO(Q), we have to work with spinor characters. This
has been done for SO(n) with n ≤ 5, for example in [13], [47], [54].

Algebraic modular forms for SO(6) that are associated to spherical representations can be
described explicitly by harmonic polynomials that are invariant under the action of a certain
group. In particular, these forms can always be computed directly. On the other hand, for
small discriminants, the ring structure of Hermitian modular forms has been determined
completely [11], [12], [43], [60]. This makes it possible to compare dimensions and also to
compare Hecke eigenvalues and Euler factors of L-functions at small primes.

We have carried out these comparisons experimentally and the object of this paper is to
report on them. Hermitian modular forms for all discriminants contain a common Hecke
algebra consisting of Miyawaki lifts of pairs of cusp forms from SL2(Z) that were constructed
by Atobe-Kojima [7] using Ikeda [33]. We conjecture that cuspidal Hermitian eigenforms
that are not Miyawaki lifts are in one-to-one correspondence with algebraic modular forms
that are not Yoshida lifts. Moreover, this correspondence respects L-functions.

The content of our paper is roughly as follows. In Section 1, we review the definitions
of Hermitian modular forms of degree two, the two types of lifts, their L-functions and the
calculation of Hecke eigenvalues, the Atkin-Lehner theory, the volume of the fundamental
domain, and the dimension formulas for spaces of modular forms in the few (small dis-
criminant) known cases. In Section 2, we review algebraic modular forms for SO(6), the
spinor characters, and Hecke theory. In Section 3, we describe exactly the modular groups
to be considered and we make an explicit conjecture on the correspondence between Hermit-
ian modular forms and algebraic modular forms for SO(6). In Section 4, we calculate the
Minkowski–Siegel volume of the genus of senary lattices we are considering and see that this
matches the main term in the dimension formula for Hermitian modular forms. In Section
5, we compare the dimensions of Hermitian modular forms and algebraic modular forms for
small discriminants for all (scalar valued) weights, which can be viewed as evidence for our
conjecture. In Appendix A, we prove the dimension formula for Hermitian modular forms
for Q(

√
−2). In Appendix B, we give tables of dimensions of the spaces Hermitian and

algebraic modular forms, including their decomposition into lifts. In Appendix C, we show
that Hermitian modular forms and algebraic modular forms of low weight correspond for a
larger range of imaginary quadratic fields.
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2. Hermitian modular forms of degree two

This section is meant to set up some background from the classical theory of modular
forms for the group SU(2, 2) in terms of holomorphic functions on a tube domain, with
emphasis on Hecke operators and eigenforms. None of the results here should be considered
new.

2.1. Hermitian modular forms. For n ∈ N, the Hermitian upper half-space of degree
n is the space of (n× n) complex matrices Z with the property that, when we write

Z = X + iY with X = XT , Y = Y T ,

the matrix Y is positive-definite. Note that neither X nor Y is generally real.

The unitary group SU(n, n) will always consist of (2n×2n) matricesM for which det(M) =
1 and

MTJM = J,

where we fix the Hermitian form J given by the block matrix J = i ·
(
0 −I
I 0

)
.

For any order O in an imaginary-quadratic field K, let SU(n, n;O) be the subgroup of
SU(n, n) of matrices with entries in O. In the case that O = OK is the maximal order,
we simply write ΓK := SU(n, n;OK). The discriminant of K is denoted by ∆K . Note that
SU(n, n;OK) = U(n, n;OK) unless ∆K ∈ {−3,−4}, see e.g. Remark 1.14 of [58].

Definition 1. A Hermitian modular form of weight k ∈ N0 is a holomorphic function
f : Hn → C with the property

f
(
(aZ + b)(cZ + d)−1

)
= det(cZ + d)kf(Z)

for every block matrix

(
a b
c d

)
∈ ΓK .

In the case n = 1, one additionally requires a growth condition at cusps. (This is essentially
the same as modular forms for SL2(Z).) We omit it because we are only interested in degree
n = 2.

The invariance of a Hermitian modular form f under translations

Z 7→ Z + b, where b = bT ∈ On×n
K

implies that f has a Fourier decomposition

f(Z) =
∑
c∈Λn

αf (c)e
2πitr(cZ),

where Λn is the lattice

Λn = {Hermitian matrices c such that tr(cb) ∈ Z for all b ∈ On×n
K , b = bT}.

In the special case of degree two, we usually write the Fourier series in the form

f
((

τ z1
z2 ω

))
=

∑
a,b,c

αf (a, b, c)q
arbsc,
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where a, c ∈ N0 (by the Koecher principle) and b ∈ O′
K (=the inverse of the different), and

where
q = e2πiτ , s = e2πiω, and rb = e2πi(bz1+bz2).

The transpose defines an involution Z 7→ ZT on H. Modular forms that satisfy

f(ZT ) = (−1)kf(Z)

will be called symmetric, while modular forms that satisfy

f(ZT ) = (−1)k+1f(Z)

will be called skew-symmetric.

2.2. Hecke operators. Suppose K = Q(
√
∆K) where ∆K < 0 is a fundamental discrimi-

nant. We will describe the local Hecke algebras Hp at primes p ∤ ∆K . (See Proposition 4.6
and Proposition 4.7 of [36], as well as [23].)

(1) Suppose p is inert in K. Then the local Hecke algebra is generated by two double-coset
operators

Tp = ΓK


1 0 0 0
0 1 0 0
0 0 p 0
0 0 0 p

ΓK and Tp2 = T (1, p, p2, p) = ΓK


1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

ΓK .

(2) Suppose (p) = p · p splits in K and that p = (π) is principal. Then the local Hecke
algebra has three generators, Tp, Tp, Tp, where

Tp = ΓK


1 0 0 0
0 1 0 0
0 0 p 0
0 0 0 p

ΓK and Tp = T (1, π, p, π) = ΓK


1 0 0 0
0 π 0 0
0 0 p 0
0 0 0 π

ΓK ,

and where Tp is defined similarly to Tp with π replaced by π.
(The classical setup of Hermitian modular forms is not the natural setting to discuss Hecke
operators at non-principal ideals. However it may be worth mentioning that, by applying
Chebotarev’s density theorem to the Hilbert class field of K, it can be shown that there are
infinitely many primes that split as p = ππ with π ∈ OK .)

The L-function L(f ; s) of a Hermitian eigenform f we need is the degree six zeta function,
which is associated to the exterior square of the standard representation of GL4. The Euler
factors of L(f ; s) were computed by Hina–Sugano [26], Gritsenko [19] and Sugano [52] in
terms of the Hecke eigenvalues of f . For the normalization of the Hecke operators used to
define the eigenvalues below, see the next section.

Let p be a good prime (p ∤ ∆K).
(1) Suppose p splits as p = pp. Let λp, λp be the eigenvalues of f under Tp (= T (1, π, p, π))

and Tp and let λp be the eigenvalue of f under Tp. Then the Euler factor at p is

Lp(f ; s) = 1− λpX +
(
pk−3λpλp − p2k−4

)
X2 −

(
p2k−5(λ2

p + λ2
p)− 2p2k−4λp

)
X3

+
(
p3k−7λpλp − p4k−8

)
X4 − p4k−8λpX

5 + p6k−12X6,
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where X = p−s.
(2) If p is inert, then let λp and λp2 be the eigenvalues of f under Tp and Tp2 (=

T (1, p, p2, p)). Then the Euler factor is

Lp(f ; s) = (1−p2k−4X2)·
[
1−λpX+

(
pk−3λp2+p2k−7(p3+p2−p+1)

)
X2−p2k−4λpX

3+p4k−8X4
]
,

where again X = p−s.
The Euler factors at ramified primes will not be used. For K = Q(i) (and therefore p = 2)

they were given by Gritsenko [19], and for general K they were computed by Sugano [52].

The completed L-function was defined in [19] for K = Q(i), and the definition over other
fields is analogous. If f has weight k, then the completed L-function is

Λ(f ; s) = (2π)−3s|∆K |s/2Γ(s)Γ(s− k + 1)Γ(s− k + 2)L(f ; s),

and its functional equation relates the values at s and 2k − 3− s.

Example 2. In our convention, the Hermitian-Siegel Eisenstein series has zeta function

L(Ek; s) = L(χK ; s− k + 2)ζ(s)ζ(s− k + 1)ζ(s− k + 2)ζ(s− k + 3)ζ(s− 2k + 4).

2.3. Formulas for Hecke operators. All of the double cosets mentioned in the previous
section have right-coset decompositions which are represented by block upper-triangular
matrices. Here we list (without proof) such representatives. See also [23], [36].

The right-coset decompositions yield formulas for the action of Hecke operators on Fourier
coefficients, which we used to decompose spaces of Hermitian modular forms into eigenspaces
and to compute the degree six L-functions of eigenforms. An implementation of these for-
mulas in SageMath has been made available [61].

2.3.1. Inert primes. Suppose p is inert in K. The right cosets contained in Tp have block
upper-triangular representatives of the following four types:

(1)

(
I B
0 pI

)
, where B ∈ (OK/p)

2×2 with B = BT ;

(2)

(
pI 0
0 I

)
;

(3)


p 0 0 0
−d 1 0 β
0 0 1 d
0 0 0 p

 , where d ∈ OK/p and β ∈ Z/p;

(4) Mβ,p =


1 0 β 0
0 p 0 0
0 0 p 0
0 0 0 1

 , β ∈ Z/p.

This determines the action of Tp on the Fourier coefficients of modular forms. In order to
make Tp preserve integrality of Fourier coefficients, we use the normalization

Tpf(Z) = p2k−4
∑
M

det(cZ + d)−kf((aZ + b)(cZ + d)−1)
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where M =

(
a b
c d

)
runs through the representatives defined above. The result is that if

f(Z) =
∑
a,b,c

αf (a, b, c)q
arbsc,

then Tpf(Z) =
∑

a,b,c β(a, b, c)q
arbsc where

β(a, b, c) = αf (pa, pb, pc)

+ p2k−4αf (a/p, b/p, c/p)

+ pk−3αf (pa, b, c/p) + pk−3
∑

d∈OK/p

αf

(a+ db+ db+ ddc

p
, b+ dc, pc

)
.

For Tp2 = T (1, p, p2, p), we have block upper-triangular right coset representatives of the
following six types:

(1)


p2 0 0 0
0 p 0 0
0 0 1 0
0 0 0 p

 ;

(2)


p pα 0 0
0 p2 0 0
0 0 p 0
0 0 −α 1

 , α ∈ OK/p;

(3)


1 α β + αγ γ
0 p γp 0
0 0 p2 0
0 0 −αp p

 , where α, γ ∈ OK/p and β ∈ Z/(p2);

(4)


p 0 0 γp
0 1 γ β
0 0 p 0
0 0 0 p2

 , where γ ∈ OK/p and β ∈ Z/(p2);

(5)


p 0 b 0
0 p 0 d
0 0 p 0
0 0 0 p

 , where b, d ∈ Z/p with bd = 0 but (b, d) ̸= (0, 0);

(6)


p 0 β γ
0 p γ β∗|γ|2
0 0 p 0
0 0 0 p

 , β ∈ (Z/pZ)×, γ ∈ (OK/p)
×, where β∗β ≡ 1 (p).

The normalization of the Tp2 operator is

Tp2f(Z) = p3k−4
∑
M

det(cZ + d)−kf((aZ + b)(cZ + d)−1),
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where M runs through the six coset types listed above. If f(Z) =
∑

a,b,c αf (a, b, c)q
arbsc

then we obtain

Tp2f(Z) =
∑
a,b,c

β(a, b, c)qarbsc

with coefficients

β(a, b, c) = p2k−4αf (a/p
2, b/p, c)

+ p2k−4
∑

α∈OK/p

αf

(
a, (b− aα)/p, (c− pαb− pαb+ a|α|2)/p2

)
+ αf (a, pb, p

2c)

+
∑

α∈OK/p

αf

(
p2a, p(b− aα), c− bα− bα + a|α|2

)
+ pk−4

(
ϵp(a, c) + νp(a, b, c)

)
αf (a, b, c),

where the constants ϵp and νp are defined by

ϵp(a, c) :=


2p− 2 : a ≡ c ≡ 0 (mod p);

p− 2 : a ≡ 0 and c ̸≡ 0 (mod p);

p− 2 : a ̸≡ 0 and c ≡ 0 (mod p);

−2 : otherwise;

and

νp(a, b, c) := 1− p2 + p ·#
{
γ ∈ (OK/p)

× : a+ γb+ γb+ c|γ|2 ≡ 0 (mod p)
}
.

2.3.2. Split primes. Suppose (p) = pp is a split prime in K with p ∤ ∆K and where p = (π)
is principal. We have the following right-coset representatives for Tp = T (1, π, p, π):

(1)


1 α β γ
0 π πγ 0
0 0 p 0
0 0 −πα π

 , α, γ ∈ OK/π, β ∈ Z/p, where the representatives α, γ ∈ OK/π

are chosen such that αγ ∈ Z;

(2)


π 0 0 πγ
0 1 γ β
0 0 π 0
0 0 0 p

 , γ ∈ OK/π, β ∈ Z/p;

(3)


p 0 0 0

−πα π 0 0
0 0 1 α
0 0 0 π

 , α ∈ OK/π;

(4)


π 0 0 0
0 p 0 0
0 0 π 0
0 0 0 1

 .
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We normalize the action on modular forms as

Tpf(Z) = πkpk−2
∑
M

det(cZ + d)−kf((aZ + b)(cZ + d)−1).

Then the action on Fourier coefficients is as follows: if f(Z) =
∑

a,b,c αf (a, b, c)q
arbsc, then

Tpf(Z) =
∑
a,b,c

β(a, b, c)qarbsc

where

β(a, b, c) = αf (a, πb, pc)

+
∑

α∈OK/π

αf

(
pa, π(b− aα), c− αb− αb+ a|α|2

)
+ pk−2αf (a, b/π, c/p)

+ pk−2
∑

α∈OK/π

αf

(a+ αbπ + αbπ − c|α|2

p
,
b+ cα

π
, c
)
.

For the Tp-operator, we have the same four types of right coset representatives as in the
case of inert primes, but also two additional types of right cosets:

(5)


1 0 β 0
0 p 0 0
0 0 p 0
0 0 0 1



1 d 0 0
0 1 0 0
0 0 1 0
0 0 d 1

;

(6)


1 0 β 0
0 p 0 0
0 0 p 0
0 0 0 1



1 d 0 0
1 d+ 1 0 0
0 0 1 1
0 0 d d+ 1

.

In both (5) and (6), β runs through Z/pZ and d represents certain classes in OK/p: In
(5), we require dd ∈ pZ but d /∈ pOK . In (6), we require both dd ∈ pZ and d + d ∈ pZ but
d /∈ pOK .

The Tp-operator has the same normalization factor p2k−4 that it does when p is inert. If

f(Z) =
∑
a,b,c

αf (a, b, c)q
arbsc,

then Tpf(Z) =
∑

a,b,c β(a, b, c)q
arbsc where
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β(a, b, c) = αf (pa, pb, pc)

+ p2k−4αf (a/p, b/p, c/p)

+ pk−3αf (pa, b, c/p) + pk−3
∑

d∈OK/p

αf

(a+ db+ db+ ddc

p
, b+ dc, pc

)
+ pk−3

∑
d∈OK/p
d/∈pOK

dd=0mod p

αf

(
pa, b+ da,

c+ bd+ bd+ dda

p

)

+ pk−3
∑

d∈OK/p
d/∈pOK

dd=0mod p
d+d=0mod p

αf (a
′, b′, c′),

where in the last line we set

a′ = a+ b+ b+ c,

b′ = d(a+ b+ b+ c) + b+ c,

c′ =
c(1 + d)(1 + d) + bd+ bd+ (a+ b+ b)dd

p
.

2.4. Liftings of elliptic modular forms. The Hermitian modular group of degree two
admits two kinds of liftings from elliptic modular forms.

The first is the Gritsenko–Maass lift. This is the degree n = 2 case of the general Ikeda
lift for Hermitian modular forms [33].

The Gritsenko–Maass lift takes Jacobi cusp forms f of weight k whose index is the lattice
of integers OK , with quadratic form given by the norm NK/Q, and lifts them to Hermitian
modular forms Mf of the same weight. The span of the image is called the Sugano Maass
space

Maassk(ΓK) ⊆ Sk(ΓK).

The Maass lift maps Hecke eigenforms to Hecke eigenforms. The Euler factors of the degree
six zeta function were computed by Gritsenko [20] in the case of the field Q(i), but the proof
carries over to any imaginary-quadratic field, and the Euler factors in more generality were
obtained by Sugano ([53], Theorem 8.1).

Hecke operators on Jacobi forms of lattice index are defined similarly to scalar index; for
details, we refer to [2] or [53]. For a prime p, the operator Tp is simply the sum of the action

of the double coset of

(
p−1 0
0 p

)
and multiplication by pk−3χK(p). If f is a Jacobi eigenform

of weight k and lattice index OK , with eigenvalues λp under the operators Tp as defined in
9



[2], then the Euler factor of L(Mf ; s) at a prime p ∤ |∆K | is

Lp(Mf ; s)

= (1− pk−s−3)(1− pk−s−2)(1− pk−s−1) ·
(
1− λpp

−s + χK(p)λpp
k−2−2s − χK(p)p

3k−6−3s
)
.

Note that if k is even and q = −∆K is a prime, then f corresponds naturally to a pair of
conjugate modular forms

g, g ∈ Sk−1(Γ0(q), χK)

under the map defined in [8], and that g, g are eigenforms of all Hecke operators Tn with(
n
q

)
= 1 and their p2-eigenvalues are λp. The factors

1− λpp
−s + χK(p)λpp

k−2−2s − χK(p)p
3k−6−3s

in Lp(Mf ; s) are exactly the Euler factors in the symmetric square L-function attached to g
by Theorem 5.1.6 of [2]. Hence (up to primes dividing ∆K) we have

L(Mf ; s) = ζ(s− k + 1)ζ(s− k + 2)ζ(s− k + 3)L(Sym2g; s).

Jacobi forms of odd weight have a somewhat more complicated interpretation in terms of
modular forms of level q2 instead of q [49].

The second type of lifting is the Miyawaki lift, which is obtained by pulling back an Ikeda
lift and integrating against another modular form. The Miyawaki lift for Hermitian modular
forms was defined in general in [7].

In the case of Hermitian modular forms of degree two, the Miyawaki lift begins with two
cuspidal eigenforms f and g for SL2(Z) of weights k and k + 2, respectively. By Ikeda’s
construction [33], the form f lifts to a Hermitian modular form F of degree 3 and weight
k + 2. Then the Miyawaki lift is defined by the integral

Ff,g(Z) :=

∫
SL2(Z)\H

F
((

Z 0
0 w

))
g(w)vk

du dv

v2
, w = u+ iv.

It was shown in [7] that Ff,g is an eigenform of the Hecke operators on U(2, 2), and
its standard L-function is computed there as well. The degree six L-function is not given
explicitly in [7], but from numerical examples it is clear that the degree six L-function is

L(Ff,g; s) = ζK(s− k + 2) · L(f ⊗ g; s),

and presumably this can be derived from the work of [7]. Here ζK is the Dedekind zeta
function and L(f⊗g; s) is the Rankin–Selberg product L-function. In other words, if p ∤ ∆K

and if the Euler factors of L(f ; s) and L(g; s) at p are factored

Lp(f ; s)
−1 = (1− αf (p)p

−s)(1− βf (p)p
−s), Lp(g; s)

−1 = (1− αg(p)p
−s)(1− βg(p)p

−s),

then the Euler factor of L(Ff,g; s) at p is

Lp(Ff,g; s)
−1 = (1− p−s+k−2)(1− χK(p)p

−s+k−2)

× (1− αf (p)αg(p)p
−s)(1− αf (p)βg(p)p

−s)(1− βf (p)αg(p)p
−s)(1− βf (p)βg(p)p

−s).
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2.5. Atkin–Lehner theory. The maximal discrete extension of ΓK was described by Krieg,
Raum and Wernz [38] in terms of Atkin–Lehner involutions Wp.
Let d be a divisor of ∆K with 4 ∤ d, and set m = −∆K (if ∆K is odd) or m = −∆K/4

(if ∆K is even). Then d and m(m+1)
d

are coprime integers and we choose u, v ∈ Z such that

ud− vm(m+1)
d

= 1. With

Vd :=
1√
d

(
ud v(m+

√
−m)

m−
√
−m d

)
∈ SL2(C)

the Atkin–Lehner involution is defined as the matrix

Wd :=

(
V T
d 0
0 V −1

d

)
∈ SU(2, 2;C).

This is independent of u, v up to multiplication by ΓK .
It is shown in [38] that the operators Wd normalize ΓK and generate the maximal discrete

extension

Γ∗
K = ⟨ΓK ,Wd : 4 ∤ d|∆K⟩,

and that Γ∗
K/ΓK

∼= (Z/2Z)t where t is the number of prime divisors of ∆K .

The Atkin–Lehner involutions commute with all Hecke operators and therefore any Her-
mitian eigenform is also an eigenform of all Wd with eigenvalue ±1. Wernz [59] proved
that the subspace of the Sugano Maass space of forms with sign +1 under all Atkin–Lehner
involutions is exactly the Maass space that was defined by Krieg [39] in terms of relations
satisfied by Fourier coefficients.

2.6. Dimensions. The dimensions of modular forms for the full modular group ΓK are
known only in a few cases. But one can approximate the dimension in terms of the volume
of a fundamental domain for ΓK (cf. [16], Hauptsatz II.3.2). If K has discriminant ∆K and
character χK = n 7→

(
∆K

n

)
, then a fundamental domain for U(2, 2;OK) has volume

vol(F) =
1

4π5
|∆K |5/2ζ(2)L(3, χK)ζ(4)

=
π

2160
|∆K |5/2L(3, χK)

=
π4

3240
B3,χK

.(2.1)

In the last line, Bn,χK
is a Bernoulli number defined (cf. [4]) by the generating function

D∑
a=1

χ(a)teat

eDt − 1
=

∞∑
n=1

Bn,χK

tn

n!
.

In particular,

B3,χK
=

1

D

D∑
a=1

χ(a)a3 − 3

2

D∑
a=1

χ(a)a2 +
D

2

D∑
a=1

χ(a)a

where D = −∆K .
11



Table 1. Quadratic Bernoulli numbers B3,χK

|∆K | 3 4 7 8 11 15 19 20 23 24 31 35
B3,χK

2/3 3/2 48/7 9 18 48 66 90 144 138 288 324

This volume formula can equivalently be derived from the well-known isogeny from SU(2, 2)
to SO(2, 4) and the formula of [18] for the Hirzebruch–Mumford volume of O(2, n).

If ∆K ̸= −4, then the above formula gives the volume of a fundamental domain for ΓK .
(If ∆K ̸= −3,−4, then U(2, 2;OK) and ΓK coincide; while if ∆K = −3, then U(2, 2;OK) is
given by extending ΓK by the central elements ωI, ω ∈ {eπi/3, e2πi/3} which act trivially on
H, so the fundamental domains are the same in this case also.) When ∆K = −4, we have
[U(2, 2;OK) : ΓK ] = 2 and the volume formula (2.1) must be multiplied by two.

The contributions of the center of ΓK to the Selberg trace formula determine the asymp-
totic growth of dimMk(ΓK) as k becomes large:

(2.2) dimMk(ΓK) ∼
k4

64π4
· vol(F) ∼ k4 · B3,χK

207360
.

In the exceptional case K = Q(i), we have to multiply (2.2) by two, and for even k we obtain

dimMk(ΓQ(i)) ∼ k4 ·
2B3,χQ(i)

207360
=

k4

69120

while for odd k there are no modular forms at all.

There are a few cases where the dimensions are known completely because the structure of
the underlying graded algebra of modular forms has been worked out. We summarize these
cases below:

Theorem 3. The dimensions of Hermitian modular forms of degree two for discriminants
∆ = −3,−4,−7,−8,−11 have the following generating series.
(i) For ∆ = −3,

∞∑
k=0

dimMk(ΓK)X
k =

1 +X45

(1−X4)(1−X6)(1−X9)(1−X10)(1−X12)
.

(ii) For ∆ = −4,

∞∑
k=0

dimMk(ΓK)X
k =

(1 +X10)(1 +X34)

(1−X4)(1−X6)(1−X8)(1−X10)(1−X12)
.

(iii) When ∆ = −7,

∞∑
k=0

dimMk(ΓK)X
k =

P (X)

(1−X4)(1−X6)(1−X10)(1−X12)(1−X14)

with the polynomial
12



P (X) = 1 +X8 +X10 + 2X16 + 2X18 +X24 +X26 + 2X32 + 2X34 +X40 +X42 +X50

+X7 +X9 +X11 +X15 +X17 +X19 +X23 +X25 +X27 +X31 +X33 + 2X35

+ 2X39 +X41 +X43 −X49.

(iv) When ∆ = −8,

∞∑
k=0

dimMk(ΓK)X
k =

P (X)

(1−X2)(1−X6)(1−X8)(1−X10)(1−X12)

with the polynomial

P (X) = 1−X2 +X4 +X8 +X12 +X30 +X34 +X38 −X40 +X42

+X9 +X15 +X23 −X25 + 2X27 −X29 +X31 +X33 +X35 −X37 +X39 −X41.

(v) When ∆ = −11,
∞∑
k=0

dimMk(ΓK)X
k =

P (X)

(1−X4)(1−X6)2(1−X10)(1−X12)

with the polynomial

P (X) = 1 + 2X8 + 2X10 +X12 +X16 +X18 +X24 +X26 +X28 +X30 + 2X32 + 2X34 +X42

+X5 +X7 + 2X9 +X11 +X13 +X15 +X17 +X19 +X23 +X27 +X29

+ 2X31 + 2X33 + 2X35 +X37 −X41.

Proof. The result for D = −3 was proved by Dern and Krieg [11]. For D = −4, the
dimensions of symmetric modular forms were described by Nagaoka [43] and Ibukiyama [28]
and antisymmetric modular forms by Aoki [3]; see also [11]. For discriminants D = −7 and
D = −11 the dimensions were calculated by Williams [60]. Finally, for D = −8, Dern and
Krieg [12] determined generators for both symmetric modular forms, and skew-symmetric
modular forms over it, but they do not obtain the ideal of relations or the dimensions. A
dimension formula in this case is derived in Appendix A below using Jacobi forms. □

Remark 4. In a power series of the form

f(t) =
∞∑
k=0

ckt
k =

P (t)

(1− ta1)(1− ta2)(1− ta3)(1− ta4)(1− ta5)

where a1, ..., a5 ∈ N are coprime, the growth of the coefficients ck is dominated by the
behavior of f near t = 1: the partial fractions expansion has the form

f(t) =
p0(t)

(1− t)5
+
∑
i

pi(t)

(1− ζit)ni

for certain polynomials pi(t), where ζi are roots of unity and ni ≤ 4. Considering the limit
limt→1(1 − t)5f(t) shows that p0(1) = P (1)/a1a2a3a4a5. Then apply the geometric series:

the terms pi(t)
(1−ζit)ni

are negligible, and

ck ∼
P (1)

a1a2a3a4a5

(
k + 4

4

)
∼ P (1)

24a1a2a3a4a5
k4, k → ∞.
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This is a quick sanity check for the main term in the dimension formula in any case where
the full Hilbert series is known, and it can be applied to the Hilbert series indicated above.
For example, with P (X) = 1 +X45 and (a1, ..., a5) = (4, 6, 9, 10, 12) we obtain

dimMk(ΓQ(
√
−3)) ∼

k4

311040
= k4 · 2/3

207360
.

With P (X) = (1 +X5)(1 +X17) and (a1, ..., a5) = (2, 3, 4, 5, 6) we obtain

dimM2k(ΓQ(i)) ∼
k4

4320
=

(2k)4

69120
.

3. Algebraic modular forms

3.1. Algebraic modular forms on SO. We recall the definition of algebraic modular forms
with respect to the special orthogonal group. Let V be a finite-dimensional vector space over
Q with a positive-definite quadratic form Q. The algebraic group SO(V ) is defined over Q
by

SO(V ) = {g ∈ SL(V ) : Q(gv) = Q(v) for all v ∈ V }.
The adelization SO(V )A and v-component SO(V )v for any place v of Q are defined as usual.
Here SO(V )∞ is the compact orthogonal group SO(m) where m = dimV .

For simplicity, we assume from now on that m ≥ 3.
Fix a finite-dimensional rational irreducible representation (ρ,W ) of SO(m) and extend it

to a representation of SO(V )A by

ρ : SO(V )A → SO(V )∞ = SO(m) → GL(W ).

In addition, fix a lattice L of V (i.e. a free Z-module containing a basis of V over Q). For
a finite place v of Q, define Lv = L ⊗Z Zv. We let SO(V ) act on V from the right. For
g = (gv)v ∈ SO(V )A, we define a lattice Lg of V by

Lg = ∩v<∞(Lvgv ∩ V ).

and we define a subgroup of SO(V )A by

U(L) = {g ∈ SO(V )A : Lg = L}.

Classically, automorphic forms with respect to SU(2) (or SO(3)) are called Brandt matrices
and are used for comparison between elliptic modular forms and certain harmonic polyno-
mials. The more general definition for algebraic groups whose infinite part is compact up to
the center was first given by Ihara [32] in the symplectic case, and the basic theory of Hecke
operators and the trace formula was given by Hashimoto [22]. The more general formulation
is due to Gross [21], who also introduced the name “algebraic modular forms”.

By definition, algebraic modular forms for SO(V ) of weight ρ with respect to U(L) are
elements of the following space:

Mρ(L) = {f : SO(V )A → W :

f(uga) = ρ(u)f(g) for any u ∈ U(L), g ∈ SO(V )A, a ∈ SO(V )}.
14



This can be written more concretely as follows. Let gi be representatives of the double coset
decomposition

SO(V )A =
h∐

i=1

U(L)giSO(V )

and put Γi = g−1
i U(L)gi ∩ SO(V ). This is a finite group, equal to the subgroup of SO(V )

preserving Li = Lgi. Denote by W Γi the space of vectors in W fixed by Γi. Then we have

Mρ(L) ∼= ⊕h
i=1W

Γi ,

where h is the class number of the genus L containing L. Note that [O(V ) : SO(V )] = 2 and
O(Li) is not generally SO(Li). In that case, O(Li) acts on W Γi as {±1} and we have

W Γi = WO(Li) ⊕WO(Li),det

where WO(Li),det is the space on which any g ∈ O(Li) with det(g) = −1 acts as −1.
In order to treat algebraic modular forms coming from the Spin group using only the

group SO(V ), one has to generalize the definition of algebraic modular forms to allow other
characters. For any {±1}-valued character χ of SO(V ), we write

Mρ(L, χ) = ⊕h
i=1W

Γi,χ,

where we mean
W Γi,χ = {w ∈ W ; ρ(γi)w = χ(γi)w for all γi ∈ Γi}.

The adelic meaning of this definition will be explained later. In particular, assume that ρ
is the spherical representation of degree ν of SO(m) corresponding to the dominant integral
weight (ν, 0, . . . , 0) (i.e. the Young diagram in which the first row is of length ν and the
other rows are empty.) Then W is nothing but the space of homogeneous harmonic poly-
nomials in m variables of degree ν. For applications to Hermitian modular forms, we will
only consider the case dim(V ) = 6. Then −16 ∈ Γi for every i, so a harmonic polynomial
P (x) = P (x1, x2, x3, x4, x5, x6) that occurs in a modular form of weight ν with respect to Γi

must satisfy P (−x) = P (x) and in particular P = 0 unless ν is even. Harmonic polynomials
of odd degree ν satisfy P (−x) = −P (x), which can occur in modular forms in Mν(L, χ) for
a character χ for which χ(−16) = −1. This is often the case for spin characters, which we
define later on.

We denote by Ce(Q) the even Clifford algebra of Q and define the even Clifford group
Γe(Q) by

Γe(Q) = {g ∈ Ce(Q)× : gV g−1 = V }.
The Clifford algebra C(Q) has a natural antiautomorphism J and the norm of g ∈ Γe(Q)

is defined as N(g) = g · J(g). For g ∈ Γe(Q), we have N(g) ∈ Q× and N(Γe(Q)) = Q×
+. It

is well known that Γe(Q)/Q× ∼= SO(V ) (see [37]).

The spinor group is defined as

Spin(Q) = {g ∈ Γe(Q) : N(g) = 1}.
The spinor norm of the pullback of an element g ∈ SO(V ) is determined up to ((Q)×)2 and
this (Q×)2-coset is also called the spinor norm N(g) of g. For a quadratic lattice L ⊂ V ,
denote by d(L) the discriminant of L (i.e. det((ei, ej) for a basis {e1, . . . , en} of L), and
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denote by SO(L) the group of orientation-preserving automorphisms of L that respect the
quadratic form Q. By Chapter 10, Lemma 4.1 of [9], locally at any prime q, the spinor norms
of elements of the automorphism group of a unimodular lattice are q-adic units modulo
squares. So the (squarefree part of the) spinor norm of an element of SO(L) for a global
lattice L is a product of prime divisors of d(L).

To extract the spinor norm one part from SO(L) for a lattice L with discriminant |∆K |,
the spinor characters of SO(V ) are defined as follows. Call the fundamental discriminant of
a quadratic field over Q a prime discriminant if it is divisible only by one prime. Then the
discriminant ∆K of K splits as a product of distinct prime discriminants di, say

∆K = d1 · · · dr.
For any product d0 of the di (i.e. any fundamental discriminant d0|∆K , but including d0 = 1),
we define νd0 as the character of Q×

+/(Q×)2 for which, for a prime p, we have

νd0(p) =

{
−1 if p|d0
1 otherwise

For each a ∈ SO(V ), define the spinor norm N(a) of a as usual and define

spind0(a) = νd0(N(a)).

This character can be naturally extended to SO(V )A by acting trivially on SO(V )∞ and
SO(V )p for p ∤ ∆K . So we put

U0(L) = {u = (up) ∈ U(L) : spind0(up) = 1 for all d0|∆K}.
Then [U(L) : U0(L)] = 2t, where t is the number of prime divisors of ∆K . We consider
algebraic modular forms of weight ν with respect to U0(L) and denote the space of these
forms by Mν(Spin(LK)). For any u ∈ U(L) and any f ∈ Mν(Spin(LK)), we define a map
T (u)f of SO(V )A to W by

(T (u)f)(g) = f(u−1g).

It is easy to show that T (u)f ∈ Mν(Spin(LK)). Since u2 ∈ U0(L), we have T (u)2f =
T (u2)f = f(u−2g) = f(g), so T (u)2 = id as a linear transformation of M(Spin(LK)). Since
U(L)/U0(L) is an elementary abelian 2-group, T (u) is simultaneously diagonalizable. So if
we label the eigenspace with respect to spind0 by

M(LK , spind0) = {f ∈ Mν(Spin(LK)); f(u
−1g) = spind0(u)f},

then we have a common eigenspace decomposition

Mν(Spin(LK)) =
⊕
d0|∆K
d0;disc

M(LK , spind0).

Given a double coset decomposition SO(V )A =
∐h

i=1 U(L)giSO(V ), we can define a mapping

Mν(LK , spind0) →
d⊕

i=1

W Γi,spind0 by f → (ρ(gi)
−1f(gi))1≤i≤h.

It is easy to see that this is an isomorphism. So we have

Mν(Spin(LK)) = ⊕h
i=1W

Γi,spind0

This justifies the definition above. Note that it can happen that W Γi,spind0 = 0.
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The space Mν(Spin(LK)) is what we will eventually want to compare with the space of
Hermitian modular forms of weight ν + 4. A suitable subspace of this should correspond
with Hermitian modular forms of the maximal discrete extension of ΓK as defined in [38].

Spinor characters can be calculated as follows. For any vector x ∈ V \{0}, the reflection
τx ∈ O(V ) with respect to x is defined by

τx(y) = y − B(x, y)

Q(x)
x.

Any element of g ∈ SO(V ) can be written as a product of an even number of reflections, g =
τx1 · · · τx2r with respect to vectors xi ∈ V . An algorithm to calculate such a decomposition
is given in [9]. Then

N(g) = Q(x1) · · ·Q(x2r) ∈ Q×/(Q×)2

is the spinor norm of g. One can show in particular that the spinor norm of −16 is −∆K

modulo (Q×)2 (See [35] p. 30, Exercise 1.) This implies for example that if ∆K = −p for
an odd prime p, then spinp(−16) = −1 and therefore Mν(L, spinp) = 0 if ν is even. In
particular, if ∆K is a prime discriminant, then we have

M0(Spin(LK)) = M0(LK)

This is not true for general discriminants.

3.2. Hecke operators on algebraic modular forms. As before, let L ⊆ V be an integral
lattice of rank m and let W = Wν be the representation space of harmonic polynomials of
homogeneous degree ν.

Integral lattices L and M contained in a common ambient space are called Kneser pk-
neighbors (p prime, k ≥ 1) if L ∩M has index pk in both L and M and if

L/(L ∩M) ∼= M/(L ∩M) ∼= (Z/pZ)k

are p-elementary. Equivalently, if there is a basis e1, ...ek, f1, ..., fk, g1, ..., gn of Lp = L ⊗ Zp

with

⟨ei, fj⟩ = δij and ⟨ei, ej⟩ = ⟨fi, fj⟩ = ⟨ei, gj⟩ = ⟨fi, gj⟩ = 0,

such that

(3.1) p−1e1, ..., p
−1ek, pf1, ..., pfk, g1, ..., gn

is a basis of Mp = M ⊗ Zp.
pk-neighbors belong to the same genus and are clearly equivalent (even in the narrow

sense) at all primes ℓ ̸= p. The pk-neighbor relation is interesting only when k ≤ 1
2
rank(L),

and for k = 1
2
rank(L) only when Lp is split.

For any prime p and any k ≤ 1
2
rank(L), consider the double coset decomposition

Uαp,kU =
⋃
γ

γU.

Then for any g ∈ SO(V )A, the lattices L(γg) are precisely the Kneser pk-neighbors of the
lattice Lg.
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The Hecke operator Tp,k is defined on Mρ(L) by

Tp,kf(g) =
∑
γ

ρ(γ)f(γ−1g)

(See [22] p. 230 (3)). By construction it is independent of the choice of γ, and for u ∈ U
and a ∈ SO(V ) we have Tp,kf(uga) = ρ(u) · Tp,k(g).
In practice, we compute the action of Tp,k at a prime p ∤ det(L) as follows. Suppose we

fix representatives Li of the genus L such that L = L1, together with fixed p-adic isometries
βi : Lp

∼→ (Li)p. Elements f ∈ Mν(V, χ) are then represented by sequences of polynomials
(Pi) of homogeneous degree ν, with each Pi harmonic with respect to Li.

To apply Tp,k to f , we have to compute the pk-neighbors M of Li (following [17], which
amounts to computing k-dimensional isotropic subspaces of L over Fp), together with a
change-of-basis matrix γ : Li → M corresponding to a choice of bases as in (3.1). For each

neighbor M we find a global isometry αj : M
∼→ Lj. Then β−1

j αjγβi belongs to O(L),
and Pi(αjγX) is harmonic with respect to Lj, and Tp,kf is represented by the harmonic
polynomials

P̃j(X) =
∑
i

∑
pk-neighborsMofLi

M∼=Lj

χ(β−1
j αjγβi)Pi

(
αjγX

)
.

The computationally difficult parts of this process are testing lattices for isometry (and
producing explicit isometries), which we carried out using the algorithm of Plesken and
Souvignier [46] provided by SageMath, and letting those isometries act on the defining poly-
nomials, which becomes quite tedious when the degree is large. The procedure to compute
the pk-neighbors is described in detail in Chapter 5 of Hein’s thesis [25].

3.3. L-functions for orthogonal modular forms. The Euler factors in the standard L-
function of an eigenform on SO(6) at good primes were computed by Murphy ([42], Section
3.3) by means of the Satake transform. We have to modify Murphy’s result slightly to get
the algebraic normalization of the L-function. Let λp,k be the eigenvalue of f ∈ Mν(V, χ)
under Tp,k. Then Lstd(f, s) =

∏
p Lp(f ; p

−s), where:

(i) If L is split at p, then

Lp(f ;X) = 1− λp,1X + pν+1(pν + pν+1 + pν+2 + λp,2)X
2 − p2ν+3(2λp,1 + λp,3)X

3

+ p3ν+5(pν + pν+1 + pν+2 + λp,2)X
4 − p4ν+8X5 + p6ν+12X6.

(ii) If L is not split at p, then

Lp(f ;X) = (1− p2ν+4X2)

× (1− λp,1X + pν+1(pν − pν+1 + pν+2 + pν+3 + λp,2)X
2 − p2ν+4λp,1X

3 + p4ν+8X4).

3.4. The theta map. The theta map is a function that takes algebraic modular forms on
SOn as input and yields classical modular forms (for subgroups of SL2(Z)) that are sums of
theta functions.

An algebraic modular form f of weight ν is represented by a sequence of polynomials (Pi)
of homogeneous degree ν, each harmonic with respect to some (fixed) representative Li of the
narrow equivalence classes in a given genus of rank n. The discriminant forms D = L′

i/Li
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can be identified with one another under SO(V ). It is therefore natural to consider the
(vector-valued) theta functions,

θPi
(z) =

∑
λ∈L′

i

Pi(λ)e
πi⟨λ,λ⟩zeλ+Li

,

where eγ is the natural basis of the group ring C[D]. Since Pi is harmonic, this is a modular
form of weight ν + n/2 with respect to the Weil representation of D. Moreover, for any
automorphism γ ∈ O(D) of the discriminant form, the function

γ∗θPi
(z) =

∑
λ∈L′

i

Pi(λ)e
πi⟨λ,λ⟩zeγ(λ+Li)

is again a modular form. The vector-valued setting allows us to define theta functions for
polynomials of odd degree.

The theta map is then defined by

θ(f) :=
1

#O(D)

∑
i

1

#SO(Li)

∑
γ∈O(L′

i/Li)

γ∗θPi
.

For example, by the Siegel–Weil formula the image of the constant function 1 under the
theta map is the vector-valued Eisenstein series of weight n/2. See for example the discussion
in Section 3.7 of [45].

It is an important fact that the theta map is equivariant with respect to the Hecke operators
on SOn and SL2 at all primes not dividing the discriminant. In particular, the kernel ker(θ)
is a space of algebraic modular forms that is closed under those Hecke operators.

For more precise statements about the theta map, we refer to Section 5 of [6].

4. Conjectures

Our conjectures relate Hermitian modular forms for the full group ΓK with algebraic mod-
ular forms on a genus LK of rank six lattices associated to the field K.

Recall (by Nikulin, [44], Corollary 1.9.4) that the genus of an even integral lattice L is
uniquely determined by the signature (r, s) and the discriminant form (L′/L, q).

For any imaginary-quadratic field K, there is a natural discriminant form: view OK as
an even integral lattice with respect to the norm NK/Q. Let LK be the genus of positive-
definite even lattices L of rank six with discriminant form (L′/L, q) ∼= (O′

K/OK ,−NK/Q).
Equivalently (by Nikulin, cf. [44], Theorem 1.12.2), LK is the genus of even lattices L that
admit an isometry

L⊕H ⊕H ∼= E8 ⊕OK(−1),

where H is the standard hyperbolic plane and E8 is the usual E8-lattice, and where OK(−1)
is the lattice OK with quadratic form −NK/Q. At any prime p, we have E8

∼= H⊕H⊕H⊕H
by the classification theory of even unimodular lattices [35]. So over Zp, any such lattice L
satisfies

Lp ⊕H ⊕H = H ⊕H ⊕ (H ⊕H ⊕OK(−1)).
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By Witt’s theorem ([35] Theorem 5.3.5), we can cancel H ⊕H to obtain the local isometry
classes

Lp = H ⊕H ⊕OK(−1)

of the genus LK .

Our first conjecture actually predicts the existence of certain distinguished algebraic mod-
ular forms on SO(6) which do not correspond to Hermitian modular forms. We formulate it
here only for D ∈ {3, 4, 7, 8, 11}, since the precise statement for general discriminant is not
yet clear:

Conjecture 5. Let f, g ∈ Sν+3(SL2(Z)) be cuspidal eigenforms of degree one and the same
weight ν + 3. (In particular, ν is odd.)
Suppose D ∈ {7, 8, 11} and define an eigenform h of weight 3 and level D as follows:
(i) (D = 7) Let h be the cusp form of level 7 and weight 3 with CM by Q(

√
−7):

h(τ) := η3(τ)η3(7τ) = q − 3q2 + 5q4 − 7q7 ± ...

(ii) (D = 8) Let h be the cusp form of level 8 and weight 3 with CM by Q(
√
−8):

h(τ) := η2(τ)η(2τ)η(4τ)η2(8τ)

= q − 2q2 − 2q3 + 4q4 + 4q6 ± ...

(iii) (D = 11) Let h be the cusp form of level 11 and weight 3 with CM by Q(
√
−11):

h(τ) = q − 5q3 + 4q4 − q5 + 16q9 ± ...

Then there is an algebraic modular form Yf,g,h on SO(LD), of weight ν and spinor char-
acter spinD whose standard L-function is

L(Yf,g,h; s) = L(f ⊗ g; s)L(h; s− ν − 1).

The notation Yf,g,h is meant to suggest that Y is an analogue of the Yoshida lift for the
modular forms h and f ⊗ g.

When f ̸= g, we experimentally find two distinct Yoshida lifts of the triple (f, g, h) with
the same L-function. They can be distinguished by passing from SO(6) to O(6), however:
one lift always has the determinant character, and the other does not.

More generally, if D = d1d2 where d1 > 0 is a fundamental discriminant, then our compu-
tations suggest that the Yoshida lift takes Hilbert modular eigenforms F of parallel weight
(ν +3, ν +3) and level one attached to the real-quadratic field Q(

√
d1) and eigenforms h on

Γ1(d2) with CM by Q(
√
−d2), and it produces an algebraic modular form of weight ν whose

standard L-function is

L(YF,h; s) = LAsai(F ; s)L(h; s− ν − 1).

Here LAsai(F ; s) is Asai’s L-function [5]. From this point of view, f ⊗ g should be thought
of as a “split” Hilbert modular form with d1 = 1, i.e. as the modular form f(z1)g(z2) for
SL2(Z) × SL2(Z) and the product L-function L(f ⊗ g; s) should be viewed as its Asai L-
function. We will refrain from making a general conjecture as to which Yoshida lifts YF,h

occur in Sk(SO(6)).
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Remark 6. When d2 = p with a prime p ≡ 3 (4), then a result of Bruinier–Bundschuh [8]
implies that weight three eigenforms h on Γ1(d2) with CM by Q(

√
−d2) are in bijection with

eigenforms of weight three for the Weil representation of SL2(Z) attached to any of the rank
six lattices L in the genus LK , hence (via the theta decomposition) in bijection with Jacobi
eigenforms of weight six for the lattice L. This “lifting” from CM eigenforms h to Jacobi
eigenforms also works for non-prime d2.

It is tempting to guess that such Jacobi forms are actually the underlying objects being
lifted, since they are clearly associated with the genus LK .

Example 7. Let K = Q(
√
−7), with corresponding signature (6, 0) lattice A6. Then

M9(M, spin7) contains a unique rational eigenform and its Euler factors at small primes
p ̸= 7 have the following form:

L2(X) = (1− 211X)2(1 + 3 · 210X + 222X2)(1 + 3520X + 222X2)

L3(X) = (1− 311X)2(1− 322X2)(1 + 290790X + 322X2)

L5(X) = (1− 511X)2(1− 522X2)(1 + 74327350X + 522X2)

L11(X) = (1− 1111X)2(1 + 6 · 1110X + 1122X2)(1 + 284813350678X + 1122X2).

These Euler factors exactly match the conjectural lift Yf,g,h where f = g = ∆(τ) and
h(τ) = η3(τ)η3(7τ).

Example 8. Again, let K = Q(
√
−7). The genus LK is represented by the A6 root lattice,

whose orthogonal group is the Weyl group W (A6). The fundamental invariants p2, ...p7 of
W (A6) have degrees 2, 3, 4, 5, 6, 7, and their Jacobian determinant

Ψ = det
(
∇p2, ...,∇p7

)
is a harmonic polynomial that transforms under W (A6) with the determinant character.
Hence it defines an algebraic modular form for SO(6) of weight 21 and spinor character
spin7, and also the determinant character if it is viewed as a modular form on O(6). Since
the space of such forms is one-dimensional, it is automatically a rational eigenform. Its Euler
factors at small primes p ̸= 7 factor in the form

L2(X) = (1 + 3 · 222X + 246X2) · (1 + 210 · 19989X + 229 · 395729X2 + 256 · 19989X3 + 292X4)

L3(X) = (1− 346X2) · (1 + 37 · 8696912X − 327 · 432091286X2 + 353 · 8696912X3 + 392X4)

L5(X) = (1− 546X2) · (1 + 54 · 5378001278076X − 525 · 471210985152034X2 + 550 · 5378001278076X3 + 592X4)

L11(X) = (1 + 6 · 1122X + 1146X2)(1− 112 · 1260169201464060096144X − 1125 · 11253816697881924170134X2

− 1148 · 1260169201464060096144X3 + 1192X4).

These Euler factors exactly match the conjectured Yoshida lift Yf,g,h, where h(τ) = η3(τ)η3(7τ)
and where f and g are the distinct eigenforms of weight 24 for SL2(Z).
As mentioned above, there is a different algebraic modular eigenform for O(6) of weight 21
and spin character spin7, without the determinant character, which has exactly the same
Euler factors at the primes listed above. This can be calculated (with some difficulty) using
[61].

Our main conjecture is that, apart from Miyawaki lifts and Yoshida lifts, eigen cusp forms
of weight k on SU(2, 2) correspond exactly to non-constant eigenforms of weight k − 4 on
SO(6).
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Conjecture 9 (Main conjecture). There is a one-to-one correspondence between cuspidal
Hermitian eigenforms F ∈ Sk(ΓK) that are not Miyawaki lifts and nonconstant algebraic
eigenforms G ∈ Mν(Spin(LD)), ν = k − 4, that are not Yoshida lifts. It has the following
properties:
(i) The degree six zeta function L(F ; s) equals the standard L-function L(G; s) (possibly up
to Euler factors at primes p|∆K).
(ii) The spinor character of G is

χG =
∏

F |Wp=−F

spinp,

i.e. spinp occurs in χG if and only if F has eigenvalue −1 under the Atkin–Lehner involution
Wp.
(iii) F belongs to the Sugano Maass space if and only if G does not belong to the kernel of
the theta map (cf. Section 2.4).

Since the theta map is Hecke-equivariant, part (iii) of Conjecture 9 would follow from the
Eichler basis problem for modular forms for the Weil representations of the genera LK . More
precisely, the Hermitian modular form F should simply be the Maass lift of the vector-valued
modular form θ(G). The basis problem was recently shown by Müller [41] to have a positive
solution for lattices of rank at least seven, and similar methods might show that it holds for
lattices of rank six.

5. The mass formula

In the rest of the paper we will give some evidence that makes Conjecture 9 plausible. The
main observation is that the asymptotic growth of the dimensions of spaces of Hermitian
and algebraic modular forms are equal.

For Hermitian modular forms, the asymptotic dimension formula is easily given in terms
of a Bernoulli number (2.2). To compare this with SO(6) we have to calculate the mass of
the genus LK .
Note however that we consider algebraic modular forms with respect to SO(6), but the

notion of genus is usually taken with respect to O(6)-equivalence classes; we will briefly
discuss the difference. Let V be a finite-dimensional vector space over Q, equipped with a
positive definite quadratic form Q; let O(V ) be the orthogonal group of Q and SO(V ) =
O(V ) ∩ SL(V ). The adelizations of these groups are denoted by O(V )A and SO(V )A, and
their localizations at a place v by O(V )v and SO(V )v. For any lattice L ⊂ V and a finite
place v of Q, put Lv = L ⊗Z Zv, where Zv is the ring of v-adic integers. For a fixed lattice
L of V and an element g = (gv) ∈ O(V )A, we define a lattice Lg of V by

Lg = ∩v<∞(Lvgv ∩ V ).

Then L = {Lg; g ∈ O(V )A} is the genus containing L. We have

L = {Lg; g ∈ SO(V )A}

because every lattice over Zv has an automorphism of determinant −1. This is clear if v ̸= 2
since L is diagonalisable. If v = 2, then the lattice can be decomposed into a direct sum
of rank-one and rank-two lattices, where the Gram matrix of the binary lattice is either
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2n
(
0 1
1 0

)
or 2n

(
2 1
1 2

)
, and in both cases the matrix

(
0 1
1 0

)
is such an automorphism.

Hence if M = Lg for g ∈ O(V )A, then we also have M = Lg0 for some g0 ∈ SO(V )A.
The set L decomposes into O(V )-equivalence classes, and the O(V )-equivalence classes

might decompose into finer SO(V )-equivalence classes. In both cases, there are only finitely
many classes and their number is called the class number in the wide sense and in the narrow
sense, respectively. Denote by M1, . . . ,Mm the representatives of O(V ) classes in L and by
L1, . . . , Lh the representatives of SO(V ) classes in L. Clearly we have m ≤ h. For any
lattice M , we put

O(M) = {g ∈ O(V );Mg = M}, SO(M) = {g ∈ SO(V );Mg = M}.

The mass of the genus is defined by

M(L,O(V )) =
m∑
i=1

1

#O(Mi)
, M(L, SO(V )) =

h∑
i=1

1

#SO(Li)
.

Lemma 10. We have

M(L, SO(V )) = 2 ·M(L,O(V )).

Proof. If O(Li) contains an element of determinant −1, then no Lj, j ̸= i can be O(V )-
equivalent to Li: if it were, then Lj would also be SO(V )-equivalent to Li, a contradiction.
In this case, we have [O(Li) : SO(Li)] = 2. So

2

#O(Li)
=

1

#SO(Li)
.

If O(Li) does not have an element with determinant −1, then the lattice Lig for any element
g ∈ O(V ) with det(g) = −1 is never SO(V )-equivalent to Li itself, so there is j ̸= i such
that Lj and Li are O(V )-equivalent. In this case, we have #O(Li) = #O(Lj) = #SO(Li) =
#SO(Lj), so we have proved

2

#O(Li)
=

1

#SO(Li)
+

1

#SO(Lj)
. □

Write K = Q(
√
−D) where −D = ∆K is the discriminant of the imaginary quadratic field

K. So D = m with m ≡ 3 mod 4, or D = 4m with 2||m or m ≡ 1 mod 4. For any prime p,
we define a lattice Mp over Zp by Mp = H ⊕H ⊕OK(−1). Then we have det(Mp) = D.
One can show that the product of the Hasse invariants is

∏
p invv(Mp) = 1, so by Propo-

sition 2.1 of [31] there exists a global lattice L ⊂ V such that Lp = Mp for every prime. We
consider the genus LK of (positive definite) lattices of rank 6 and determinant D including
the lattice L. Now we calculate the mass M(LK , O(V )) of LK using the Minkowski–Siegel
formula. We quote the result from Kitaoka, [35, Theorem 6.8.1] Let N be a lattice of rank
m ≥ 2 and N the genus containing N . Let dN be the discriminant of N .

Theorem 11 (Minkowski–Siegel).

M(N , O(V )) = 2
dN (m+1)/2

πm(m+1)/4

m∏
i=1

Γ

(
i

2

)∏
p

αp(Np, Np)
−1.
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αp(Np, Np) is the local density, defined by

αp(Np, Np) = 2−1 lim
r→∞

pm(m+1)/2−m2

#A′
pr(Np, Np).

Here we denote by S the gram matrix of Np and we put

A′
pr(Np, Np) = {X ∈ Mm(Zp)/p

rMm(Zp);
tXSX ≡ S mod pr}.

The local densities αp(Mp,Mp) are completely described by Theorem 5.6.3 in [35]. How-
ever, the formula is very complicated and it involves a lot of notation, which it seems better
not to review here. We will freely use the notation of Theorem 5.6.3 of [35] below and only
indicate what the values of the symbols are in our cases.

First note that m = 6, dM = D, π−6(6+1)/2
∏6

i=1 Γ(i/2) =
3π9

4
. So we have

M(LK , O(V )) =
3D7/2

2π9

∏
p

αp(Mp,Mp)
−1.

Proposition 12. Denote by t the number of prime divisors of ∆K. Then

M(LK , O(V )) =
B3,χK

2t−1 · 29 · 32 · 5
Proof. For the sake of simplicity, we write αp(Mp,Mp) = αp(Mp).
First assume that D ≡ 3 mod 4. If p ̸= 2 and p ∤ D, then

ni = 0, , (i ̸= 0), s = 1, w = 0, N0 = 5(1)⊕ (D),

and N0 is hyperbolic (i.e. isomorphic to H ⊕H ⊕H) if and only if (−1/p) = (D/p), where
(∗/∗) is the quadratic residue symbol. In other words, χ(N0) = (−D/p). We have

E = (1 + (−D/p)p−3)−1, P = P (3) = (1− p−2)(1− p−4)(1− p−6).

Considering the difference between βp and αp in page 98 of [35], we have

αp(Mp) = (1− p−2)(1− p−4)(1− (−D/p)p−3).

When p ̸= 2 and p|d, then
N0 = 4(1)⊕ (−2), N1 = (−D/2), s = 2, w = 1,

and
E = 1, P = P (2) = (1− p−2)(1− p−4),

and therefore
αp(Mp) = 2p(1− p−2)(1− p−4).

When p = 2, then
n0 = 6, qj = 0, w = 0,

and
P = P (3) = (1− 2−2)(1− 2−4)(1− 2−6), E0 = (1 + (−D/2)2−3)/2,

where (−D/2) is +1 if −D ≡ 1 mod 8 and −1 if −D ≡ 5 mod 8, and Ej = 1 if j ̸= 0, and
therefore

E = E−1
0 = 2/(1 + (−D/2)2−3).

So we have
αp(Mp) = 26(1− 2−2)(1− 2−4)(1− (−D/2))−3.
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Altogether, denoting by t the number of prime divisors of ∆K and χK(n) =
(
∆K

n

)
, the mass

of the genus is given by

M(LK , O(V )) =
3|∆K |5/2

27+t
ζ(2)ζ(4)L(3, χK).

Since we have ζ(2) = π2/6, ζ(4) = π4/90 and

|∆K |5/2L(3, χK)

π3
=

2

3
B3,χK

,

this simplifies to

M(LK , O(V )) =
B3,χK

2t−1 · 29 · 33 · 5
.

Next we consider the case D = 4m, m ≡ 1 mod 4. At p ̸= 2, the local isometry class is

Mp = H ⊕H ⊕
(
−2 0
0 −2m

)
.

If in addition p ∤ m, then Mp is unimodular and equivalent to 5(1)⊕ (4D). We have

w = 0, s = 1,

P = (1− p−2)(1− p−4)(1− p−6), E = (1 + χK(p)p
−3)−1.

Hence

αp(Mp) = (1− p−2)(1− p−4)(1− χK(p)p
−3).

For p|m and p ̸= 2, the Jordan decomposition is Mp = N0 ⊕ p ·N1 where by

N0 = (1)⊕ (1)⊕ (1)⊕ (1)⊕ (−2)

and N1 = (−m). We have

s = 2, w = 1, P = (1− p−2)(1− p−4),

and E = 1 (since rank(Nj) is odd and χ(Nj) = 1), and therefore

αp(Mp) = 2p(1− p−2)(1− p−4).

If p = 2, then Mp = N0 ⊕ 2N1 where N0 = H ⊕H and N1 =

(
−1 0
0 −m

)
. We have

q1 = n1 = 2, w = 3, P = (1− 2−2)(1− 2−4),

E−2 = 1, E−1 = 1, E0 = 1/2,

E1 = 1/2, E2 = 1/2, E3 = 1

and

E =
∏
j

E−1
j = 23,

and therefore

α2(M2) = 29(1− 2−2)(1− 2−4).

Denoting by t the number of prime divisors of ∆K , we obtain the mass

M(LK , O(V )) =
|∆K |5/2L(3, χK)

π3
× 1

2t−1 · 210 · 32 · 5
=

B3,χK

2t−1 · 29 · 33 · 5
.
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Finally consider the case ∆K = −4m where 2||m. Write m = 2m0. If p ̸= 2 and p ∤ m0, then
Mp is unimodular and we have

w = 0, s = 1, P = (1− p−2)(1− p−4)(1− p−6),

and Mp = N0 is hyperbolic if and only if the determinant is −1 mod 8, so

χ(N0) = χK(p), E = (1 + χK(p)p
−3)−1.

So we have
αp(Mp) = (1− p−2)(1− p−4)(1− χK(p)p

−3).

If p ̸= 2 and p|m0, then we have Mp = N0 ⊕ pN1, where N0 = H ⊕ H ⊕ (−2) and N1 =
(−4m0/p). We have

n1 = 5, n2 = 1, s = 2, w = 1,

P = (1− p−2)(1− p−4), χ(N0) = χ(N1) = 0, E = 1.

So we have
αp(Mp) = 2p(1− p−2)(1− p−4).

At p = 2, we have Mp = N0 ⊕ 2N1 ⊕ 4N2, where

N0 = H ⊕H, N1 = (−1), N2 = (−m0).

Hence
s = 3, n0 = 4, n1 = n2 = 1,

w = 4, q0 = 1, q1 = 1, q2 = 1, q = 3,

P = (1− 2−2)(1− 2−4),

E−2 = E−1 = 1, E0 = E1 = E2 = E3 = 1/2,

E4 = 1, E = 24.

Hence we have
α2(M2) = 210(1− 2−2(1− 2−4).

Altogether, ∏
p

αp(Mp)
−1 =

ζ(2)ζ(4)L(3, χK)

2t−1 · 210 ·m0

where t is as before. The mass of the genus is therefore

M(LK , O(V )) =
(8m0)

5/2L(3, χK)

π3
× 1

2t−1 · 210 · 32 · 5
=

B3,χK

2t−1 · 29 · 33 · 5
. □

For the spherical representation (ν, 0, 0) of SO(6) with even ν, the character of ±16 is
given by

(ν + 1)(ν + 2)2(ν + 3)

12
,

so multiplying double this to the mass of LK with respect to SO(V ), which is twice the mass
obtained in Proposition 12, we obtain the asymptotic dimension

dimMν(LK) ∼ ν4 · B3,χK

2t−129 · 34 · 5
= ν4 · B3,χK

2t−1 · 207360
, ν → ∞, ν even.

Now we consider spinor characters. Since the spinor norm of −16 is the same as D = |∆K |
(by [35] p.30, Exercise 1), we have spind0(−16) = −1 if and only if d0 is divisible by an
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odd number of prime factors. So for example, for an odd prime p|D, the main term of
Mν(LK) +Mν(LK , spinp) is the same as that of Mν(LK):

dimMν(LK) + dimMν(LK , spinp) ∼ ν4 · B3,χK

2t−1 · 29 · 34 · 5
.

Here the mass is doubled, but the kernel of spinp does not contain −16 and so the main term
only involves the contribution of 16 and not ±16. When ∆K = −4, then spin4(−16) = 1 and
we have

dimMν(LK) + dimMν(LK , spinp) ∼ ν4 · B3,χK

·28 · 34 · 5
.

In general, when ∆K ̸= −4, we have

dimMν(SpinLK) =
∑
d0|∆D

dimMν(LK , spind0) ∼ ν4 · B3,χK

29 · 34 · 5
,

where d0 runs over fundamental discriminants or 1.

6. Comparison with dimensions of Hermitian modular forms

6.1. Comparison of main terms. In this subsection, we will see that the main terms of
the trace formula for algebraic modular forms on SO(6) with arbitrary spin characters and
for Hermitian modular forms coincide. We also compare algebraic modular forms on SO(6)
without character and Hermitian modular forms for the maximal discrete extension Γ∗

K of
ΓK . These computations support our conjecture because the dimensions of the spaces of lifts
are of asymptotic order at most k3, while the orders of the main terms are of order k4. We
will also show that the dimensions are exactly equal in all cases where the actual dimensions
are known.

We abbreviate
Mν(Spin(LK)) =

∑
d|∆K

dimMν(LK , spind),

where d runs over squarefree positive integers for which d|∆K .

Proposition 13. The main terms of dimMν(Spin(LK)) and dimMν+4(ΓK) coincide. They
are equal to

B3,χK

29 · 34 · 5
(ν + 1)(ν + 2)2(ν + 3)

if ∆K ̸= −4 and
(ν + 1)(ν + 2)2(ν + 3)

69120
if ∆K = −4.

For ∆K = −4, there are no modular forms of odd weight and the formula for even weight
is twice what is predicted by the formula for general ∆K .

Let Γ∗
K be the largest discrete subgroup of SU(2, 2;C) that contains ΓK . As described in

Section 2.5, we have

Γ∗
K =

⋃
d|∆K

d squarefree

ΓKWd
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where Wd are certain Atkin–Lehner involutions, and [Γ∗
K : ΓK ] = 2t where t is the number

of prime discriminants dividing ∆K .

Proposition 14. The main terms of dimMν(LK) and dimMν+4(Γ
∗
K) coincide. They are

given by

B3,χK

2t−1 · 29 · 34 · 5
(ν + 1)(ν + 2)2(ν + 3),

if ∆K ̸= 4 and

(ν + 1)(ν + 2)2(ν + 3)

69120

if ∆K = −4.

Proof. We have i14 ∈ ΓKWm by Remark 2 of [38]. If K ̸= Q(
√
−1), then i14 ̸∈ ΓK and we

have

vol(H2/ΓK) = 2t−1 · vol(H2/Γ
∗
K).

If K = Q(
√
−1), then i14 ∈ ΓK and [Γ∗

K : ΓK ] = 2. The claim now follows from Proposition
13. □

When −∆K is an odd prime, then Γ∗
K = ΓK ∪ (i14)ΓK , so in this case

Mk(Γ
∗
K) =

{
Mk(ΓK) if k is even.

0 if k is odd.

Therefore
∞∑
k=0

dimMk(Γ
∗
K)t

k =
∞∑
k=0

dimM2k(ΓK)t
2k.

When K = Q(
√
−1), then we have

Γ∗
K = ΓK ∪

(
1 + i

2

)(
U 0
0 U

)
ΓK for U =

(
0 1
1 0

)
,

and this simplifies to

U(2, 2;OK) := U(2, 2;C) ∩M4(OK).

In this case,

∞∑
k=0

dimMk(Γ
∗
K)t

k =
∞∑
k=0

dimMk(U(2, 2;Ok))t
k

=
1 + t44

(1− t4)(1− t6)(1− t8)(1− t10)(1− t12)
.

The last equality is due to Aoki [3].
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6.2. Comparison of dimensions for small discriminants. Now we compare the dimen-
sions of Hermitian modular forms and algebraic modular forms when the discriminant is −3,
−4, −7, −8, or −11. These are the only cases where the dimensions of Hermitian modular
forms are known in all weights.

For each even k ≥ 6, we have one Siegel Eisenstein series, so the generating series of
dimensions of Eisenstein series of weight k ≥ 6 in Mk(ΓK) is given by

Eis =
t6

1− t2
.

We also have a non-cuspidal Hermitian modular form of weight 4, also an Eisenstein series
(although the naive definition of the Siegel Eisenstein series does not converge absolutely),
but it corresponds to the constant algebraic modular form of weight zero. The number of
Klingen-type Eisenstein series of weight k is equal to dimSk(SL2(Z)), so their generating
series is

K =
∞∑
k=0

dimSk(SL2(Z))tk =
t12

(1− t4)(1− t6)
.

The dimensions of the spaces of Miyawaki lifts from Sk(SL2(Z))× Sk−2(SL2(Z)) is

MW =
∞∑
k=0

(
dimSk(SL2(Z))× dimSk−2(SL2(Z))

)
tk =

t18

(1− t2)(1− t6)(1− t12)

In particular, the contributions Eis, K, MW are independent of ∆K .
There is also the conjectural Yoshida-type lift that produces algebraic modular forms.

These should never occur for discriminants −3 or −4. For discriminants ∆K = −7, −8
and −11 the only Yoshida-type lifts of weight ν involve eigenforms for SL2(Z) × SL2(Z) of
weight ν+3 and the unique CM eigenform of level Γ0(|∆K |) and weight three with quadratic
character. We therefore put

Y =
∞∑
ν=0

(
dimSν+3(SL2(Z))× dimSν+3(SL2(Z))

)
tν ,

which equals

Y =
t9(1 + t12)

(1− t4)(1− t6)(1− t12)
,

and should be the generating series of the numbers of Yoshida lifts for ∆K = −7,−8,−11.
The generating series of dimensions of algebraic modular forms for SO(6) can be computed

using Molien series as discussed earlier. The results are as follows:

(1) For ∆K = −3, we have

∞∑
ν=0

dimMν(LK)t
ν =

(1 + t14)(1 + t36)

(1− t6)(1− t8)(1− t10)(1− t12)(1− t18)
;

∞∑
ν=0

dimMν(LK , spin3)t
ν =

t5(1 + t4)(1 + t36)

(1− t6)(1− t8)(1− t10)(1− t12)(1− t18)
.
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(2) For ∆K = −4, we have

∞∑
ν=0

dimMν(LK)t
ν =

1 + t36

(1− t4)(1− t6)(1− t8)(1− t10)(1− t12)
;

∞∑
ν=0

dimMν(LK , spin2)t
ν =

t6 + t30

(1− t4)(1− t6)(1− t8)(1− t10)(1− t12)
.

(3) For ∆K = −7, we have

∞∑
ν=0

dimMν(LK)t
ν =

1 + t8 + t10 + t12 + t24 + t26 + t28 + t36

(1− t4)(1− t6)2(1− t10)(1− t14)
;

∞∑
ν=0

dimMν(LK , spin7)t
ν =

t3 + t5 + t7 + t15 + t21 + t29 + t31 + t33

(1− t4)(1− t6)2(1− t10)(1− t14)
.

(4) For ∆K = −8, we have

∞∑
ν=0

dimMν(LK)t
ν =

1 + t26

(1− t2)(1− t4)(1− t6)(1− t8)(1− t10)
;

∞∑
ν=0

dimMν(LK , spin2)t
ν =

t5 + t21

(1− t2)(1− t4)(1− t6)(1− t8)(1− t10)
.

(5) For ∆K = −11, we have

∞∑
ν=0

dimMν(LK)t
ν =

(1 + t6)(1 + t20)

(1− t2)(1− t4)(1− t6)(1− t8)(1− t10)
;

∞∑
ν=0

dimMν(LK , spin11)t
ν =

t(1 + t4)(1 + t20)

(1− t2)(1− t4)(1− t6)(1− t8)(1− t10)
.

Remark 15. The dimension formulas for discriminant ∆K = −3,−4,−7,−8 can be inter-
preted in terms of the Weyl groups of semisimple Lie algebras. The genera of rank six lattices
in these cases consist of a single class, represented by the root lattices of the Lie algebras of
type E6, C6, A6 and C5 ⊕ A1, respectively, and the orthogonal group is the Weyl groups of
the algebra. An algebraic modular form (for the group O(6)) is the same as a Weyl-invariant
harmonic polynomial. Here the root lattice of type Cn is the same as the root lattice of type
Dn, but the Weyl groups W (Cn) and W (Dn) are different. The Weyl-invariant polynomials
form a polynomial ring that is given explicitly by the Harish–Chandra isomorphism. This
explains the dimension formulas and it is also a useful point of view for calculations of eigen-
forms and their L-functions.

For example, the fundamental invariants of the Weyl group W (E6) are polynomials of
degree k = 2, 5, 6, 8, 9, 12. They can be chosen to have the form

pk =
27∑
i=1

ℓki , k ∈ {2, 5, 6, 8, 9, 12}
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where ℓi are 27 linear forms (essentially the 27 lines on a cubic surface in P3), see [40].
On the other hand, the polynomials of degrees 5, 6, 8, 9, 12 can be chosen to be harmonic,
such that they define algebraic modular forms for O(6) (with spinor character spin3 if the
degree is odd, and trivial character otherwise). To obtain an algebraic modular form with
the determinant character on O(6), one can take the Jacobian determinant

Ψ36 = det
(
∇p2,∇p5,∇p6,∇p8,∇p9,∇p12

)
which has degree 36. This has minimal degree among polynomials that are invariant up to
the determinant character, so it is automatically harmonic.
The spaces of algebraic modular forms in fact have a graded ring structure, with multiplica-
tion defined by

f × g := πhar(fg)

where πhar is the harmonic projection (i.e. πhar(f) is the unique harmonic polynomial for
which f − πhar(f) is a multiple of the quadratic form ⟨x, x⟩). Since p5, p6, p8, p9, p12 and
⟨−,−⟩ (which is essentially p2) are algebraically independent, it follows that p5, p6, p8, p9, p12
freely generate the ring M∗(O(E6), spin∗), and that Ψ36 generates the module of forms with
the determinant character. From this we obtain

∞∑
ν=0

dimMν(Spin(LK))t
ν =

1 + t36

(1− t5)(1− t6)(1− t8)(1− t9)(1− t12)
.

The computation for the other root lattices is similar.

Remark 16. Conjecture 9 predicts that the Jacobian determinant Ψ36 corresponds to a
Hermitian cusp form eigenform of weight 40 for the field K = Q(

√
−3), with all Hecke

eigenvalues in Q. By computing Hermitian modular forms for Q(
√
−3) in terms of the

generators described in [11], we were able to split the space of cusp forms of weight 40 into
eigenforms and we found that there really is a rational eigenform in weight 40. The beginning
of its Fourier series is available on the second author’s webpage [1]; a remarkable number of
its Fourier coefficients turn out to vanish.

Theorem 17. Let ∆K ∈ {−3,−4,−7,−8,−11}. The dimensions of modular forms are
related as follows:

∞∑
ν=0

dimMν+4(ΓK)t
ν+4 − Eis−K−Miyawaki

=
∞∑
ν=0

(dimMν(Spin(LK)))t
ν+4 − dimS3(Γ0(|∆K |), χk)× Y · t4,

and
∞∑
ν=0

dimMν+4(Γ
∗
K)t

ν+4 − Eis−K−Miyawaki =
∞∑
ν=0

dimMν(LK)t
ν+4.

Remark. We have dimS3(Γ0(|∆K |), χK) = 1 if ∆K = −7, −8, −11 and dimS3(Γ0(|∆K |), χK) =
0 if ∆K = −3, −4.
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Appendix A. The dimension formula for Q(
√
−2)

A set of generators for the graded ring of Hermitian modular forms over Q(
√
−2) was computed by Dern

and Krieg [12], but they do not give a formula for the dimensions of spaces of modular forms and it does
not seem to be easy to derive it from their work. However, the generating series for dimMk(ΓK) can be
computed directly by means of Jacobi forms. This is an application of the argument of section 6 of [57]
which computes dimensions of spaces of modular forms associated to reducible root lattices.

The Fourier–Jacobi expansion of an arbitrary modular form for ΓK takes the form

F
((

τ z1
z2 w

))
=

∞∑
n=0

fn(τ, z1, z2)e
2πinw,

where each fn is a Hermitian Jacobi form of index n, which is essentially the same (up to a change of
variables) as a Jacobi form of index n on the lattice OK (cf. [24]); more precisely, the functions

fn(τ, w1, w2) := fn

(
τ,
z1 + z2

2
,
z1 − z2

2i

)
are Jacobi forms of lattice index. By abuse of notation we denote the latter Jacobi form by fn also. For
K = Q(

√
−2) we have an isometry OK

∼= A1 ⊕A1(2) =: L.

Note that if F (ZT ) = ε(−1)kF (Z) with ε ∈ {±1} then the transformations under Z 7→ ZT and under the
Möbius transformation M = diag(1,−1, 1,−1) ∈ ΓK yield

fn(τ, w1,−w2) = ε(−1)kfn(τ, w1, w2), fn(τ,−w1, w2) = ε · fn(τ, w1, w2).
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If f is symmetric, then the Jacobi forms fn are invariant under the Weyl group W (L); moreover the
Fourier series of the first nonzero term fN vanishes to q-order N . By Theorem 2.4 of [56] it can be written
uniquely as a C[E4, E6]-linear combination of forms

fN (τ, w1, w2) = ∆N (τ)ψ1(τ, w1)ψ2(τ, w2),

where ψ1 is an even weak Jacobi form of index N , and where ψ2 is a weak Jacobi form for the lattice A1(2)
and index N (or equivalently, a weak Jacobi form in the usual sense of index 2N), which are both monomials
in the basic weak Jacobi forms ϕ−2,1 and ϕ0,1 of index one and the basic weak Jacobi form ϕ−1,2 of index
two. (For the ring structure of weak Jacobi forms and the three generators ϕk,m see Chapter 9 of [15].)

Conversely every such Jacobi form arises as the leading term of the Fourier–Jacobi series of a holomorphic
Hermitian modular form F : one can construct F as a product of Gritsenko–Maass lifts. In the terminology
of [57], this is possible because the lattice L satisfies the Norm2-condition.

If on the other hand f is skew-symmetric, then the leading Fourier–Jacobi coefficient fN is odd with
respect to its first elliptic variable and it vanishes to q-order at least N +1, so can be expressed uniquely as
a C[E4, E6]-linear combination of Jacobi forms

fN (τ, w1, w2) = ∆N+1(τ)ϕ−1,2(τ, w1)ψ1(τ, w1)ψ2(τ, w2),

where ψ1 and ψ2 are monomials in ϕ−2,1 and ϕ0,1 of index N − 2 and 2N , respectively, and where ϕ−1,2 is
the weak Jacobi form of weight (−1) and index 2 defined in [15]. Conversely, one can construct holomorphic
Hermitian modular forms with any such leading coefficient fN by multiplying Borcherds products with cer-
tain singular Gritsenko lifts, or quotients of holomorphic Hermitian modular forms; this was done in [12].

Note that

∞∑
k=0

∞∑
m=0

dim Jweak
k,m tkxm =

1 + x2/t

(1− t4)(1− t6)(1− x)(1− x/t2)
, |x| < |t|2 < 1.

From the above observations we have

1

(1− t4)(1− t6)

∞∑
k=0

dimM sym
k (ΓK)tk

=

∞∑
N=0

∞∑
a=0

∞∑
b=0

(
dim Jweak,even

a,N

)
·
(
dim Jweak

b,2N

)
ta+b+12N

=
1

2πi

∮ ( ∞∑
a=0

∞∑
m=0

dim Jweak,even
a,m tax2m

)( ∞∑
b=0

∞∑
n=0

dim Jweak
b,n tb+6nx−n

) dx

x

=
1

(1− t4)2(1− t6)2
· 1

2πi

∮
(1 + x−2t11)

(1− x2)(1− t6/x)(1− x2/t2)(1− t4/x)

dx

x

=:
1

(1− t4)2(1− t6)2
· 1

2πi

∮
ω.

For fixed t, we integrate along a circle in the x-plane centered at 0 of any radius ε for which |t|4 < ε < |t|
(i.e. within the annulus on which the integrand converges as a Laurent series). Therefore only the singularities
at x ∈ {0, t4, t6} contribute to the dimension integral. We have

Resx=0(ω) = t, Resx=t4(ω) =
1

(1− t2)(1− t3)(1− t8)
, Resx=t6(ω) = − t

(1− t)(1− t10)(1− t12)
,

hence

∞∑
k=0

dimM sym
k (ΓK)tk =

1

(1− t4)(1− t6)

[
t+

1

(1− t2)(1− t3)(1− t8)
− t

(1− t)(1− t10)(1− t12)

]
.
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By an analogous computation,

1

(1− t4)(1− t6)

∞∑
k=0

dimM skew
k (ΓK)tk

=

∞∑
N=0

∞∑
a=0

∞∑
b=0

(
dim Jweak,odd

a,N

)
·
(
dim Jweak

b,2N

)
ta+b+12N+12

=
t12

(1− t4)2(1− t6)2
· 1

2πi

∮
x4t−1(1 + x−2t11)

(1− x2)(1− t6/x)(1− x2/t2)(1− t4/x)

dx

x
.

The integrand now has no pole at x = 0 and, compared with the symmetric case, the residues at the poles
x = t4 and x = t6 are multiplied by t15 and t23, respectively. Therefore

∞∑
k=0

dimM skew
k (ΓK)tk =

t12

(1− t4)(1− t6)

[ t15

(1− t2)(1− t3)(1− t8)
− t24

(1− t)(1− t10)(1− t12)

]
.

Altogether we have
∞∑
k=0

dimMk(ΓK)tk =
1

(1− t4)(1− t6)

[
t+

1 + t27

(1− t2)(1− t3)(1− t8)
− t+ t36

(1− t)(1− t10)(1− t12)

]
.

Appendix B. Tables of Hermitian eigenforms

In the appendix, we describe the decomposition ofMk(ΓK),K = Q(
√
∆) for the five smallest discriminants

∆ as predicted by Conjecture 5. In particular, we work out the dimensions of the subspaces of Miyawaki
lifts and those which should correspond to algebraic modular forms on SO(6) twisted by characters.

Hermitian eigenforms that are not cusp forms are of two types: Klingen Eisenstein series, which are
induced from cusp forms on SL2(Z), and the true Eisenstein series, which is the Gritsenko–Maass lift of a
Jacobi Eisenstein series (of lattice index OK). The dimensions of these spaces are

dimMKlingen
k = dimSk(SL2(Z)),

and dimMEis
k = 1 (if k ≥ 4 is even) or dimMEis

k = 0 otherwise. For Eisenstein series (of either type) on
unitary groups see [51].

Maass(χ) stands for Hermitian modular forms that (conjecturally) correspond to eigenforms on SO(6)
with nonzero image under the theta map and spin character χ. (If χ = 1 then we omit it.) The character χ
equivalently describes the eigenvalues under the Atkin–Lehner involutions Wd. By a theorem of Wernz [59],
these forms span the Sugano Maass space as χ runs through spinor characters and the subspace with trivial
spin character is exactly Krieg’s Maass space. An explicit dimension formula for the Maass space was given
by Sugano [52]; see also Haverkamp [24].

“Miyawaki” is spanned by Miyawaki lifts, or those eigenforms whose degree six L-functions factor as

L(F, s) = ζK(s− k + 2) · L(f ⊗ g; s),

where f ∈ Sk(SL2(Z)) and g ∈ Sk−2(SL2(Z)).
Gk(χ) (for “general”) stands for non-Maass cuspidal Hermitian eigenforms which (conjecturally) corre-

spond to algebraic modular forms on SO(6) of weight (k − 4) (twisted by χ, a product of spinor characters
and possibly det) that belong to the kernel of the theta map. These are expected to be orthogonal to all
Maass and Miyawaki lifts.

Yk represents (conjectural) Yoshida lifts of weight (k − 4), which are automorphic forms on SO(6) that
should not have an associated Hermitian modular form (and therefore do not contribute to the total dimen-
sion). These forms are listed only for completeness.

In all cases, we found that the conjectural decomposition coincides exactly with the factorization of the
minimal polynomial of a single Hecke operator Tp over Q. (Namely the operator T2 if 2 ∤ ∆K and T3
otherwise. We use the smallest p with p ∤ ∆K because its action on modular forms can be computed with
the smallest number of Fourier coefficients.)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Eisenstein 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Klingen 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1
Maass 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 2
Maass(spin3) 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0
Miyawaki 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G(spin3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
G(det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G(spin3 ⊗ det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 0 0 0 1 0 1 0 1 1 2 0 3 1 2 1 4 1 5 2 5

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Eisenstein 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Klingen 0 1 0 2 0 1 0 2 0 2 0 2 0 2 0 3 0 2 0 3
Maass 0 3 0 3 0 3 0 4 0 4 0 4 0 5 0 5 0 5 0 6
Maass(spin3) 2 0 1 0 2 0 2 0 2 0 2 0 3 0 2 0 3 0 3 0
Miyawaki 0 1 0 2 0 2 0 2 0 4 0 4 0 4 0 6 0 6 0 6
G 0 1 0 1 0 1 0 3 0 3 0 3 6 6 0 7 0 7 0 11
G(spin3) 1 0 1 0 2 0 3 0 3 0 5 0 0 0 6 0 9 0 11 0
G(det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
G(spin3 ⊗ det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 3 7 2 9 4 8 5 12 5 14 7 14 9 18 8 22 12 21 14 28

Figure 1. Hermitian eigenforms for discriminant −3. Note that the first eigenform
with spinor character spin3 ⊗ det occurs in weight 45 and therefore does not appear
in the table.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Eisenstein 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Klingen 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1
Maass 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 3 0 3 0 4
Maass(spin2) 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1
Miyawaki 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2
G(spin2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
G(det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G(spin2 ⊗ det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 0 0 0 1 0 1 0 2 0 3 0 4 0 4 0 7 0 8 0 11

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Eisenstein 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Klingen 0 1 0 2 0 1 0 2 0 2 0 2 0 2 0 3 0 2 0 3
Maass 0 4 0 5 0 5 0 6 0 6 0 7 0 7 0 8 0 8 0 9
Maass(spin2) 0 2 0 1 0 2 0 2 0 2 0 2 0 3 0 2 0 3 0 3
Miyawaki 0 1 0 2 0 2 0 2 0 4 0 4 0 4 0 6 0 6 0 6
G 0 2 0 4 0 4 0 8 0 7 0 12 0 13 0 18 0 19 0 27
G(spin2) 0 2 0 2 0 4 0 4 0 7 0 7 0 11 0 11 0 16 0 17
G(det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
G(spin2 ⊗ det) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
Total 0 13 0 17 0 19 0 25 0 29 0 35 0 42 0 49 0 56 0 68

Figure 2. Hermitian eigenforms for discriminant −4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Eisenstein 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Klingen 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1
Maass 0 0 0 0 0 0 0 1 0 2 0 2 0 3 0 4 0 4 0 5
Maass(spin7) 0 0 0 0 0 0 1 0 1 0 2 0 2 0 3 0 3 0 4 0
Miyawaki 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
G 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 3 0 5
G(spin7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 4 0
G(det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G(spin7 ⊗ det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
Total 0 0 0 1 0 1 1 2 1 3 2 4 2 5 4 8 5 10 8 13

Figure 3. Hermitian eigenforms for discriminant −7
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Eisenstein 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Klingen 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1
Maass 0 0 0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8
Maass(spin2) 0 0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 2 0
Miyawaki 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
G 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 4 0 6 0 10
G(spin2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 4 0
G(det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G(spin2 ⊗ det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
Total 0 0 0 1 0 2 0 3 1 4 1 7 1 8 3 12 4 16 6 21

Figure 4. Hermitian eigenforms for discriminant −8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Eisenstein 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Klingen 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1
Maass 0 0 0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8
Maass(spin11) 0 0 0 0 1 0 1 0 3 0 3 0 4 0 5 0 6 0 6 0
Miyawaki 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
G 0 0 0 0 0 0 0 0 0 1 0 2 0 4 0 7 0 11 0 17
G(spin11) 0 0 0 0 0 0 0 0 0 0 1 0 2 0 5 0 8 0 13 0
G(det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G(spin11 ⊗ det) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
Total 0 0 0 1 1 2 1 3 3 5 4 8 6 10 10 15 14 21 19 28

Figure 5. Hermitian eigenforms for discriminant −11
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Appendix C. Modular forms of small weight

Additional evidence for Conjecture 9 comes from comparing modular forms of low weight as the discrim-
inant varies.

Hermitian modular forms of weight four that do not belong to the Maass space are relatively rare for
small discriminants. Therefore, even though no general formula for dimM4(ΓK) is known, we expect it to
be close to the dimension dim J4(O4) of the space of Jacobi forms which lift to the Maass space as long as
|∆K | is not too large.

The following table shows that dim J4(OK) is indeed very close to dimM0(Spin(LK)):

−∆ 3 4 7 8 11 15 19 20 23 24 31 35 39
dim J4(OK) 1 1 1 1 1 1 2 1 1 2 2 2 2
dimM0(Spin(LK)) 1 1 1 1 1 1 2 1 1 2 2 2 2

−∆ 40 43 47 51 52 55 56 59 67 68 71 79 83
dim J4(OK) 3 4 2 4 4 3 3 4 6 4 3 5 6
dimM0(Spin(LK)) 3 4 2 4 4 3 3 4 6 4 3 5 6

−D 84 87 88 91 95 103 104 107 111 115 116 120 123
dim J4(OK) 5 5 7 7 4 7 6 8 6 8 7 7 10
dimM0(Spin(LK)) 5 5 7 8 4 7 7 8 6 9 7 7 10

−D 127 131 132 136 139 143 148 151 152 155 159 163 164
dim J4(OK) 9 9 9 10 11 7 12 10 10 10 9 14 10
dimM0(Spin(LK)) 9 10 9 12 13 8 12 11 11 11 10 16 11

Figure 6. Dimensions of Hermitian-Jacobi forms of weight 4 and algebraic modular
forms of weight 0

Note that J4(OK) and M0(Spin(LK)) both include Eisenstein series. The spaces of cusp forms are always
one dimension smaller.

The table shows that dimM0(Spin(LK)) differs from dim J4(OK) only for −∆ = 91, 104, 115, 131, ... In
these cases, there is a unique algebraic modular eigenform in the kernel of the theta map. These match the
conjecture, however:

(1) −∆ = 91 factors as 7 · 13. For the algebraic eigenform F in the kernel of the theta map, E. Assaf
computed the Euler factors of the standard L-function at small primes p ̸= 7, 13 for us. Setting X = p−s,
the Euler factors decompose as follows:

L2(F ;X) = (1 + 3X + 16X2)(1 + 6X + 16X2)(1− 4X)(1 + 4X);

L3(F ;X) = (1 + 9X + 81X2)(1− 81X2)(1− 9X)2;

L5(F ;X) = (1− 39X + 625X2)(1− 625X2)2;

L11(F ;X) = (1− 198X + 14641X2)(1 + 66X + 14641X2)(1− 121X)(1 + 121X);

L17(F ;X) = (1 + 569X + 83521X2)(1− 83521X2)(1− 289X)2.

Besides the factors (1 − p2X) and (1 − χ7(p)p
2X), where χ7(n) =

(
n
7

)
is the quadratic residue symbol,

there are factors

1− papX + p4X2, 1− bpX + p4X2,

where ap is the pth Fourier coefficient of

η3(τ)η3(7τ) = q − 3q2 + 5q4 − 7q7 − 3q8 + 9q9 − 6q11 ± ...

and where 1− bpX + p4X2 are the Euler factors of the Asai L-function of the (unique) Hilbert cusp form of

parallel weight (3, 3) and level 1 · OF attached to the number field F = Q(
√
13). This strongly suggests that
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F is a Yoshida lift, and we do not expect to find a corresponding Hermitian modular form.

(2) For −∆ = 104 = 8 ·13, the situation is similar: the kernel of the theta map is spanned by an eigenform
that appears to be a Yoshida lift of the same Hilbert modular form and the level 8 eigenform discussed in 5.
The missing eigenform for −∆ = 143 = 11 · 13 is also apparently a Yoshida lift.

(3) For −∆ = 115 = 5 · 23, one can use Borcherds products to exhibit a Hermitian cusp form of weight
four that does not belong to the Maass space. For the theory of Borcherds products, specialized to Hermitian
modular forms, we refer to [10]. The discriminant group O′

K/OK
∼= Z/115Z is cyclic; denoting a generator

by ℓ, one can use the Sage package [61] to show that there exists a nearly-holomorphic modular form for the
appropriate Weil representation whose principal part at ∞ is:

8e0 + 5q−1/115(eℓ + e−ℓ) + 4q−1/115(e24ℓ + e−24ℓ) + 5q−4/115(e2ℓ + e−2ℓ)− q−6/115(e11ℓ + e−11ℓ)

+ 4q−9/115(e3ℓ + e−3ℓ) + q−16/115(e4ℓ + e19ℓ + e−19ℓ + e−4ℓ) + q−24/115(e22ℓ + e−22ℓ)

+ q−5/23(e5ℓ + e−5ℓ) + q−29/115(e57ℓ + e−57ℓ) + q−7/23(e55ℓ + e−55ℓ).

The Borcherds product that arises from this is holomorphic of weight four and has vanishing first Fourier–
Jacobi coefficient, hence cannot belong to the Maass space. This proves dimM4(ΓK) ≥ 9.

(4) For −∆K = 131 we construct a Borcherds product of weight four by a similar method. If ℓ is a
generator of the discriminant group O′

K/OK
∼= Z/131Z then we find a nearly-holomorphic modular form

whose principal part at ∞ is

8e0 + 6q−1/131(eℓ + e−ℓ) + q−3/131(e38ℓ + e−38ℓ) + 4q−4/131(e2ℓ + e−2ℓ) + q−5/131(e23ℓ + e−23ℓ)

+ 3q−91/131(e3ℓ + e−3ℓ) + q−12/131(e55ℓ + e−55ℓ) + 2q−13/131(e12ℓ + e−12ℓ) + 2q−15/131(e43ℓ + e−43ℓ)

+ q−16/131(e4ℓ + e−4ℓ) + q−25/131(e5ℓ + e−5ℓ) + q−33/131(e65ℓ + e−65ℓ)

+ q−35/131(e64ℓ + e−64ℓ) + q−36/131(e6ℓ + e−6ℓ).

The Borcherds product it produces has weight four and vanishing first Fourier–Jacobi coefficient so it does
not belong to the Maass space.

The discrepancies for larger |∆K | can apparently be explained similarly. For example, for −∆ = 136 =
8 · 17, there are two algebraic modular forms of weight 0 that do not correspond to Maass lifts. One has
spin character spin34 and is apparently a Yoshida lift (from a Hilbert cusp form of parallel weight (3, 3) for

Q(
√
17) and the CM form of weight 3 and level 8); as for the other form, which has trivial spin character,

one can use Borcherds products to show that there is a Hermitian cusp form, not belonging to the Maass
space, of weight 4 for the field Q(

√
−136).

Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyama
1-1, Toyonaka, Osaka, 560-0043 Japan

Email address: ibukiyam@math.sci.osaka-u.ac.jp

Institut für Mathematik, Universität Heidelberg, 69120 Heidelberg, Germany
Email address: bwilliams@mathi.uni-heidelberg.de

41


	1. Introduction
	2. Hermitian modular forms of degree two
	2.1. Hermitian modular forms
	2.2. Hecke operators
	2.3. Formulas for Hecke operators
	2.4. Liftings of elliptic modular forms
	2.5. Atkin–Lehner theory
	2.6. Dimensions

	3. Algebraic modular forms
	3.1. Algebraic modular forms on SO
	3.2. Hecke operators on algebraic modular forms
	3.3. L-functions for orthogonal modular forms
	3.4. The theta map

	4. Conjectures
	5. The mass formula
	6. Comparison with dimensions of Hermitian modular forms
	6.1. Comparison of main terms
	6.2. Comparison of dimensions for small discriminants

	References
	Appendix A. The dimension formula for QQ(sqrt -2)
	Appendix B. Tables of Hermitian eigenforms
	Appendix C. Modular forms of small weight

