On Hermitian Eisenstein Series of Degree 2

by

Adrian Hauffe-Waschbüsch ${ }^{1}$, Aloys Krieg ${ }^{2}$ and Brandon Williams ${ }^{3}$

May 2022

Abstract

We consider the Hermitian Eisenstein series $E_{k}^{(\mathbb{K})}$ of degree 2 and weight k associated with an imaginary-quadratic number field \mathbb{K} and determine the influence of \mathbb{K} on the arithmetic and the growth of its Fourier coefficients. We find that they satisfy the identity $E_{4}^{(\mathbb{K})^{2}}=E_{8}^{(\mathbb{K})}$, which is well-known for Siegel modular forms of degree 2 , if and only if $\mathbb{K}=\mathbb{Q}(\sqrt{-3})$. As an application, we show that the Eisenstein series $E_{k}^{(\mathbb{K})}$, $k=4,6,8,10,12$ are algebraically independent whenever $\mathbb{K} \neq \mathbb{Q}(\sqrt{-3})$. The difference between the Siegel and the restriction of the Hermitian to the Siegel half-space is a cusp form in the Maaß space that does not vanish identically for sufficiently large weight; however, when the weight is fixed, we will see that it tends to 0 as the discriminant tends to $-\infty$. Finally, we show that these forms generate the space of cusp forms in the Maaß Spezialschar as a module over the Hecke algebra as \mathbb{K} varies over imaginaryquadratic number fields.

Keywords: Hermitian Eisenstein series, Siegel Eisenstein series, Maaß space
Classification MSC 2020: 11F46, 11F55

[^0]
1 Introduction

Eisenstein series are the most common examples of modular forms in several variables. In the case of Hermitian modular forms associated with an imaginary-quadratic number field \mathbb{K}, they were introduced by H . Braun [2]. In this paper we consider Hermitian Eisenstein series of degree 2. Its Fourier expansion is determined by the Maaß condition and has been worked out explicitly (cf. [16], [10]).
This knowledge leads to new insights on the influence of \mathbb{K} on the arithmetic and the growth of the Fourier coefficients. We will demonstrate that the Eisenstein series $E_{k}^{(\mathbb{K})}$ satisfy the identity $E_{4}^{(\mathbb{K})^{2}}=E_{8}^{(\mathbb{K})}$, whose analogue for Siegel modular forms of degree 2 is well known, if and only if $\mathbb{K}=\mathbb{Q}(\sqrt{-3})$. This allows us to show that the Eisenstein series $E_{k}^{(\mathbb{K})}, k=4,6,8,10,12$, are algebraically independent whenever $\mathbb{K} \neq \mathbb{Q}(\sqrt{-3})$.

Finally we consider the difference between $E_{k}^{(\mathbb{K})}$ restricted to the Siegel half-space and the Siegel Eisenstein series of weight k. This is a Siegel cusp form in the Maaß space. When the weight k is fixed, its limit is 0 as the discriminant of \mathbb{K} tends to $-\infty$. On the other hand, it does not vanish identically whenever the weight is sufficiently large. Moreover the vanishing of the above difference can be characterized by the vanishing of a Shimura lift. This allows us to show that the subspace of cusp forms in the Maaß space is generated by these restrictions as a module over the Hecke algebra, when \mathbb{K} varies over all imaginary-quadratic number fields.

2 An identity in weight 8

The Hermitian half-space \mathbb{H}_{2} and the Siegel half-space \mathbb{S}_{2} of degree 2 are given by

$$
\mathbb{H}_{2}:=\left\{Z \in \mathbb{C}^{2 \times 2} ; \frac{1}{2 i}\left(Z-\bar{Z}^{t r}\right)>0\right\} \supset \mathbb{S}_{2}:=\left\{Z \in \mathbb{H}_{2} ; Z=Z^{t r}\right\} .
$$

Throughout the paper we let \mathbb{K} be an imaginary-quadratic number field of discriminant $\Delta=\Delta_{\mathbb{K}}$ with ring of integers $\mathcal{O}_{\mathbb{K}}$ and inverse different $\mathcal{O}_{\mathbb{K}}^{\sharp}=\mathcal{O}_{\mathbb{K}} / \sqrt{\Delta_{\mathbb{K}}}$. If D is a fundamental discriminant, let χ_{D} denote the associated Dirichlet character; in particular, $\chi_{\mathbb{K}}=\chi_{\Delta}$. The Hermitian modular group of degree 2 is

$$
\Gamma_{2}^{(\mathbb{K})}:=\left\{M \in \mathcal{O}_{\mathbb{K}}^{4 \times 4} ; \bar{M}^{t r} J M=J, \operatorname{det} M=1\right\}, J=\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right), I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Then

$$
\Gamma_{2}:=\Gamma_{2}^{(\mathbb{K})} \cap \mathbb{R}^{4 \times 4}
$$

is the Siegel modular group of degree 2. The space $\mathcal{M}_{k}\left(\Gamma_{2}^{(\mathbb{K})}\right)$ of Hermitian modular forms of weight k consists of all holomorphic functions $F: \mathbb{H}_{2} \rightarrow \mathbb{C}$ satisfying

$$
F\left((A Z+B)(C Z+D)^{-1}\right)=\operatorname{det}(C Z+D)^{k} F(Z) \text { for all }\left(\begin{array}{c}
A \\
C \\
D
\end{array}\right) \in \Gamma_{2}^{(\mathbb{K})} .
$$

Any such F has a Fourier expansion of the form

$$
F(Z)=\sum_{T \in \Lambda_{2}, T \geqslant 0} \alpha_{F}(T) e^{2 \pi i \operatorname{trace}(T Z)},
$$

where

$$
\Lambda_{2}=\left\{T=\left(\begin{array}{cc}
n & t \\
\bar{t} & m
\end{array}\right) ; m, n \in \mathbb{N}_{0}, t \in \mathcal{O}_{\mathbb{K}}^{\sharp}\right\} .
$$

If $\varepsilon(T):=\max \left\{\ell \in \mathbb{N} ; \frac{1}{\ell} T \in \Lambda_{2}\right\}$ for $T \neq 0$, we can define the Hermitian Eisenstein series of even weight $k \geqslant 4$ due to [16] and [10] as a Maaß lift via
(1) $\quad E_{k}^{(\mathbb{K})}(Z)=1+\sum_{0 \neq T \in \Lambda_{2}, T \geqslant 0} \sum_{d \mid \varepsilon(T)} d^{k-1} \alpha_{k}^{*}\left(|\Delta| \operatorname{det} T / d^{2}\right) e^{2 \pi i \operatorname{trace}(T Z)}, \quad Z \in \mathbb{H}_{2}$,
where $\alpha_{k}^{*}=\alpha_{k, \Delta}^{*}$ is given by

$$
\alpha_{k}^{*}(\ell)= \begin{cases}0, & \text { if } \ell \neq 0, a_{\Delta}(\ell)=0 \tag{2}\\ -2 k / B_{k}, & \text { if } \ell=0 \\ r_{k, \Delta} \sum_{t \mid \ell} \varepsilon_{t, \ell}^{(\Delta)}(\ell / t)^{k-2}, & \text { if } \ell>0, a_{\Delta}(\ell) \neq 0\end{cases}
$$

where

$$
\begin{align*}
r_{k, \Delta} & =\frac{-4 k(k-1)}{B_{k} B_{k-1, \chi}}>0, \\
\varepsilon_{t, \ell}^{(\Delta)} & =\frac{1}{a_{\Delta}(\ell)} \sum_{\substack{D_{1} D_{2}=\Delta \\
D_{j} \text { fund. discr. }}} \chi_{D_{1}}(t) \chi_{D_{2}}(-\ell / t), \tag{3}\\
a_{\Delta}(\ell) & =\sharp\left\{u: \mathcal{O}_{\mathbb{K}}^{\sharp} / \mathcal{O}_{\mathbb{K}} ; \Delta u \bar{u} \equiv \ell \bmod \Delta\right\}=\prod_{j=1}^{r}\left(1+\chi_{j}(-\ell)\right),
\end{align*}
$$

if $\Delta=\Delta_{1} \ldots \cdot \Delta_{r}$ is the decomposition into prime discriminants and $\chi_{j}=\chi_{\Delta_{j}}$. If $\ell \in \mathbb{N}$ and $a_{\Delta}(\ell)>0$, then any $t \mid \ell$ satisfies

$$
\begin{align*}
\varepsilon_{t, \ell}^{(\Delta)} & =\prod_{j=1}^{r} \frac{\chi_{j}(t)+\chi_{j}(-\ell / t)}{1+\chi_{j}(-\ell)} \tag{4}\\
& =\prod_{j: \operatorname{gdd}\left(t, \Delta_{j}\right)=1} \chi_{j}(t) \cdot \prod_{j: \operatorname{gdd}\left(t, \Delta_{j}\right)>1} \chi_{j}(-\ell / t) .
\end{align*}
$$

If $k>4$ is even, we have the absolutely convergent series

$$
E_{k}^{(\mathbb{K})}(Z)=\sum_{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right):\left(\begin{array}{c}
* \\
0 \\
*
\end{array}\right) \backslash \Gamma_{2}^{(\mathbb{K})}} \operatorname{det}(C Z+D)^{-k}, \quad Z \in \mathbb{H}_{2} .
$$

We derive a first result on the growth and the arithmetic of the Fourier coefficients depending on \mathbb{K}.

Theorem 1. Let \mathbb{K} be an imaginary-quadratic number field and let $k \geqslant 4$ be even. Then
a) $\varepsilon_{t, \ell}^{(\Delta)}=\chi_{D_{t}^{\prime}}(t) \chi_{D_{t}}(-\ell / t)$
holds for all $t \mid \ell, \ell \in \mathbb{N}, a_{\Delta}(\ell)>0$, where D_{t}, D_{t}^{\prime} are fundamental discriminants satisfying $D_{t} D_{t}^{\prime}=\Delta,\left|D_{t}\right|=\operatorname{gcd}\left(t^{\infty}, \Delta\right)$.
b) $0<r_{k, \Delta}(2-\zeta(k-2)) \ell^{k-2} \leqslant \alpha_{k, \Delta}^{*}(\ell) \leqslant r_{k, \Delta} \zeta(k-2) \ell^{k-2}$
holds for all $\ell \in \mathbb{N}$ with $a_{\Delta}(\ell)>0$.
c) One has

$$
\begin{aligned}
0 & <\frac{(2 \pi)^{2 k-1}}{\zeta(k-1) \zeta(k)(k-2)!(k-1)!} \cdot \frac{1}{|\Delta|^{k-3 / 2}} \\
& \leqslant r_{k, \Delta} \leqslant \frac{(2 \pi)^{2 k-1}}{(2-\zeta(k-1)) \zeta(k)(k-2)!(k-1)!} \cdot \frac{1}{|\Delta|^{k-3 / 2}}
\end{aligned}
$$

d) If $\ell_{1}, \ell_{2} \in \mathbb{N}$ are coprime with $a_{\Delta}\left(\ell_{j}\right)>0$ and $\operatorname{gcd}\left(\ell_{1} \ell_{2}, \Delta\right)=1$, then

$$
\alpha_{k, \Delta}^{*}\left(\ell_{1}\right) \cdot \alpha_{k, \Delta}^{*}\left(\ell_{2}\right)=r_{k, \Delta} \cdot \alpha_{k, \Delta}^{*}\left(\ell_{1} \ell_{2}\right)
$$

Proof. We observe that

$$
\operatorname{sgn}\left(B_{k} B_{k-1, \chi}\right)=\chi_{\mathbb{K}}(-1)=-1
$$

$$
\begin{equation*}
\left|B_{k}\right|=\frac{2 k!\zeta(k)}{(2 \pi)^{k}} \tag{5}
\end{equation*}
$$

(6) $\quad \frac{2(k-1)!|\Delta|^{k-3 / 2}}{(2 \pi)^{k-1}}(2-\zeta(k-1)) \leqslant\left|B_{k-1, \chi}\right| \leqslant \frac{2(k-1)!|\Delta|^{k-3 / 2}}{(2 \pi)^{k-1}} \zeta(k-1)$,

$$
\varepsilon_{t, \ell}^{(\Delta)}=\chi_{\mathbb{K}}(t), \text { if } \operatorname{gcd}(t, \Delta)=1
$$

Then the claim follows from (2), (3) and (4).

Inserting estimates for the Riemann zeta function we get

$$
\begin{align*}
& \frac{8792}{\sqrt{|\Delta|}} \leqslant \alpha_{4}^{*}(|\Delta|) \leqslant \frac{61362}{\sqrt{|\Delta|}}, \\
& \frac{181995}{\sqrt{|\Delta|}} \leqslant \alpha_{6}^{*}(|\Delta|) \leqslant \frac{231109}{\sqrt{|\Delta|}}, \\
& \frac{251164}{\sqrt{|\Delta|}} \leqslant \alpha_{8}^{*}(|\Delta|) \leqslant \frac{264410}{\sqrt{|\Delta|}}, \tag{7}\\
& \frac{99324}{\sqrt{|\Delta|}} \leqslant \alpha_{10}^{*}(|\Delta|) \leqslant \frac{100541}{\sqrt{|\Delta|}}, \\
& \frac{15720}{\sqrt{|\Delta|}} \leqslant \alpha_{12}^{*}(|\Delta|) \leqslant \frac{15768}{\sqrt{|\Delta|}} .
\end{align*}
$$

Corollary 1. Let \mathbb{K} be an imaginary-quadratic number field. Then

$$
E_{4}^{(\mathbb{K})^{2}}=E_{8}^{(\mathbb{K})}
$$

holds if and only if $\mathbb{K}=\mathbb{Q}(\sqrt{-3})$.
Proof. If $\mathbb{K}=\mathbb{Q}(\sqrt{-3})$, then the identity follows from [4], Theorem 6 . Suppose $|\Delta| \geqslant 4$. The Fourier coefficient of I in $E_{4}^{(\mathbb{K})^{2}}-E_{8}^{(\mathbb{K})}$ is

$$
2 \alpha_{4}^{*}(|\Delta|)+2 \alpha_{4}^{*}(0)^{2}-\alpha_{8}^{*}(|\Delta|) \geqslant \frac{17584}{\sqrt{|\Delta|}}+115200-\frac{264410}{\sqrt{|\Delta|}}>0
$$

according to (7), whenever $|\Delta| \geqslant 5$. For $\Delta=-4$ a direct computation shows that this Fourier coefficient is nonzero.

Clearly the restriction of $E_{4}^{(\mathbb{K})^{2}}-E_{8}^{(\mathbb{K})}$ to \mathbb{S}_{2} vanishes because $\operatorname{dim} \mathcal{M}_{8}\left(\Gamma_{2}\right)=1$. If $\mathbb{K}=\mathbb{Q}(\sqrt{-1})$ then [4], Theorem 10, yields

$$
\begin{equation*}
E_{4}^{(\mathbb{K})^{2}}-E_{8}^{(\mathbb{K})}=c \phi_{4}^{2} \text { for } c=230400 / 61 . \tag{8}
\end{equation*}
$$

Corollary 2. Let $\mathbb{K}=\mathbb{Q}(\sqrt{-1})$. Then the graded ring of symmetric Hermitian modular forms with respect to the maximal discrete extension of $\Gamma_{2}^{(\mathbb{K})}$ is the polynomial ring in

$$
E_{k}^{(\mathbb{K})}, \quad k=4,6,8,10,12 .
$$

Proof. [4], Corollary 9 and (8).
Let $e_{k, m}^{(\mathbb{K})}: \mathbb{H}_{1} \times \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ denote the m-th Fourier-Jacobi coefficient of $E_{k}^{(\mathbb{K})}$ belonging to $J_{k, m}\left(\mathcal{O}_{\mathbb{K}}\right)$, the space of Hermitian Jacobi forms of weight k and index m (cf. [11]). Note that the first Fourier-Jacobi coefficient of $E_{4}^{(\mathbb{K})^{2}}-E_{8}^{(\mathbb{K})}$ vanishes on the submanifold
$\left\{(\tau, z, z) ; \tau \in \mathbb{H}_{1}, z \in \mathbb{C}\right\}$. Let $\mathcal{M}_{k}\left(\Gamma_{1}\right)$ stand for the space of elliptic modular forms of weight k. Then the result of Eichler-Zagier [6], Theorem 3.5, yields

Corollary 3. Let \mathbb{K} be an imaginary-quadratic number field, $\mathbb{K} \neq \mathbb{Q}(\sqrt{-3})$. If $k \geqslant 4$ is even, the mapping

$$
\begin{aligned}
\mathcal{M}_{k-4}\left(\Gamma_{1}\right) \times \mathcal{M}_{k-6}\left(\Gamma_{1}\right) \times \mathcal{M}_{k-8}\left(\Gamma_{1}\right) & \rightarrow J_{k, 1}\left(\mathcal{O}_{\mathbb{K}}\right), \\
(f, g, h) & \mapsto f e_{4,1}^{(\mathbb{K})}+g e_{6,1}^{(\mathbb{K})}+h e_{8,1}^{(\mathbb{K})}
\end{aligned}
$$

is an injective homomophism of the vector spaces, which turns out to be an isomorphism for $\mathbb{K}=\mathbb{Q}(\sqrt{-1})$.
Proof. Note that the dimensions on both sides are equal to $\left[\frac{k}{4}\right]$ due to [4], Theorem 3, whenever $\mathbb{K}=\mathbb{Q}(\sqrt{-1})$.

We give a precise description of $e_{k, 1}^{(\mathbb{K})}$.
Lemma 1. Let \mathbb{K} be an imaginary-quadratic number field and let $k \geqslant 4$ be even. Then the first Fourier-Jacobi coefficient of $E_{k}^{(\mathbb{K})}$ is given by

$$
\begin{aligned}
& e_{k, 1}^{(\mathbb{K})}(\tau, z, w) \\
& =\frac{1}{2} \sum_{\substack{c, d \in \mathbb{Z} \\
\operatorname{gcd}(c, d)=1}} \sum_{\lambda \in \mathcal{O}_{\mathbb{K}}}(c \tau+d)^{-k} \exp (2 \pi i[(a \tau+b) \lambda \bar{\lambda}-c z w+(z \lambda+w \bar{\lambda})] /(c \tau+d)) .
\end{aligned}
$$

Proof. Proceed in the same way as Eichler/Zagier [6] in §6. One knows that $E_{k}^{(\mathbb{K})}$ is an eigenform under all Hecke operators $\mathcal{T}_{2}(p)$ for all inert primes p from [16]. On the other hand the Jacobi-Eisenstein series is an eigenform under

$$
\begin{aligned}
\mathcal{T}_{J}(p) & =\Gamma_{J}^{(\mathbb{K})} \operatorname{diag}\left(1, p, p^{2}, p\right) \Gamma_{J}^{(\mathbb{K})}, \\
\Gamma_{J}^{(\mathbb{K})} & =\left\{\left(\begin{array}{ll}
* & * \\
0 & * \\
0 & 0
\end{array}\right) \in \Gamma_{2}^{(\mathbb{K})}\right\}, \quad p \in \mathbb{P} \text { inert. }
\end{aligned}
$$

As in both cases the constant Fourier coefficient is 1 , the claim follows.
Remark 1. a) If E_{k} denotes the normalized Eisenstein series of weight k for some group Γ, then the identity $E_{4}^{2}=E_{8}$ is well-known for elliptic modular forms and Siegel modular forms of degree 2 (cf. [19], [7]). But it also holds for modular forms of degree 2 with respect to the Hurwitz order (cf. [15], p. 89) as well as the integral Cayley numbers (cf. [5]), i.e. for $O(2,6)$ and $O(2,10)$. Hence this identity is a hint at the influence of the arithmetic of the attached number field on the modular forms.
b) Note that $E_{k}^{(\mathbb{K})}$ is a modular form with respect to the maximal discrete extension of $\Gamma_{2}^{(\mathbb{K})}$ (cf. [17], [22]).
c) It follows from (4) that the Fourier coefficients $\varepsilon_{t, \ell}^{(\Delta)}$ are also multiplicative in Δ, i.e.

$$
\varepsilon_{t, \ell}^{(\Delta)}=\varepsilon_{t, \ell}^{\left(\Delta_{1}\right)} \cdot \ldots \cdot \varepsilon_{t, \ell}^{\left(\Delta_{r}\right)} .
$$

d) Due to Corollary 3 the dimension of the Maaß space in $\mathcal{M}_{k}\left(\Gamma_{2}^{(\mathbb{K})}\right)$ is $\geqslant\left[\frac{k}{4}\right]$ for $\mathbb{K} \neq \mathbb{Q}(\sqrt{-3})$ and equal to $\left[\frac{k+2}{6}\right]$ for $\mathbb{K}=\mathbb{Q}(\sqrt{-3})(c f .[4])$, if $k \in \mathbb{N}$ is even.
e) If $k>4$ is even we can improve the estimate from [16] slightly for all $T \in \Lambda_{2}, T>0$:

$$
\begin{aligned}
& \frac{(2 \pi)^{2 k-1}}{(k-2)!(k-1)!} \cdot \frac{2-\zeta(k-2)}{\zeta(k-1) \zeta(k)} \cdot \frac{1}{\sqrt{|\Delta|}}(\operatorname{det} T)^{k-2} \leqslant \alpha_{k}(T) \\
& \leqslant \frac{(2 \pi)^{2 k-1}}{(k-2)!(k-1)!} \cdot \frac{\zeta(k-3) \zeta(k-2)}{(2-\zeta(k-1)) \zeta(k)} \cdot \frac{1}{\sqrt{|\Delta|}}(\operatorname{det} T)^{k-2}
\end{aligned}
$$

3 Algebraic independence

It is well-known that there are exactly 5 algebraically independent Hermitian modular forms. In this section we explicitly determine algebraically independent Eisenstein series.

We define the Siegel Eisenstein series S_{k} of degree 2 for even $k \geqslant 4$

$$
S_{k}(Z)=\sum_{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right):\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right) \backslash \Gamma_{2}} \operatorname{det}(C Z+D)^{-k}, \quad Z \in \mathbb{S}_{2},
$$

and denote its Fourier coefficients by $\gamma_{k}(R)$. Clearly $\left.E_{k}^{(\mathbb{K})}\right|_{\mathbb{S}_{2}}=S_{k}$ holds for $k=4,6,8$. The following Fourier coefficients of S_{k} were computed by Igusa [12] and are given by

f	$\gamma_{f}\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$	$\gamma_{f}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\gamma_{f}\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$
S_{4}	240	30240	13440
S_{6}	-504	166320	44352
$S_{4} S_{6}$	-264	-45360	57792
X_{12}	65520	402585120	39957120

$X_{12}:=441 S_{4}^{3}+250 S_{6}^{2}$.
Lemma 2. Let \mathbb{K} be an imaginary quadratic number field. Then

$$
F_{10}^{(\mathbb{K})}:=E_{10}^{(\mathbb{K})}-E_{4}^{(\mathbb{K})} E_{6}^{(\mathbb{K})}, \quad F_{12}^{(\mathbb{K})}:=E_{12}^{(\mathbb{K})}-\frac{441}{691} E_{4}^{(\mathbb{K})^{3}}-\frac{250}{691} E_{6}^{(\mathbb{K})^{2}}
$$

are Hermitian cusp forms of weight 10 resp. 12, whose restrictions to \mathbb{S}_{2} do not vanish identically.

Proof. If $F=F_{10}^{(\mathbb{K})}, F_{12}^{(\mathbb{K})}$, then $(1)-(3)$ show that $\alpha_{F}(T)=0$ for all $T \in \Lambda_{2}$, $\operatorname{det} T=0$.

Hence F is a cusp form. The Fourier coefficients $\beta_{F}(R)$ of $\left.F\right|_{\mathbb{S}_{2}}$ are given by

$$
\beta_{F}(R)=\sum_{\substack{T \in \Lambda_{2}, T \geqslant 0 \\ T+\bar{T}=2 R}} \alpha_{f}(T)
$$

Note that $\left.E_{k}^{(\mathbb{K})}\right|_{\mathbb{S}_{2}}=S_{k}$ for $k=4,6,8$. If $k=10$, then Theorem 1 and the above table yield $\beta_{F}(I)>0$.
If $k=12$, then for $\Delta \neq-4$

$$
\begin{align*}
\beta_{F}(I) & =\alpha_{12}^{*}(\Delta)+2 \sum_{1 \leqslant j<\sqrt{|\Delta|}} \alpha_{12}^{*}\left(|\Delta|-j^{2}\right)-\frac{402585120}{691} \tag{9}\\
& \leqslant 15768\left(\frac{1}{\sqrt{|\Delta|}}+2\right)-\frac{402585120}{691}<0
\end{align*}
$$

by means of Theorem 1 . If $\Delta=-4$ then

$$
\beta_{F}(I)=-\frac{20026621440000}{34910011}<0
$$

A simple consequence is
Theorem 2. Let \mathbb{K} be an imaginary-quadratic number field.
a) The graded ring of Siegel modular forms of even weight is generated by

$$
\left.E_{k}^{(\mathbb{K})}\right|_{\mathbb{S}_{2}}, k=4,6,10,12
$$

b) If $\mathbb{K} \neq \mathbb{Q}(\sqrt{-3})$ the Eisenstein series

$$
E_{k}^{(\mathbb{K})}, k=4,6,8,10,12
$$

are algebraically independent.
Proof. a) Use Lemma 2.
b) Apply a) as well as Corollary 1.

If $\mathbb{K}=\mathbb{Q}(\sqrt{-3})$, we already know the graded ring of Hermitian modular forms (cf. [4], Theorem 6).

Corollary 4. If $\mathbb{K}=\mathbb{Q}(\sqrt{-3})$ the graded ring of symmetric Hermitian modular forms of even weight with respect to $\Gamma_{2}^{(\mathbb{K})}$ is the polynomial ring in

$$
E_{k}^{(\mathbb{K})}, k=4,6,10,12,18
$$

Proof. Use [4], Theorem 6, and show that

$$
E_{18}^{(\mathbb{K})}, E_{12}^{(\mathbb{K})} \cdot E_{6}^{(\mathbb{K})}, E_{10}^{(\mathbb{K})} \cdot E_{4}^{(\mathbb{K})^{2}}, E_{6}^{(\mathbb{K})^{3}}, E_{6}^{(\mathbb{K})} \cdot E_{4}^{(\mathbb{K})^{3}}
$$

are linearly independent by calculating a few Fourier coefficients using (1) - (4).
Remark 2. a) It follows from the results of [3] that there is a non-trivial cusp form $f_{4}^{(\mathbb{K})}$ of weight 4 for all discriminants except $\Delta_{\mathbb{K}}=-3,-4,-7,-8,-11,-15,-20,-23$. As its restriction to the Siegel half-space vanishes identically, one may replace $E_{8}^{(\mathbb{K})}$ by $f_{4}^{(\mathbb{K})}$ in these cases in Theorem 2 b).
b) Using Theorem 2 resp. Corollary 4 resp. part a) we can construct a non-trivial skewsymmetric Hermitian modular form of weight 44 resp. 54 resp. 40 by an application of a suitable differential operator (cf. [1]).

4 A Siegel cusp form

We consider

$$
\begin{align*}
G_{k}^{(\mathbb{K})}(Z):= & E_{k}^{(\mathbb{K})}(Z)-S_{k}(Z), \quad Z \in \mathbb{S}_{2}, \\
= & \sum_{\substack{\left(\begin{array}{cc}
A \\
B \\
C & D
\end{array}\right):\left(\begin{array}{c}
* \\
0 \\
C^{\sharp} \\
C^{*} \notin \mathbb{R}
\end{array}\right) \backslash \mathbb{R}_{2}^{2 \times 2}}} \operatorname{det}(C Z+D)^{-k}, \tag{10}
\end{align*}
$$

where $\left(\begin{array}{cc}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right)^{\sharp}=\left(\begin{array}{cc}c_{4} & -c_{2} \\ -c_{3} & c_{1}\end{array}\right)$. For $\mathbb{K}=\mathbb{Q}(\sqrt{-1})$ this modular form was introduced by Nagaoka and Nakamura [20].

Theorem 3. Let \mathbb{K} bei an imaginary-quadratic number field. If $k \geqslant 10$ is even, then $G_{k}^{(\mathbb{K})}$ is a Siegel cusp form of degree 2 and weight k in the Maaß space.
a) One has

$$
\begin{equation*}
\lim _{\left|\Delta_{\mathbb{K}}\right| \rightarrow \infty} G_{k}^{(\mathbb{K})}(Z)=0 \text { for all } Z \in \mathbb{S}_{2} . \tag{11}
\end{equation*}
$$

b) $G_{k}^{(\mathbb{K})} \not \equiv 0$ holds whenever $k \geqslant \frac{10}{3}\left|\Delta_{\mathbb{K}}\right|+1$.

Proof. $G_{k}^{(\mathbb{K})}$ is a cusp form, as all its Fourier-coefficients $\beta_{k}(R)$ with $\operatorname{det} R=0$ vanish due to (1) - (4). It belongs to the Maaß space by virtue of [16] and [10].
a) Because $\operatorname{dim} \mathcal{M}_{k}\left(\Gamma_{2}\right) \leqslant 1$ for $k<10$ (cf. [7]), we have $G_{k}^{(\mathbb{K})} \equiv 0$ for $k=4,6,8$. Let $k \geqslant 10$ and

$$
S_{1}=\left(\begin{array}{ccc}
0 & 0 & P \\
0 & -S & 0 \\
P & 0 & 0
\end{array}\right), P=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), S=\left(\begin{array}{cc}
2 & 0 \\
0 & |\Delta| / 2
\end{array}\right), \text { resp. }\left(\begin{array}{cc}
2 & 1 \\
1 & (|\Delta|+1) / 2
\end{array}\right)
$$

if Δ is even resp. odd. Then the explicit isomorphism in [17] yields

$$
G_{k}^{(\mathbb{K})}(Z)=\sum_{\substack{h \in \mathbb{Z}^{6}, h_{4} \geqslant 1 \tag{12}\\
h^{t r} S_{1} h=0, \operatorname{gcd}\left(S_{1} h\right)=1}}\left(-h_{1} \operatorname{det} Z+\operatorname{trace}\left(\left(\begin{array}{cc}
h_{2} & g \\
\bar{g} & h_{5}
\end{array}\right) \cdot Z\right)+h_{6}\right)^{-k}
$$

where $g=h_{3}+h_{4} \sqrt{\Delta} / 2$ resp. $g=h_{3}+h_{4}(1+\sqrt{\Delta}) / 2$. By virtue of [15], V.2.5, it suffices to show that the series in (12) over the absolute values at $Z=i I$ tends to 0 , as $|\Delta| \rightarrow \infty$. Hence we consider

$$
\begin{aligned}
I_{\Delta} & :=\sum_{h}\left|h_{1}+h_{6}+i\left(h_{2}+h_{5}\right)\right|^{-k} \\
& =\sum_{h}\left(h_{1}^{2}+h_{6}^{2}+h_{2}^{2}+h_{5}^{2}+\left(h_{3} h_{4}\right) S\binom{h_{3}}{h_{4}}\right)^{-k / 2}
\end{aligned}
$$

in view of $h^{t r} S_{1} h=0$. As $h_{4} \geqslant 1$ we get

$$
I_{\Delta} \leqslant \sum_{h}\left(\frac{|\Delta|-3}{2}+\frac{1}{2} h^{t r} h\right)^{-k / 2} \leqslant(|\Delta|-3)^{-k / 4} \cdot \sum_{h}\left(h^{t r} h\right)^{-k / 4}
$$

If $k \geqslant 14$ we can use the Epstein zeta function for $I^{(6)}$ in order to obtain $\lim _{|\Delta| \rightarrow \infty} I_{\Delta}=0$. For $k=10$ and $k=12$ apply

$$
a+b \geqslant \sqrt[4]{a} \cdot \sqrt[4]{b^{3}} \text { for } a, b>0
$$

and proceed in the same way.
b) Let Δ be fixed. Then the Fourier coefficient $\beta_{k}(I)$ of $G_{k}^{(\mathbb{K})}$ is given by

$$
\beta_{k}(I)=\alpha_{k}^{*}(\Delta)+2 \sum_{1 \leqslant j \leqslant \sqrt{\Delta}} \alpha_{k}^{*}\left(\Delta-j^{2}\right)-\gamma_{k}(I) .
$$

Due to Maaß [18]

$$
0<\gamma_{k}(I)=\frac{-4 k B_{k-1, \chi-4}}{B_{k} B_{2 k-2}}
$$

holds. Using Corollary 1 this leads to

$$
\begin{aligned}
\beta_{k}(I) & \geqslant r_{k, \Delta}\left((2-\zeta(k-2))\left(|\Delta|^{k-2}+2 \sum_{1 \leqslant j \leqslant \sqrt{|\Delta|}}\left(|\Delta|-j^{2}\right)^{k-2}\right)-\frac{B_{k-1, \chi-4} B_{k-1, \chi}}{(k-1) B_{2 k-2}}\right) \\
& \geqslant r_{k, \Delta}|\Delta|^{k-3 / 2}\left(\frac{2-\zeta(k-2)}{\sqrt{|\Delta|}}-\frac{2^{2 k-2}(k-1)!^{2} \zeta(k-1)^{2}}{(k-1) \zeta(2 k-2)(2 k-2)!}\right)
\end{aligned}
$$

for $\Delta \neq-4$, if we use (5) and (6). Then Stirling's formula leads to

$$
\begin{aligned}
\beta_{k}(I) & \geqslant r_{k, \Delta}|\Delta|^{k-3 / 2}\left(\frac{2-\zeta(k-2)}{\sqrt{|\Delta|}}-\frac{e^{1 / 6(k-1)} \zeta(k-1)^{2}}{\zeta(2 k-2)} \sqrt{\frac{\pi}{k-1}}\right) \\
& \geqslant r_{k, \Delta}|\Delta|^{k-3 / 2}\left(\frac{2-\zeta(8)}{\sqrt{|\Delta|}}-e^{1 / 54} \zeta(9)^{2} \sqrt{\frac{\pi}{k-1}}\right),
\end{aligned}
$$

as $k \geqslant 10$. The expression in the bracket is positive because

$$
k-1 \geqslant \frac{10}{3}|\Delta|>\pi\left(\frac{e^{1 / 54} \zeta(9)^{2}}{2-\zeta(8)}\right)^{2}|\Delta| .
$$

If $\Delta=-4$ we compute $\beta_{k}(R), R=\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$, and proceed in the same way (cf. [20]).

Use the description of $\gamma_{k}(R)$ by means of Cohen's function in [6], p. 80. A comparison of the Fourier coefficients and the Hecke bound for the Fourier coefficients of cusp forms yield the following asymptotic.

Corollary 5. If $k \geqslant 4$ is even and $N \in \mathbb{N}, N \equiv 0,3 \bmod 4$ one has

$$
H(k-1, N) \sim \sum_{\substack{|j| \leq \sqrt{|| | N} \\ j \equiv \Delta N \bmod 2}} \alpha_{k, \Delta}^{*}\left(\left(|\Delta| N-j^{2}\right) / 4\right)
$$

as $N \rightarrow \infty$ for any imaginary-quadratic number field \mathbb{K}.
Remark 3. a) We know that $G_{k}^{(\mathbb{K})} \equiv 0$ for $k=4,6,8$. Hence we get equality for $k=4,6,8$ in Corollary 5. We conjecture that $G_{k}^{(\mathbb{K})} \not \equiv 0$ for any even $k \geqslant 10$ and any imaginary-quadratic number field \mathbb{K}. This has been verified for $\left|\Delta_{\mathbb{K}}\right| \leqslant 500$ by the authors. The Fourier coefficients are not always positive as in the proof of Theorem 3 (cf. [9]).
b) The paramodular group of level t can be embedded into $\Gamma_{2}^{(\mathbb{K})}$, whenever t is the norm of an element in $\mathcal{O}_{\mathbb{K}}$ (cf. [13]). Hence one can construct paramodular cusp forms in the Maaß space in the same way.

5 The Maaß Spezialschar

At first we characterize the vanishing of $G_{k}^{(\mathbb{K})}$. Recall (e.g. [21], Theorem 3.14) that for even $k \in \mathbb{N}$ the Shimura lifts are maps

$$
\begin{aligned}
& S h_{k, t-1 / 2}: \mathcal{S}_{k-1 / 2}\left(\Gamma_{0}(4)\right) \rightarrow \mathcal{S}_{2 k-2}\left(S L_{2}(\mathbb{Z})\right) \\
& \quad f(\tau)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n \tau} \mapsto \sum_{n=1}^{\infty} b_{t}(n) e^{2 \pi i n \tau}
\end{aligned}
$$

for squarefree $t \in \mathbb{N}$, where the coefficients $b_{t}(n)$ are given by

$$
\sum_{n=1}^{\infty} b_{t}(n) n^{-s}=\sum_{n=1}^{\infty}\left(\frac{t}{n}\right) n^{k-s-3 / 2} \cdot \sum_{n=1}^{\infty} a\left(t n^{2}\right) n^{-s}
$$

Let $\mathcal{S}_{k-N_{2}}^{+}\left(\Gamma_{0}(4)\right)$ be Kohnen's plus space, i.e.

$$
a(n)=0 \text { for } n \equiv 1,2 \bmod 4
$$

Lemma 3. Let $k \geqslant 4$ be even and $\mathbb{K}=\mathbb{Q}(\sqrt{-t})$, $t \in \mathbb{N}$ squarefree. Then the following are equivalent:
(i) The restriction of the Hermitian Eisenstein series $\left.E_{k}^{(\mathbb{K})}\right|_{\mathbb{S}_{2}}$ is equal to the Siegel Eisenstein series S_{k}.
(ii) The t-Shimura lift $S h_{t, k-1 / 2}: \mathcal{S}_{k-1 / 2}^{+}\left(\Gamma_{0}(4)\right) \rightarrow \mathcal{S}_{2 k-2}\left(S L_{2}(\mathbb{Z})\right)$ is identically zero.

Proof. As $\left.E_{k}^{(\mathbb{K})}\right|_{\mathbb{S}_{2}}$ is the Maaß lift of $e_{k}^{(\mathbb{K})}(\tau, z, z)$, condition (i) holds if and only if $e_{k}^{(\mathbb{K})}(\tau, z, z)$ is equal to the classical Jacobi-Eisenstein series in [6]. Due to Lemma 1 one has

$$
e_{k}^{(\mathbb{K})}(\tau, z, z)=\left.\sum_{\lambda \in \mathcal{O}_{\mathbb{K}}} \sum_{M: \Gamma_{\infty} \backslash \Gamma_{1}} e^{2 \pi i(\tau \lambda \bar{\lambda}+z(\lambda+\bar{\lambda}))}\right|_{k, 1} M
$$

if we use the definition of the slash operator from [6]. For each fixed λ the series

$$
\left.\sum_{M: \Gamma_{\infty} \backslash \Gamma_{1}} e^{2 \pi i(\tau \lambda \bar{\lambda}+z(\lambda+\bar{\lambda}))}\right|_{k, 1} M=P_{k, \lambda \bar{\lambda}, \lambda+\bar{\lambda}}(\tau, z)
$$

is the Jacobi-Poincaré series (cf. [23]). Its Petersson inner product with a cusp form ϕ is, up to a factor depending on k as well as $(\lambda-\bar{\lambda})^{6-4 k}$, equal to the Fourier coefficient of the term $e^{2 \pi i(\tau \lambda \bar{\lambda}+z(\lambda+\bar{\lambda}))}$. Thus (i) holds if and only if

$$
\sum_{0 \neq \lambda \in \mathcal{O}_{\mathbb{K}}}(\lambda-\bar{\lambda})^{6-4 k} c(\lambda \bar{\lambda}, \lambda+\bar{\lambda})=0
$$

holds for every Jacobi cusp form

$$
\begin{equation*}
\phi(\tau, z)=\sum_{n, r} c(n, r) e^{2 \pi i(n \tau+r z)} \in \mathcal{J}_{k, 1} . \tag{13}
\end{equation*}
$$

We want to rephrase this in terms of half-integral weight modular forms for $\Gamma_{0}(4)$ as in [6], § 5. Given (13) we attach the modular form

$$
F(\tau)=\sum_{\substack{N \in \mathbb{N} \\ N=4 n-r^{2}}} c(n, r) e^{2 \pi i N \tau} \in \mathcal{M}_{k-1 / 2}\left(\Gamma_{0}(4)\right),
$$

satisfying Kohnens's plus condition. This bijection respects the Petersson inner products up to a trivial factor. The half-integral weight modular form attached to $P_{k, \lambda \bar{\lambda}, \lambda+\bar{\lambda}}$ is therefore the projection to the Kohnen plus space of the Poincaré series of weight $k-1 / 2$ and index $-(\lambda-\bar{\lambda})^{2}$. As λ runs through $\mathcal{O}_{\mathbb{K}}$ these values run through $|\Delta| n^{2}, n \in \mathbb{N}_{0}$. Hence (i) holds if and only if

$$
\sum_{n=1}^{\infty} c\left(|\Delta| n^{2}\right) n^{3-2 k}=0
$$

for every cusp form $F(\tau)=\sum_{N \equiv 0,3 \bmod 4} c(N) e^{2 \pi i N \tau} \in S_{k-1 / 2}\left(\Gamma_{0}(4)\right)$. If such an F is a Hecke eigenform, then its Shimura lift $S h_{t, k-1 / 2}(F)$ ist either a Hecke eigenform with the same eigenvalues or identically 0 . In the first case the Euler product of its L-function implies that

$$
\sum_{n=1}^{\infty} b_{t}(n) n^{3-2 k} \neq 0
$$

and thus

$$
\sum_{n=1}^{\infty} a\left(t n^{2}\right) n^{3-2 k} \neq 0 .
$$

Therefore (i) holds if and only if all the Hecke eigenforms in $\mathcal{S}_{k-1 / 2}^{+}\left(\Gamma_{0}(4)\right)$ map to 0 under $S h_{t, k-1 / 2}$.

This leads to our final result
Corollary 6. Let $k \geqslant 10$ be even. Then the modular form

$$
G_{k}^{(\mathbb{K})}=\left.E_{k}^{(\mathbb{K})}\right|_{\mathbb{S}_{2}}-S_{k}
$$

generate the subspace of cusp forms in the Maaß Spezialschar as a module over the Hecke algebra, as \mathbb{K} varies over all imaginary-quadratic number fields.

Proof. Let $\mathcal{A}_{k-1 / 2}\left(\Gamma_{0}(4)\right) \subseteq \mathcal{S}_{k-1 / 2}^{+}\left(\Gamma_{0}(4)\right)$ be the subspace generated by the preimages of $\left.E_{k}^{\mathbb{Q}(\sqrt{t})}\right|_{\mathbb{S}_{2}}-S_{k}$ under the Maaß lift as t runs through all squarefree numbers in \mathbb{N}. In the proof of Lemma 3 it was shown that a Kohnen plus Hecke eigenform $F \in \mathcal{S}_{k-1 / 2}^{+}\left(\Gamma_{0}(4)\right)$
is orthogonal to $\mathcal{A}_{k-1 / 2}\left(\Gamma_{0}(4)\right)$ if and only if its t-Shimura lifts $S h_{t, k-1 / 2}(F)$ are 0 for all squarefree $t \in \mathbb{N}$. This cannot happen by a theorem of Kohnen [14], which guarantees that some linear combination of Shimura lifts yields a Hecke-equivariant isomorphism

$$
\mathcal{S}_{k-1 / 2}^{+}\left(\Gamma_{0}(4)\right) \xrightarrow{\sim} \mathcal{S}_{2 k-2}\left(\Gamma_{1}\right)
$$

It follows that $\mathcal{A}_{k-1 / 2}\left(\Gamma_{0}(4)\right)$ generates $\mathcal{S}_{k-1 / 2}^{+}\left(\Gamma_{0}(4)\right)$ as a module over the Hecke algebra. Since Maaß lifts respect Hecke operators, we obtain the claim.

Remark 4. a) Lemma 3 is trivial for $k=4,6,8$ because

$$
\mathcal{S}_{k}\left(\Gamma_{2}\right)=\mathcal{S}_{2 k-2}\left(\Gamma_{1}\right)=\{0\} .
$$

b) It is an open question whether the modular forms $G_{k}^{(\mathbb{K})}$ span the space of cusp forms in the Maaß space of even weight $k \geqslant 10$, when \mathbb{K} runs over all imaginary-quadratic number fields.

References

[1] Aoki, H. The Graded Ring of Hermitian Modular Forms of Degree 2. Abh. Math. Sem. Univ. Hamburg, 72:21-34, 2002.
[2] Braun, H. Hermitian modular functions III. Annals Math., 53:143-160, 1951.
[3] Bruinier, J.H., Ehlen, S. and E. Freitag. Lattices with Many Borcherds Products. Math. Comp., 85:1953-1981, 2016.
[4] Dern, T. and A. Krieg. Graded rings of Hermitian modular forms of degree 2. Manuscr. Math., 110:251-272, 2003.
[5] Dieckmann, C., Krieg, A. and M. Woitalla. The graded ring of modular forms on the Cayley half-space of degree two. Ramanujan J., 48:385-398, 2019.
[6] Eichler, M. and D. Zagier. The Theory of Jacobi Forms. Birkhäuser, Boston, Basel, Stuttgart, 1985.
[7] Freitag, E. Siegelsche Modulfunktionen, volume 254 of Grundl. Math. Wiss. Springer-Verlag, Berlin, 1983.
[8] Hauffe-Waschbüsch, A. Verschiedene Aspekte von Modulformen in mehreren Variablen. https://publications.rwth-aachen.de/record/824384/files/824384.pdf. PhD thesis, RWTH Aachen, 2021.
[9] Hauffe-Waschbüsch, A. Tables of some Fourier coefficients of Hermitian modular forms of degree 2. Preprint, 2022.
http://www.matha.rwth-aachen.de/en/forschung/fouriercoeff.html.
[10] Hauffe-Waschbüsch, A. and A. Krieg. On Hecke Theory for Hermitian Modular Forms. In Modular Forms and Related Topics in Number Theory, pages 73-88. Springer, Singapore, 2020.
[11] Haverkamp, K. Hermitian Jacobi forms. Results Math., 29:78-89, 1996.
[12] Igusa, J.-I. On Siegel modular forms of genus two I. Am. J. Math., 84:175-200, 1962.
[13] Köhler, G. Modulare Einbettungen Siegelscher Stufengruppen in Hermitesche Modulgruppen. Math. Z., 138:71-87, 1974.
[14] Kohnen, W. Newforms of half-integral weight. J. Reine Angew. Math., 333:32-72, 1982.
[15] Krieg, A. Modular forms on half-spaces of quaternions, volume 1143 of Lect. Notes Math., Springer-Verlag, Berlin, 1985.
[16] Krieg, A. The Maaß spaces on the Hermitian half-space of degree 2. Math. Ann., 289:663-681, 1991.
[17] Krieg, A., M. Raum, and A. Wernz. The maximal discrete extension of the Hermitian modular group. Documenta Math., 26:1871-1888, 2021.
[18] Maaß, H. Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Mat.-Fys. Medd. Danske Vid. Selsk., 34, No. 7, 1964.
[19] Miyake, T. Modular forms. Springer-Verlag, Berlin, 1989.
[20] Nagaoka, S. and Y. Nakamura. On the restriction of the Hermitian Eisenstein series and its applications. Proc. Am. Math. Soc., 139:1291-1298, 2011.
[21] Ono, K. The web of modularity: arithmetic of the coefficients of modular forms and q-series, volume 120 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI, 2004.
[22] Wernz, A. Hermitian theta series and Maaß spaces under the action of the maximal discrete extension of the Hermitian modular group. Results Math., 75:163, 2020.
[23] Williams, B. Poincaré square series for the Weil representation. Ramanujan J., 47:605-650, 2018.

[^0]: ${ }^{1}$ Adrian Hauffe-Waschbüsch, Lehrstuhl A für Mathematik, RWTH Aachen University, D-52056 Aachen, adrian.hauffe@rwth-aachen.de
 ${ }^{2}$ Aloys Krieg, Lehrstuhl A für Mathematik, RWTH Aachen University, D-52056 Aachen, krieg@rwthaachen.de
 ${ }^{3}$ Brandon Williams, Lehrstuhl A für Mathematik, RWTH Aachen University, D-52056 Aachen, brandom.williams@matha.rwth-aachen.de

