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Abstract. We give generators and relations for the graded rings of Hermitian modular forms of degree two
over the rings of integers in Q(

√
−7) and Q(

√
−11). In both cases we prove that the subrings of symmetric

modular forms are generated by Maass lifts. The computation uses a reduction process against Borcherds
products which also leads to a dimension formula for the spaces of modular forms.

1. Introduction

Hermitian modular forms of degree n ∈ N are modular forms that transform under an action of the split-
unitary group SU(n, n;O) with entries in some order O in an imaginary-quadratic number field. Through
the natural embedding of SU(n, n;O) in Sp4n(Z), the Shimura variety attached to SU(n, n;O) parameterizes
certain principally polarized (2n)-dimensional abelian varieties, namely the abelian varieties A of Weil type,
i.e. admitting multiplication by O in such a way that the eigenvalues of O acting on A occur in complex-
conjugate pairs. (These were investigated by Weil in connection with the Hodge conjecture; see for example
the discussion in [13], which also explains the connection to orthogonal Shimura varieties when n = 2.) To
study such objects it is helpful to have coordinates on the moduli space; in other words, generators for graded
rings of Hermitian modular forms.

In [6], [7], Dern and Krieg began a program to compute these rings in degree n = 2 based on Borcherds’
[1] theory of orthogonal modular forms with Heegner divisors (and the exceptional isogeny from SU(2, 2) to
SO(2, 4)). In particular they give an explicit description of the modular fourfolds associated to SU(2, 2,O)
where O is the maximal order in Q(

√
−3) and Q(

√
−1) (where the fourfold is rational) and in Q(

√
−2) (where

it is not). The contribution of this note is to carry out these computations for the imaginary-quadratic fields
of the smallest two remaining discriminants: Q(

√
−7) and Q(

√
−11).

The rough idea of [6], [7] is similar to the well-known computation of the ring of elliptic modular forms,
M∗(SL2(Z)) = C[E4, E6]. The Riemann-Roch theorem (in the form of the “k/12 formula”) shows that every
modular form of weight not divisible by 6 has a zero at the elliptic point ρ = e2πi/3, and that the Eisenstein
series E4 and E6 have no zeros besides a simple zero at ρ and at i (and their conjugates under SL2(Z)),
respectively. Now every form in M∗(SL2(Z)) of weight not a multiple of 6 is divisible by E4, and every form
of weight 6k becomes divisible by E4 after subtracting some scalar multiple of Ek6 . The claim follows by
induction on the weight, together with the fact that modular forms of weight k ≤ 0 are constant.

In the SU(2, 2) case the role of E4 above is played by a Borcherds product; the elliptic point ρ is replaced
by the Heegner divisors; and the evaluation at ρ is replaced by the pullbacks, which send Hermitian modular
forms to Siegel paramodular forms of degree two. With increasing dimension and level, the Heegner divisors
which occur as divisors of modular forms are more complicated and the pullback maps to Heegner divisors
are rarely surjective. To overcome these issues our basic argument is as follows. We construct Hermitian
modular forms (Eisenstein series, theta lifts, pullbacks from O(2, 5), theta series, etc; here, theta lifts and
Borcherds products turn out to be sufficient) and compute their pullbacks to paramodular forms. At the
same time we use the geometry of the Hermitian modular fourfold (in particular the intersections of special
divisors) to constrain the images of the pullback maps, with the goal of determining sufficiently many images
completely. There seems to be no reason in general to believe that this procedure will succeed, and as
the discriminant of the underlying field increases it certainly becomes more difficult; however, when this
computation does succeed it is straightforward to determine the complete ring structure.
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This note is organized as follows. In section 2 we review Hermitian and orthogonal modular forms, theta
lifts and pullbacks. In section 3 we recall the structure of the graded rings of paramodular forms of degree
two and levels 1, 2, 3. In sections 4 and 5 we compute the graded rings of Hermitian modular forms for the
rings of integers of Q(

√
−7) and Q(

√
−11) by reducing against distinguished Borcherds products of weight

7 and 5, respectively. (The ideal of relations for Q(
√
−11) is complicated and left to an auxiliary file.) In

section 6 we compute the dimensions of spaces of Hermitian modular forms.
Acknowledgments. I am grateful to Jan H. Bruinier, Aloys Krieg and John Voight for helpful discus-

sions.

2. Preliminaries

In this section we review some facts about Hermitian modular forms of degree two and the related
orthogonal modular forms. For a more thorough introduction the book [10] and the dissertation [4] are
useful references.

2.1. Hermitian modular forms of degree two. Let H2 denote the Hermitian upper half-space of degree
two: the set of complex (2× 2)-matrices τ for which, after writing τ = x+ iy where x = xT and y = yT , the
matrix y is positive-definite. The split-unitary group

SU2,2(C) =
{
M ∈ SL4(C) : MTJM = J

}
, J =

(
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)
acts on H2 by Möbius transformations:

M · τ = (aτ + b)(cτ + d)−1, M =
(
a b
c d

)
∈ SU2,2(C), τ ∈ H2.

Fix an order O in an imaginary-quadratic number field K. A Hermitian modular form of weight
k ∈ N0 (and degree two) is a holomorphic function F : H2 → C which satisfies

F (M · τ) = det(cτ + d)kF (τ) for all M =
(
a b
c d

)
∈ SU2,2(O) and τ ∈ H2.

Note that F extends holomorphically to the Baily-Borel boundary (i.e. Koecher’s principle) as this contains
only components of dimension 1 and 0. Cusp forms of weight k are modular forms which tend to zero at
each one-dimensional cusp: that is, modular forms f for which

lim
y→∞

(
f
∣∣∣
k
M
)

(iy) = 0 for all M ∈ SU2,2(K).

2.2. Orthogonal modular forms and Hermitian modular forms. Suppose Λ = (Λ, Q) is an `-dimensional
positive-definite even lattice; that is, Λ is a free Z-module of rank ` and Q is a positive-definite quadratic
form on Λ⊗ R taking integral values on Λ. One can define an upper half-space

HΛ = {(τ, z, w) : τ, w ∈ H, z ∈ Λ⊗ C, Q(im(z)) < im(τ) · im(w)} ⊆ C`+2.

This is acted upon by SO+(Λ⊕ II2,2) (the connected component of the identity) by Möbius transformations.

To make this explicit it is helpful to fix a Gram matrix S for Q and realize SO+(Λ⊕ II2,2) as a subgroup of

those matrices which preserve the block matrix

(
0 0 0 0 1
0 0 0 1 0
0 0 S 0 0
0 1 0 0 0
1 0 0 0 0

)
∈ Z6×6 under conjugation. For such a matrix

M and (τ, z, w) ∈ HΛ, one can define M · (τ, z, w) = (τ̃ , z̃, w̃) ∈ HΛ by

M

(
Q(z)−τw

τ
z
w
1

)
= j(M ; τ, z, w)

(
Q(z̃)−τ̃ w̃

τ̃
z̃
w̃
1

)
for some j(M ; τ, z, w) ∈ C×.

The orthogonal modular group ΓΛ is the discriminant kernel of Λ ⊕ II2,2; that is, the subgroup of

SO+(Λ⊕ II2,2) which acts trivially on Λ′/Λ. An orthogonal modular form is then a holomorphic function
f : HΛ → C which satisfies

f(M · (τ, z, w)) = j(M ; τ, z, w)kf(τ, z, w)

for all M ∈ ΓΛ and (τ, z, w) ∈ HΛ. (There is again a boundedness condition at cusps which is automatic by
Koecher’s principle.)

Hermitian modular forms for SU2,2(OK) are more or less the same as orthogonal modular forms for the
lattice of integers (Λ, Q) = (OK , NK/Q) of K. One way to see this is as follows. The complex space of
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antisymmetric (4× 4)-matrices admits a nondegenerate quadratic form pf (the Pfaffian, a square root of the
determinant) which is preserved under the conjugation action M ·X = MTXM by SL4(C); explicitly,

pf

(
0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

)
= af − be+ cd.

The conjugation action identifies SL4(C) with the spin group Spin(pf) = Spin6(C). The six-dimensional real
subspace

V =
{( 0 a b c

−a 0 d −b
−b −d 0 f

−c b −f 0

)
: a, c, d, f ∈ R, b ∈ C

}
on which the Pfaffian has signature (4, 2) is preserved under conjugation by SU2,2(C), and this action
realizes the isomorphism SU2,2(C) ∼= Spin4,2(R). The lattice of OK-integral matrices (which is isometric to
OK ⊕ II2,2) is preserved by SU2,2(OK) and we obtain an embedding of SU2,2(OK) in the discriminant kernel
ΓOK

. This isomorphism induces an identification between the homogeneous spaces H2 and HΛ and allows
orthogonal modular forms to be interpreted as Hermitian modular forms of the same weight.

The discriminant kernel ΓOK
contains the involution α 7→ α of OK (in other words, α − α ∈ OK for

all α in the codifferent O#
K), and this involution does not come from the action of SU2,2(OK). This means

that Hermitian modular forms which arise from orthogonal modular forms are either symmetric or skew-
symmetric:

Definition 1. A Hermitian modular form F : H2 → C of weight k is (graded) symmetric if

F (zT ) = (−1)kF (z) for all z ∈ H2,

and (graded) skew-symmetric if F (zT ) = −(−1)kF (z).

Note that many references (e.g. [6],[7]) use the notion of (skew)-symmetry without respect to the grading,
i.e. without the factor (−1)k.

The maximal discrete extension Γ∗K of ΓK (as computed in [11]) also contains a copy of the class group
Cl(OK) which is generally not contained in the discriminant kernel. We only consider the fields K =
Q(
√
−7),Q(

√
−11) of class number one so we will not discuss this point further; however, if one were to

extend the arguments below to general number fields then most instances of the discrete extension ΓOK
of

ΓK below should probably be replaced by Γ∗K .

2.3. Heegner divisors. On orthogonal Shimura varieties there is a natural construction of Heegner divisors.
Suppose Λ is an even lattice of signature (`, 2). Given any lattice vector λ ∈ Λ of positive norm, consider the
orthogonal complement λ⊥ ∩ HΛ which has codimension one. The union of these orthogonal complements
as λ ranges through the (finitely many) primitive lattice vectors of a given norm D is ΓΛ-invariant and

defines an analytic cycle HD on ΓΛ\HΛ. (If we do not take only primitive vectors then we obtain the
divisors

∑
f2|DHD/f2 , which are also often called the Heegner divisors in the literature. For our purposes

this definition is less convenient.)
The irreducible components HD,±β of HD correspond to pairs (±β) ∈ Λ′/Λ of norm D/disc(Λ). In

particular when disc(Λ) is prime then every HD is irreducible.
Each Heegner divisor is itself an orthogonal Shimura variety for a lattice of signature (2, ` − 1). (For

example, in the Hermitian modular form case the Heegner divisorHD may be identified with the paramodular
threefold XK(D) of level D modulo Atkin-Lehner involutions.) Moreover the intersection of any two Heegner
divisors is itself a Heegner divisor in this interpretation. The intersection numbers can be computed in
general by counting certain lattice embeddings up to equivalence. However it seems worthwhile to mention a
trick which (in the cases we will need) makes this computation quite easy and which works in some generality.

A special case of Borcherds’ higher-dimensional Gross-Kohnen-Zagier theorem [2] shows that the Heegner
divisors on ΓK\H2 interpreted appropriately are coefficients of a modular form of weight 3. If K has
prime discriminant dK < 0, and we take intersection numbers with a fixed Heegner divisor of squarefree
discriminant m ∈ N and apply the Bruinier-Bundschuh isomorphism (see [3], or Remark 3 below) then this
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implies that there are weights αm(D), D ∈ N such that

Φm(τ) := −1 +

∞∑
D=1

αm(D)
∑
f2|D

(Hm · HD/f2)qD ∈M+
3 (Γ0(−dK), χ),

where χ is the quadratic Dirichlet character modulo dK , and where M+
3 (Γ0(−dK), χ) is the subspace of

weight three modular forms of level Γ0(−dK) whose Fourier expansions at ∞ are supported on exponents
which are quadratic residues. Moreover the sums

∑
f2|D αm(D/f2) themselves (for fixed m) are coefficients

of a modular form of weight 5/2 and level Γ0(4m) satisfying the Kohnen plus-condition and which has
constant term −1 (and for m = 1, 2, 3 this determines it uniquely); for example,

−1 +

∞∑
D=1

∑
f2|D

α1(D/f2)qD = −1 + 10q + 70q4 + 48q5 + 120q8 + 250q9 + ... = 6
θ′(τ)

2πi
− E2(4τ)θ(τ),

−1 +

∞∑
D=1

∑
f2|D

α2(D/f2)qD = −1 + 4q + 22q4 + 24q8 + 100q9 + ... = 3
θ′(τ)

2πi
− E2(8τ)θ(τ),

−1 +

∞∑
D=1

∑
f2|D

α3(D/f2)qD = −1 + 2q + 14q4 + 34q9 + 24q12 + ... = 2
θ′(τ)

2πi
− E2(12τ)θ(τ),

where θ(τ) = 1 + 2q + 2q4 + 2q9 + ... is the usual theta function and where E2(τ) = 1− 24
∑∞
n=1 σ1(n)qn.

Unfortunately the spaces M+
3 (Γ0(−dK), χ) are two-dimensional for dK ∈ {−7,−11}. However one can

specify the correct modular forms more precisely by observing that the intersections in cohomology are
themselves the Fourier coefficients of a vector-valued Jacobi form of index m/|dK | and weight three (for
a particular representation of the Jacobi group) and the intersection numbers are obtained by setting the
elliptic variable of that Jacobi form to zero. (More precisely these Jacobi forms occur as Fourier-Jacobi
coefficients of the Siegel modular form introduced by Kudla-Millson in [12].) For m ≤ 3 the relevant space
of Jacobi forms is always one-dimensional (for every dK), spanned by the Eisenstein series (for which some
computational aspects are discussed in [16]) so the generating series of intersection numbers is exactly what
was called the Poincaré square series of index m/|dK | in [16]. In this way we can compute the relevant
intersection numbers without computing any intersections. We find:
(1) For K = Q(

√
−7),

Φ1(τ) = −1− 2q + 20q2 + 18q4 + 70q7 + 160q8 + 94q9 + ...

and
Φ2(τ) = −1 + 4q + 2q2 + 48q4 + 28q7 + 142q8 + 148q9 + ...

(2) For K = Q(
√
−11),

Φ1(τ) = −1− 2q + 20q3 − 2q4 + 20q5 + 18q9 + 70q11 + ...

and
Φ3(τ) = −1 + 2q + 0q3 + 14q4 + 16q5 + 82q9 + 26q11 + ...

It follows that for K = Q(
√
−7), the intersection of H1 and H2 as a Heegner divisor of XK(1) is 2H1

and as a Heegner divisor of XK(2) is just H1 itself; and for K = Q(
√
−11) the intersection of H1 and H3 in

XK(1) is 2H1 and in XK(2) is H1. This means, for example, that if F is a Hermitian modular form for OK ,

K = Q(
√
−7) with a zero on H2, then the pullbacks of all orders to H1 are Siegel modular forms of degree

two with at least a double zero along the diagonal.

2.4. Lifts. To construct generators we make use of two lifts from elliptic modular forms: the Maass lift (or
additive theta lift) and the Borcherds lift (or multiplicative theta lift). Both theta lifts most naturally take
vector-valued modular forms which transform under a Weil representation as inputs.

Recall that if (Λ, Q) is an even-dimensional even lattice with dual Λ′ then there is a representation ρ∗ of
SL2(Z) on C[Λ′/Λ] = span(eγ : γ ∈ Λ′/Λ) defined by

ρ∗
((

0 −1
1 0

))
eγ =

e−πisig(Λ)/4√
|Λ′/Λ|

∑
β∈Λ′/Λ

e2πi〈β,γ〉eβ , ρ∗ (( 1 1
0 1 )) eγ = e−2πiQ(γ)eγ .
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We consider holomorphic functions F : H→ C[Λ′/Λ] which satisfy the functional equations

F

(
aτ + b

cτ + d

)
= (cτ + d)kρ∗

((
a b
c d

))
for all

(
a b
c d

)
∈ SL2(Z). These are called nearly-holomorphic modular forms if they have finite order at∞ (in

other words, F (x + iy) has at worst exponential growth as y → ∞), and are (holomorphic) modular forms
or cusp forms if F (x + iy) is bounded or tends to zero in that limit, respectively. The functional equation
under T = ( 1 1

0 1 ) implies a Fourier expansion of the form

F (τ) =
∑

γ∈Λ′/Λ

∑
n∈Zn−Q(γ)

c(n, γ)qneγ

where q = e2πiτ and c(n, γ) ∈ C. Then F is a nearly-holomorphic modular form if and only if c(n, γ) = 0
for all sufficiently small n; a holomorphic modular form if and only if c(n, γ) = 0 for all n < 0; and a cusp
form if and only if c(n, γ) = 0 for all n ≤ 0.

Now suppose Λ is positive-definite and that k ≥ 1
2dim Λ, k ∈ Z. The Maass lift takes a vector-valued

modular form F (τ) =
∑
γ,n c(n, γ)qneγ of weight κ = k − 1

2dim Λ for ρ∗ to the orthogonal modular form

ΦF (τ, z, w) = −Bk
2k
c(0, 0)

(
Ek(τ) + Ek(w)− 1

)
+

∞∑
a,b=1

∑
λ∈Λ′

λ positive
Q(λ)≤ab

∞∑
n=1

c(ab−Q(λ), λ)nk−1e2πin(aτ+bw+〈λ,z〉)

for Λ ⊕ II2,2, where Ek(τ), Ek(w) denote the Eisenstein series of weight k for SL2(Z). (If k is odd then
c(0, 0) = 0 so there is no need to define Ek.) The Maass lift is additive and preserves the subspace of cusp
forms.

The second lift we use is the Borcherds lift, which takes a nearly-holomorphic vector-valued modular form
F (τ) =

∑
γ,n c(n, γ)qneγ of weight − 1

2dim Λ (where we again take Λ to be positive-definite) and yields a

multivalued meromorphic orthogonal modular form (in general with character) which is locally represented
as a convergent infinite product:

ΨF (τ, z, w) = e2πi(Aτ+〈B,z〉+Cw)
∏
a,b,λ

(1− e2πi(aτ+bw+〈λ,z〉))c(ab−Q(λ),λ).

There is an analogy to the formal k = 0 case of the Maass lift; however, the set over which a, b, λ is more
complicated (depending on a Weyl chamber containing (τ, z, w)) and the Weyl vector (A,B,C) has no
analogue in the additive lift. The most important aspect of the Borcherds lift for us is not the product
expansion but the fact that the divisor of ΨF may be computed exactly: it is supported on Heegner divisors,
and the order of ΨF on the rational quadratic divisor λ⊥ (with Q(λ) < 0) is

ord(ΨF ;λ⊥) =
∑
r∈Q>0

c(r2Q(λ), rλ)

(where c(r2Q(λ), rλ) = 0 if rλ 6∈ Λ′). In particular ΨF is an orthogonal modular form if and only if these
orders are nonnegative integers. In all cases the weight of F is c(0, 0)/2.

Remark 2. One can always compactify ΓΛ\HΛ by including finitely many zero-dimensional and one-
dimensional cusps (corresponding to isotropic one-dimensional or two-dimensional sublattices of Λ⊕ II2,2 up
to equivalence). If K has class number one (or slightly more generally if the norm form on OK is alone in
its genus) then our discriminant kernel ΓOK

admits only one equivalence class each of zero-dimensional and
one-dimensional cusps and both are contained in the closure of every rational quadratic divisor. In particular
any Borcherds product which is holomorphic is automatically a cusp form. (This is peculiar to the lattices
considered here; it is certainly not true in general.)

Remark 3. Let us say a few words about the input functions F . A general method to compute vector-
valued modular forms for general lattices was given in [16] and [15] (the two references corresponding to
even and odd-weight theta lifts, respectively), and this is what was actually used in the computations be-
low because the implementation was already available. Of course one can obtain all nearly-holomorphic
modular forms by dividing true modular forms of an appropriate weight by a power of the discriminant
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∆(τ) = q
∏∞
n=1(1− qn)24. However a few other formalisms apply to the particular lattices Λ = (OK , NK/Q)

considered here:

(i) Modular forms for the representation ρ∗ attached to a positive-definite lattice Λ are equivalent to Jacobi
forms of lattice index which are scalar-valued functions φ(τ, z) in a “modular variable” τ ∈ H and an “elliptic
variable” z ∈ Λ ⊗ C satisfying certain functional equations and growth conditions. The main advantage of
Jacobi forms is that they can be multiplied: for example, in many cases it is possible to construct all Jacobi
forms of a given weight and level by taking linear combinations of products of Jacobi theta functions at
various arguments (i.e. theta blocks).

(ii) If Λ has odd prime discriminant p and k+(dim Λ)/2 is even then Bruinier and Bundschuh show in [3] that
vector-valued modular forms of weight k for ρ∗ can be identified with either a “plus-” or “minus-” subspace
of Mk(Γ0(p), χp) (where χp is the nontrivial quadratic character mod p), i.e. the subspace of modular forms
whose Fourier coefficients are supported on quadratic residues modulo p, or quadratic nonresidues mod p
and pZ, respectively. The isomorphism simply identifies the form F (τ) =

∑
γ,n c(n, γ)qneγ with∑

γ,n

c(n, γ)qpn ∈Mk(Γ0(p), χp).

This fails when k+(dim Λ)/2 is odd (in which case c(n, γ) = −c(n,−γ), so the resulting sum is always zero!).
To obtain any results in the the same spirit, it seems necessary to consider instead the “twisted sums”∑

γ,n

c(n, γ)χ(γ)qpn,

where χ is an odd Dirichlet character mod p (and where an isomorphism Λ′/Λ ∼= Z/pZ has been fixed). The
result is a modular form of level Γ0(p2) with character χ ⊗ χp. These maps were studied in [14]; they are
injective and their images can be characterized in terms of the Atkin-Lehner involutions modulo p2.

2.5. Pullbacks. Let λ ∈ OK have norm ` = NK/Qλ, and consider the embedding of the Siegel upper
half-space into H2:

φ : H2 −→ H2, φ (( τ z
z w )) =

(
τ λz
λz `w

)
= Uλ · ( τ z

z w ) , Uλ := diag(1, λ, 1, λ/`).

For any paramodular matrix

M ∈ K(`) := {M ∈ Sp4(Q) : σ−1
` Mσ` ∈ Z4×4}, σ` := diag(1, 1, 1, `),

we find UλMU−1
λ ∈ SU2,2(OK) and

φ(M · τ) = (UλMU−1
λ ) · φ(τ), τ ∈ H2,

so φ descends to an embedding of K(`)\H2 into ΓK\H2 (and more specifically into the Heegner divisor of
discriminant `). In particular if F : H2 → C is a Hermitian modular form then f := F ◦ φ is a paramodular
form of the same weight, i.e.

f(M · τ) = (cτ + d)kf(τ) for all M =
(
a b
c d

)
∈ K(`) and τ ∈ H2.

The preprint [17] gives expressions in the higher Taylor coefficients about a rational quadratic divisor
which yield “higher pullbacks” PNF , N ∈ N0. If F is a Hermitian modular form of weight k then its
pullback PH`

N F along the embedding above is a paramodular form of level K(`) and weight k+N and a cusp
form if N > 0. The higher pullbacks of theta lifts are themselves theta lifts and are particularly simple to
compute. One computational aspect of the higher pullbacks worth mentioning is that a form F vanishes to
some order h along the rational quadratic divisor if and only if its pullbacks PNF , N < h are identically zero,
and this can be checked rigorously using Sturm bounds (or their generalizations) for the lower-dimensional
group under which PNF transforms.

An important case is the N th pullback of a modular form F to a Heegner divisor along which it has order
exactly N . The result in this case is the well-known quasi-pullback and we denote it QF . The quasi-pullback
is multiplicative i.e. Q(FG) = QF ·QG for all Hermitian modular forms F,G.
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3. Paramodular forms of levels one, two and three

The pullbacks of Hermitian modular forms to certain Heegner divisors have interpretations as paramodular
forms (as in subsection 2.5 above). Structure results for graded rings of paramodular forms are known for
a few values of N . We will rely on the previously known generators for the graded rings of paramodular
levels 1,2 and 3. The first of these is now classical and was derived by Igusa [9]; the second was computed
in [8] by Ibukiyama and Onodera; and the third was computed by Dern [5]. For convenience we express
the generators as Gritsenko lifts or Borcherds products. (Igusa and Ibukiyama–Onodera expressed them in
terms of thetanulls.)

Proposition 4. (i) There are cusp forms ψ10, ψ12, ψ35 of weights 10, 12, 35 such that M∗(K(1)) is generated
by the Eisenstein series E4, E6 and by ψ10, ψ12, ψ35.
(ii) There are graded-symmetric cusp forms φ8, φ10, φ11, φ12 of weights 8, 10, 11, 12 and an antisymmetric
non-cusp form f12 such that M∗(K(2)) is generated by the Eisenstein series E4, E6 and by φ8, φ10, φ11, φ12, f12.
(iii) There are graded-symmetric cusp forms ϕ6, ϕ8, ϕ9, ϕ10, ϕ11, ϕ12 of weights 6, 8, 9, 10, 11, 12 and an an-
tisymmetric non-cusp form f12 such that M∗(K(3)) is generated by the Eisenstein series E4, E6 and by
ϕ6, ϕ8, ϕ9, ϕ10, ϕ11, ϕ12, f12.

For later use, we fix the following concrete generators. Let E4, E6 denote the modular Eisenstein series;
Ek,m the Jacobi Eisenstein series of weight k and index m; and E′k,m its derivative with respect to z. The
inputs into the Gritsenko and Borcherds lifts are expressed as Jacobi forms following Remark 3 above.

(i) ψ10 and ψ12 are the Gritsenko lifts of the Jacobi cusp forms

ϕ10,1(τ, z) =
E4,1E6 − E4E6,1

144
and ϕ12,1(τ, z) =

E2
4E4,1 − E6E6,1

144

respectively, and ψ35 is the Borcherds lift of
11E2

4E4,1+7E6E6,1

18∆ .

(ii) φ8, φ10, φ11, φ12 are the Gritsenko lifts of the Jacobi cusp forms

ϕ8,2 =
E4E4,2 − E2

4,1

12
, ϕ10,2 =

E4,2E6 − E4,1E6,1

12
, ϕ11,2 =

E4,1E
′
6,1 − E4,1E

′
6,1

288πi
, ϕ12,2 =

E2
4E4,2 − E6E6,2

24
,

respectively, and f12 is the Borcherds lift of
3E2

4E4,2+4E4E
2
4,1+5E6E6,2

12∆ .

(iii) ϕ6, ϕ8, ϕ9, ϕ10, ϕ11, ϕ12 are the Gritsenko lifts of the Jacobi cusp forms

ϕ6,3 =
ϕ10,1ϕ8,2

∆
, ϕ8,3 =

E4E4,3 − E4,1E4,2

2
, ϕ9,3 =

ϕ10,1ϕ11,2

∆
,

ϕ10,3 =
ϕ10,2ϕ12,1

∆
, ϕ11,3 =

ϕ11,2ϕ12,1

∆
, ϕ12,3 =

E4E4,1E4,2 + E2
4E4,3

2
− E6,1E6,2,

respectively, and f12 is the Borcherds lift of
2E4E4,1E4,2+5E3

4,1+5E6,1E6,2

12∆ . (Note that these are not quite the
generators used by Dern; the choices used here simplify the ideal of relations somewhat.)

Remark 5. For later use we will need to understand the ideals of symmetric (under the Fricke involution
τ 7→ − 1

N τ
−1) paramodular forms of level N ∈ {1, 2, 3} which vanish along the diagonal. The pullback of a

paramodular form to the diagonal is a modular form for the group SL2(Z)×SL2(Z) or in other words a linear
combination of expressions of the form (f1⊗f2)(τ1, τ2) = f1(τ1)f2(τ2), where f1, f2 are elliptic modular forms
of level one of the same weight; and if the paramodular form is symmetric then the pullback is symmetric
under swapping (τ1, τ2) 7→ (τ2, τ1). The graded ring of symmetric modular forms under SL2(Z)× SL2(Z) is
the weighted polynomial ring

M∗(SL2(Z)× SL2(Z)) = C[E4 ⊗ E4, E6 ⊗ E6,∆⊗∆]

where E4, E6,∆ are defined as usual. Therefore:

(i) In level N = 1, the pullbacks of E4, E6, ψ12 to the diagonal are the algebraically independent modular
forms E4 ⊗ E4, E6 ⊗ E6, ∆⊗∆, so every even-weight form which vanishes on the diagonal is a multiple of
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ψ10 (which has a double zero). The odd-weight form ψ35 has a simple zero on the diagonal.

(ii) In level N = 2, the pullbacks of E4, E6, φ12 to the diagonal are algebraically independent, so the ideal of
even-weight symmetric forms which vanish on the diagonal is generated by φ8 (which has a fourth-order zero
there) and φ10 (which has a double zero). Moreover φ2

10 is itself a multiple of φ8, so the ideal of even-weight
modular forms which vanish to order at least three along the diagonal is principal, generated by φ8. The
odd-weight form φ11 has a simple zero along the diagonal.

(iii) In level N = 3, the pullbacks of E4, E6, ϕ12 to the diagonal are algebraically independent, so the ideal
of even-weight symmetric forms which vanish on the diagonal is generated by ϕ6, ϕ8, ϕ10 (which have zeros
of order 6, 4, 2 respectively). These forms satisfy ϕ2

8 = ϕ6ϕ10 and ϕ2
10 = ϕ8ϕ12, so the ideals of (even-weight,

symmetric) forms which vanish to order at least 3 or at least 5 are 〈ϕ6, ϕ8〉 and 〈ϕ6〉, respectively. The
odd-weight forms ϕ9 and ϕ11 have order 3 and 1 along the diagonal, respectively, and satisfy the relations

ϕ6ϕ11 = ϕ8ϕ9, ϕ8ϕ11 = ϕ9ϕ10,

and ϕ3
11 and ϕ10ϕ11 (and therefore all odd-weight symmetric forms with at least a triple zero on the diagonal)

are multiples of ϕ9.

4. Hermitian modular forms for Q(
√
−7)

In this section we compute the graded ring of Hermitian modular forms for the maximal order in K =
Q(
√
−7) by studying the pullbacks to Heegner divisors of discriminant 1 and 2 and applying the structure

theorems of Igusa and Ibukiyama-Onodera. We first consider graded-symmetric forms and reduce against a
distinguished Borcherds product b7 (which is also a Maass lift) whose divisor is

div b7 = 3H1 +H2.

We will express all graded-symmetric forms in terms of Maass lifts E4, E6, b7,m8,m9,m
(1)
10 ,m

(2)
10 ,m11,m12

in weights 4, 6, 7, 8, 9, 10, 10, 11, 12 which are described in more detail on the next page. The Maass lifts of

weight 4, 6, 7, 8, 9 are essentially unique, and the Maass lifts of weight 10 are chosen such that m
(1)
10 vanishes

on H1 and m
(2)
10 vanishes on H2. By contrast m11 could have been chosen almost arbitrarily (so long as it is

not a multiple of E4b7, which is also a Maass lift), and similarly for m12.

Lemma 6. Let F be a symmetric Hermitian modular form. There is a polynomial P such that

F − P (E4, E6,m8,m
(1)
10 ,m11,m12)

vanishes along the Heegner divisor H2.

Proof. This amounts to verifying that the pullbacks of E4, E6,m8,m
(1)
10 ,m11,m12 generate the ring of sym-

metric paramodular forms of level 2, and is clear in view of Ibukiyama-Onodera’s structure result and Tables
1 and 2 below. �

Theorem 7. The graded ring of symmetric Hermitian modular forms for OK is generated by Maass lifts

E4, E6, b7,m8,m9,m
(1)
10 ,m

(2)
10 ,m11,m12

in weight 4, 6, 7, 8, 9, 10, 10, 11, 12. The ideal of relations is generated by

m8m9 = b7(m
(1)
10 + 12m

(2)
10 );

m2
9 + 12b7m11 = E4b27 + 36m8m

(2)
10 ;

m9m
(1)
10 = b7(E4m8 + 12m12);

E6b27 + 18m
(1)
10 m

(2)
10 = E4b7m9 + 6m9m11;

m
(1)
10 (m

(1)
10 + 12m

(2)
10 ) = m8(E4m8 + 12m12);

E4b7m(1)
10 + 6E4b7m(2)

10 + 72m
(2)
10 m11 = E6b7m8 + 6m9m12;

3E4m8m
(1)
10 + 6E4b7m11 + E6b7m9 + 72m2

11 = E2
4 b

2
7 + 3E6m2

8 + 18m
(1)
10 m12.
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In Table 1 we describe the even-weight Maass lifts used as generators. For each Maass lift of weight k we give its input form (in the convention
of Bruinier-Bundschuh; this is a modular form of weight k − 1 and level Γ0(7) for the quadratic character) and its first pullbacks to the Heegner
divisors of discriminant 1 and 2. (The pullbacks of odd order to H1 are always zero and therefore omitted.)

Table 1. Maass lifts in even weight

Name Weight Input form PH1
0 PH1

2 PH1
4 PH2

0 PH2
1

E4 4 1 + 14q3 + 42q5 + 70q6 + 42q7 + 210q10 ± ... E4 0 0 E4 0
E6 6 1− 10q3 − 78q5 − 170q6 − 150q7 − 1326q10 ± ... E6 0 1814400ψ10 E6 0
m8 8 q3 − q5 − 8q6 + 7q7 + 8q10 ± ... 0 120ψ10 4352ψ12 2φ8 0

m
(1)
10 10 q3 − q5 + 16q6 − 17q7 − 136q10 ± ... 0 152ψ12 8736E4ψ10 2φ10 24ψ11

m
(2)
10 10 q5 − q6 − q7 + q10 − 16q12 ± ... 2ψ10 −2ψ12 −420E4ψ10 0 −4ψ11

m12 12 q5 + 3q6 + 7q7 − 19q10 − 72q12 ± ... 2ψ12 2E4ψ10 134E4ψ12 − 710E6ψ10
1
3φ12 − 1

3E4φ8 0

The input functions into the Maass lift in odd weight are given as twisted sums as in [14]. Here, χ may be any odd Dirichlet character mod 7;
the input form is then a modular form of level Γ0(49) and character χ⊗χ7 where χ7 is the quadratic character. The Borcherds product b7 happens
to lie in the Maass Spezialschar and is listed in this table.

Table 2. Maass lifts in odd weight

Name Weight Input form PH1
1 PH1

3 PH1
5 PH2

0 PH2
1

b7 7 χ(5)q3 + 3χ(3)q5 + 2χ(1)q6 − 6χ(5)q10 ± ... 0 −360ψ10 4080ψ12 0 −4φ8

m9 9 χ(5)q3 − 9χ(3)q5 − 10χ(1)q6 − 90χ(5)q10 ± ... −24ψ10 72ψ12 −21168E4ψ10 0 −4φ10

m11 11 χ(3)q5 − 5χ(1)q6 + 11χ(5)q10 − 30χ(3)q12 ± ... −2ψ12 40E4ψ10
6290

3 E4ψ12 − 9350
3 E6ψ10 6φ11 2φ12

The Borcherds products below can be shown to exist by a Serre duality argument as in [2].

Table 3. Borcherds products

Name Weight Divisor Graded-symmetric?

b7 7 3H1 +H2 yes
b28 28 7H1 +H7 no

9



Proof. We use induction on the weight. As usual any modular form of negative or zero weight is constant.

Using the previous lemma we may assume that F has a zero along H2. Since H2 has a double intersection
with H1 along its diagonal H1 it follows that the pullbacks of F to H1 of all orders have (at least) a double
zero along the diagonal; in particular, they are multiples of the Igusa discriminant ψ10.

Since the pullbacks of E4, E6,m(2)
10 ,m12 to H1 generate the graded ring of even-weight Siegel modular

forms, and m
(2)
10 vanishes along H2 but pulls back to the Igusa form ψ10 on H1, it follows that we can

subtract some expression of the form

m
(2)
10 P (E4, E6,m(2)

10 ,m12)

away from F to obtain a form whose pullbacks to both H1 and H2 are zero. Similarly, we can subtract some
expression of the form

m9P (E4, E6,m(2)
10 ,m12)

away from F to ensure that the zero along H1 has multiplicity at least two.

Now assume that F has exactly a double zero along H1 (in particular, it must have even weight) and a

zero along H2. Suppose first that F has exactly a simple zero along H2. Then its first pullback PH2
1 F has

odd weight and at least a double zero along the diagonal in XK(2) and is therefore contained in the ideal

generated by φ8φ11 and φ10φ11. The products m8m
(2)
10 and m

(1)
10 m

(2)
10 have (up to a constant multiple) exactly

these first pullbacks, so subtracting away some expression of the form

m8m
(2)
10 P1(E4, E6,m8,m

(1)
10 ,m11,m12) +m

(1)
10 m

(2)
10 P2(E4, E6,m8,m

(1)
10 ,m11,m12)

with polynomials P1, P2 leaves us with a modular form with at least double zeros along both H1 and H2.
The double zero along H2 forces the second pullback to H1 to have at least a fourth-order zero along the
diagonal and therefore to be a multiple of ψ2

10. Since m2
9 has exactly this second pullback to H1 (up to a

constant multiple) and a double zero along H2, we may subtract away some expression of the form

m2
9P (E4, E6,m(2)

10 ,m12)

from F to obtain a form with a third-order zero along H1 and which continues to have a double zero on H2.
Finally, any modular form F with a triple zero along H1 and a zero along H2 is divisible by b7 (by

Koecher’s principle), with the quotient F
b7

having strictly lower weight. By induction, F/b7 and therefore F
is a polynomial expression in the generators in the claim.

The relations were computed by working directly with Fourier expansions. Here the main difficulties are
determining how many Fourier coefficients must be computed to show that a modular form is identically
zero, and determining how many relations are needed to generate the full ideal. To verify the correctness of
these computations in both cases it is enough to know the dimensions of spaces of Hermitian modular forms,
and these are derived in section 6 below. �

Proposition 8. There are holomorphic skew-symmetric forms h30, h31, h32, h33, h34, h35, which are obtained
from b28 and the Maass lifts constructed above by inverting b7, such that every Hermitian modular form for
OK is a polynomial in

E4, E6, b7,m8,m9,m
(1)
10 ,m

(2)
10 ,m11,m12, b28, h30, h31, h32, h33, h34, h35.

Proof. As a skew-symmetric form, F has a forced zero on the Heegner divisor H7. If F has even weight, the
point will be to subtract away skew-symmetric forms from F to produce something with at least a seventh-
order zero on the surface H1, which will therefore be divisible by b28. By contrast if F has odd weight then
it seems to be more effective to reduce first against the product b7.

(i) Suppose F has even weight, so its order along H1 is odd and its quasi-pullback to H1 takes the form

QF = ψ35P (ψ4, ψ6, ψ10, ψ12)

for some polynomial P . The quotients h30 := b28
m9

b7
, h32 := b28

m2
9

b27
, h34 := b28

m3
9

b37
are holomorphic and skew-

symmetric, with zeros along H1 of order 5, 3, 1 respectively, and in all cases their quasi-pullback to H1 is a
10



constant multiple of ψ35. By subtracting from F expressions of the form

{h30, h32, h34} · P (E4, E6,m(2)
10 ,m12),

we are able to force the first, third and fifth order pullbacks of F to H1 to vanish. But then F is divisible
by b28 with symmetric quotient, so we apply the previous proposition.

(ii) Suppose F has odd weight (and therefore even order along H1). Then we will find expressions to
subtract away from F to force divisibility by b7. (The reduction against b28 as in the even-weight case seems
impossible, as there are no skew-symmetric modular forms of weight 29 and therefore no way to handle
sixth-order zeros on H1.) We will first force F to have at least a fourth-order zero along H1. The quotients

h33 :=
b28m

(2)
10 m9

b27
, h35 :=

b28m
(2)
10 m

2
9

b37
are holomorphic and skew-symmetric, with zeros along H1 of orders 2 and 0, respectively, and their quasi-
pullbacks to H1 are again constant multiples of ψ35. By subtracting from F expressions of the form

{h33, h35} · P (E4, E6,m(2)
10 ,m12),

we can ensure that the 0th and 2nd pullbacks of F to H1 vanish, so ordH1
(F ) ≥ 4.

Now the pullback of F to H2 is skew-symmetric, has odd weight, and vanishes on the diagonal to order
at least four, so it is therefore a multiple of the weight 31 form φ8φ11f12: i.e.

F
∣∣∣
H2

= φ8φ11f12P (E4, E6, φ8, φ10, φ12)

for some polynomial P . But the form

h31 :=
b28m

(2)
10

b7
is holomorphic and skew-symmetric, with a fourth-order zero on H1, and it restricts to (a multiple of)
φ8φ11f12 on H2. Therefore, some expression of the form

F − h31P (E4, E6,m8,m
(1)
10 ,m12)

has a zero on H2 and continues to have at least a fourth-order zero on H1. The result will be divisible by b7
with the quotient having even weight and therefore being covered by case (i). �

5. Hermitian modular forms for Q(
√
−11)

In this section we reduce the computation of the graded ring of Hermitian modular forms of degree two
for the maximal order in Q(

√
−11) to the results of Igusa and Dern on paramodular forms. The argument

is very nearly the same as the previous section. We first deal with symmetric Hermitian modular forms (of
all weights) by reduction against the distinguished Borcherds product b5 with divisor

div b5 = 5H1 +H3.

The Maass lifts we take as generators are described in more detail in the tables on the next page.

Lemma 9. Let F be a symmetric Hermitian modular form. There is a polynomial P such that

F − P (E4, E6,m6,m8, b9,m
(1)
10 ,m11,m12)

vanishes along the Heegner divisor H3.

Proof. We only need to check that the pullbacks of E4, E6,m6,m8, b9,m
(1)
10 ,m11,m12 to H3 generate the

graded ring of paramodular forms of level 3. This is clear from Tables 4 and 5 below after comparing the
pullbacks with the generators found by Dern as described in Section 3. �
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As in the previous section, the input forms into the Maass lift in Tables 4 and 5 are expressed as component sums using the convention of [3] and [14]. The Borcherds

products b5, b8, b9 satisfy the Maass condition so they are listed both as Maass lifts and Borcherds products.

Table 4. Maass lifts in even weight

Name Weight Input form PH1
0 PH1

2 PH1
4 PH3

0 PH3
1

E4 4 1 + 2q2 + 20q6 + 32q7 + 34q8 + 52q10 + ... E4 0 0 E4 0

E6 6 1− 22
85
q2 − 1804

85
q6 − 704

17
q7 − 5654

85
q8 − 13772

85
q10 − ... E6 0 − 26345088

17
ψ10 E6 − 266112

5185
ϕ6 0

m6 6 q2 − 3q6 − 10q7 + 2q8 + 31q10 ± ... 0 0 37440ψ10 2ϕ6 0

m8 8 q2 − 3q6 + 14q7 + 2q8 − 65q10 ± ... 0 0 62016ψ12 2ϕ8 48ϕ9

b8 8 q6 − q7 − q8 + q11 + q13 ± ... 0 120ψ10 −544ψ12 0 −6ϕ9

m
(1)
10 10 q6 + 3q7 − q8 + 8q10 − 11q11 − 27q13 ± ... 0 152ψ12 2688E4ψ10 − 1

6
E4ϕ6 + 1

6
ϕ10 2ϕ11

m
(2)
10 10 q6 − q7 + 11q8 − 12q10 − 11q11 + q13 ± ... 24ψ10 −16ψ12 240E4ψ10 0 −6ϕ11

m12 12 q2 + 136q6 − 77q7 + 7q8 + 463q10 ± ... 288ψ12 24136E4ψ10 1023040E6ψ10 + 34784E4ψ12 2ϕ12 −690E4ϕ9

Table 5. Maass lifts in odd weight

Name Weight Input form PH1
1 PH1

3 PH1
5 PH3

0 PH3
1

b5 5 χ(8)q2 − 5χ(7)q6 + 4χ(2)q7 + 10χ(6)q8 − 5χ(1)q10 ± ... 0 0 187200ψ10 0 6ϕ6

m7 7 χ(8)q2 + 7χ(7)q6 − 8χ(2)q7 − 26χ(6)q8 + 19χ(1)q10 ± ... 0 4320ψ10 −32640ψ12 0 6ϕ8

b9 9 χ(2)q7 − χ(6)q8 − χ(1)q10 + χ(8)q13 + χ(7)q17 ± ... ψ10 −40ψ12 2472E4ψ10
1
2
ϕ9

1
24
E4ϕ6 − 1

24
ϕ10

m9 9 χ(8)q2 + 19χ(7)q6 − 20χ(2)q7 + 82χ(6)q8 − 101χ(1)q10 ± ... 288ψ10 −576ψ12 570816E4ψ10 0 ϕ10

m11 11 χ(2)q7 + 2χ(6)q8 + 8χ(1)q10 − 17χ(8)q13 − 29χ(7)q17 ± ... 4ψ12 −152E4ψ10
8980
3
E4ψ12 + 17300

3
E6ψ10 ϕ11

1
8
E4ϕ8 − 5

36
E6ϕ6 − 4560

61
ϕ2
6 + 1

72
ϕ12

Table 6. Borcherds products

Name Weight Divisor Graded-symmetric?

b5 5 5H1 +H3 yes

b8 8 2H1 +H3 +H4 yes

b9 9 H1 +H5 yes

b24 24 11H1 +H11 no

1
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Theorem 10. The graded ring of symmetric Hermitian modular forms for OK is generated by Maass lifts

E4, b5, E6,m6,m7, b8,m8, b9,m9,m
(1)
10 ,m

(2)
10 ,m11,m12

in weights 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12.

The ideal of relations is considerably more complicated than the analogous ideal for K = Q(
√
−7) so it is

left to an auxiliary file for convenience.

Proof. We use induction on the weight. Any modular form of nonpositive weight is constant.

Let F be any symmetric Hermitian modular form. Using the previous lemma we assume that F has a
zero along H3. Then the pullbacks of F to H1 of all orders have at least a double zero along the diagonal
and are therefore multiples of ψ10.

The pullbacks of E4, E6,m(2)
10 ,m12 to H1 generate the ring of even-weight Siegel modular forms of degree

two. Moreover, the forms m
(2)
10 ,m9, b8,m7 vanish along H3 and their quasi-pullbacks to H1 are scalar

multiples of ψ10. By successively subtracting away from F expressions of the form

{m(2)
10 ,m9, b8,m7} · P (E4, E6,m(2)

10 ,m12)

with appropriately chosen polynomials P , we may set the zeroth, first, second and third order pullbacks to
H1 equal to zero while maintaining a zero on the divisor H3.

Therefore, we may assume that F has at least a fourth-order zero on H1 and a zero on H3. Suppose F
has exactly a fourth-order zero on H1. (In particular, F has even weight.) Then the quasi-pullback QF of
F to H3 is an odd-weight paramodular form of level 3 with at least a fourth-order zero on the diagonal, so
QF is a multiple of ϕ9 and QF/ϕ9 is contained in the ideal 〈ϕ6, ϕ8, ϕ10〉 of symmetric paramodular forms
of even weight with a zero on the diagonal. Then we can write

QF = ϕ6ϕ9P1 + ϕ8ϕ9P2 +
(
− 1

6
E4ϕ6 +

1

6
ϕ10

)
ϕ9P3

for some even-weight symmetric paramodular forms P1, P2, P3. Since m6b8, m8b8 and m
(1)
10 b8 have fourth-

order zeros onH1 and are zero onH3 with respective quasi-pullbacks ϕ6ϕ9, ϕ8ϕ9 and (−1/6E4ϕ6+ϕ10/6)ϕ9,

we can take any symmetric forms P̃1, P̃2, P̃3 whose pullbacks to H3 are P1, P2, P3 (some polynomials in

E4, E6,m6,m8, b9,m
(1)
10 ,m11,m12 will do) and subtract away

b8 ·
(
m6P̃1 +m8P̃2 +m

(1)
10 P̃3

)
from F to obtain an even-weight form with (at least) a fourth-order zero on H1 and (at least) a double zero
on H3.

Suppose still that F has order exactly four on H1. Then the quasi-pullback of F to H1 is a Siegel modular
form of even weight with at least an fourth-order zero on the diagonal (due to the double zero of F on H3)
and is therefore a multiple of ψ2

10. Since b28 has a fourth-order zero on H1 with quasi-pullback (up to scalar
multiple) ψ2

10, and it also has a double zero along H3, we may subtract away some expression of the form

b28P (E4, E6,m(2)
10 ,m12) from F to obtain a modular form which vanishes to at least order 5 along H1 and

which has at least a double zero on H3.
Now if F has order at least 5 along H1 and a zero on H3, then the quotient F/b5 is holomorphic (by

Koecher’s principle) and has lower weight, so F/b5 and therefore F is a polynomial expression in the gener-
ators in the claim. �

Proposition 11. The graded ring of Hermitian modular forms of degree 2 for Q(
√
−11) is generated by the

symmetric generators of Theorem 10 and the holomorphic quotients

h24+2N =
b24m

N
7

bN5
, 0 ≤ N ≤ 5

and

h24+2N+3 =
b24b8m

N
7

bN+1
5

, 0 ≤ N ≤ 4.
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Proof. In the even-weight case our goal is to reduce against the skew-symmetric Borcherds product b24 with
divisor

div b24 = 11H1 +H11.

To show that the pullbacks to H1 of odd orders 1 ≤ N ≤ 9 are surjective it is enough to find skew-symmetric
modular forms of weights 35−N with exactly an N th order zero on H1 (whose N th pullback must then be
a multiple of ψ35), since we have already produced preimages of the even-weight Siegel modular forms. It is
easy to see that the quotients h24+2N = b24(m7/b5)N are holomorphic and have order 11− 2N on H1.

We will reduce odd-weight skew-symmetric forms F to even-weight skew-symmetric forms by reducing
against b5. (The reduction against b24 as in the previous paragraph fails as there are no skew-symmetric
modular forms of weight 25.) First we force at least a fifth-order zero on H1 using the holomorphic forms

h24+2N+3 =
b24b8m

N
7

bN+1
5

, 2 ≤ N ≤ 4,

which have a zero of order 8−2N onH1 and whose quasi-pullbacks must be scalar multiples of ψ35. Therefore
by subtracting away expressions of the form

{h31, h33, h35} · P (E4, E6,m(2)
10 ,m12)

we may assume that F has at least a sixth-order zero on H5.
Now the pullback of F to H3 is an skew-symmetric modular form of odd weight with at least a sixth-order

zero on the diagonal and is therefore contined in the ideal generated by ϕ6ϕ9f12 and ϕ8ϕ9f12. Up to scalar
multiple these are exactly the pullbacks of h27 = b24b8

b5
and h29 = b24b8m7

b25
to H3. Since h27 and h29 both

vanish to order at least 5 on H1, we subtract away some expression

h27P1(E4, E6,m(2)
10 ,m12) + h29P2(E4, E6,m(2)

10 ,m12)

from F to obtain a form (again called F ) whose divisor contains 5H1 +H3 and which is therefore divisible
by b5. The quotient F/b5 is skew-symmetric of even weight so the previous case applies. �

6. Dimension formulas

The task of computing ideals of relations is much easier if dimension formulas for the spaces of modular
forms are available (for one thing, such formulas make it clear when enough relations have been found to
generate the ideal). In principle the dimensions can always be calculated via a trace formula or Riemann-
Roch theorem; however this is a rather lengthy computation which does not seem to appear explicitly in the
literature. In this section we observe that those dimensions can be read off almost immediately from the
method of proof in sections 4 and 5 above.

Recall that the Hilbert series of a finitely generated graded C-algebra M =
⊕∞

k=0Mk is

HilbM =

∞∑
k=0

(dimMk)tk ∈ Z[|t|].

6.1. Dimension formulas for K = Q(
√
−7). We will express the Hilbert series of dimensions of Hermitian

modular forms for ΓK = SU2,2(OK) in terms of the Hilbert series for Sp4(Z) and the symmetric paramodular
group K(2)+ = 〈K(2), V2〉 of level 2. Recall that the latter series are

∞∑
k=0

dimMk(Sp4(Z))tk =
1 + t35

(1− t4)(1− t6)(1− t10)(1− t12)

and
∞∑
k=0

dimMsym
k (K(2))tk =

(1 + t10)(1 + t11)

(1− t4)(1− t6)(1− t8)(1− t12)

corresponding to the ring decompositions

M∗(Sp4(Z)) = C[E4, E6, ψ10, ψ12]⊕ ψ35C[E4, E6, ψ10, ψ12]

and

Msym
2∗ (K(2)) = C[E4, E6, φ8, φ12]⊕φ10C[E4, E6, φ8, φ12], Msym

∗ (K(2)) = Msym
2∗ (K(2))⊕φ11M

sym
2∗−11(K(2)).
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We first consider (graded-) symmetric even weight Hermitian modular forms. Write

Heven(t) =
∑
k even

dimMsym
k (ΓK)tk, Hodd(t) =

∑
k odd

dimMsym
k (ΓK)tk.

Although we reduce against the product b7 whose zero on the Heegner divisor H2 is simple, the proof of
Theorem 7 suggests that we consider both the zeroth and first order pullbacks there; so altogether we take
the tuple of pullbacks

P = (PH1
0 , PH1

2 , PH2
0 , PH2

1 ) : Msym
2∗ (ΓK) −→M2∗(Sp4(Z))⊕ S2∗+2(Sp4(Z))⊕Msym

2∗ (K(2))⊕ Ssym2∗+1(K(2)).

Then we obtain the exact sequences

0 −→ ker
(
PH2

0 : Msym
2∗−7(ΓK)→Msym

2∗−7(K(2))
)
×b7−→Msym

2∗ (ΓK)
P−→ imP −→ 0

and

0 −→ ψ2
10 ·
(
M2∗−20(Sp4(Z))⊕M2∗−18(Sp4(Z))

)
−→ imP −→Msym

2∗ (K(2))⊕Msym
2∗+1(K(2)) −→ 0,

from which we obtain the Hilbert series

Hilb imP =
t18 + t20

(1− t4)(1− t6)(1− t10)(1− t12)
+

(1 + t10)2

(1− t4)(1− t6)(1− t8)(1− t12)

and

Heven(t) = Hilb imP + t7
(
Hodd(t)−

(1 + t10)t11

(1− t4)(1− t6)(1− t8)(1− t12)

)
= t7Hodd(t) +

1 + t10 − t26 − t28 − t30 + t38

(1− t4)(1− t6)(1− t8)(1− t10)(1− t12)
.

By reducing odd-weight symmetric forms against b7 we obtain the exact sequences

0 −→Msym
2∗−6(ΓK)

×b7−→Msym
2∗+1(ΓK)

P=(P
H1
1 ,P

H2
0 )

−→ imP −→ 0

and

0 −→ ψ10 ·M2∗−9(Sp4(Z)) −→ imP −→Msym
2∗+1(K(2)) −→ 0

and therefore

Hodd(t) = t7Heven(t) +
t9

(1− t4)(1− t6)(1− t10)(1− t12)
+

(1 + t10)t11

(1− t4)(1− t6)(1− t8)(1− t12)
.

These equations resolve to

HilbMsym
∗ (ΓK) = Heven(t) +Hodd(t)

=
1 + t4 + t8 + t9 + t10 + t11 + t12 + t13 + t14 + t15 + t16 + t18 + t19 + t20 + t22 + t23 + t24 + t27 − t30 − t34

(1− t6)(1− t7)(1− t8)(1− t10)(1− t12)
.

Now we compute dimensions of spaces of (graded) skew-symmetric modular forms. For even-weight forms
the first, third and fifth order pullbacks to H1 yield an exact sequence

0 −→Msym
2∗−28(ΓK)

×b28−→ Mskew
2∗ (ΓK)

(P1,P3,P5)−→ S2∗+1(Sp4(Z))⊕ S2∗+3(Sp4(Z))⊕ S2∗+5(Sp4(Z)) −→ 0

and we obtain the generating series
∞∑
k=0

dimMskew
2k (ΓK)t2k =

t30 + t32 + t34

(1− t4)(1− t6)(1− t10)(1− t12)
+ t28

∞∑
k=0

dimMsym
2k (ΓK)t2k.

As for odd-weight skew-symmetric forms, we use the exact sequences

0 −→Mskew
2∗−6 (ΓK)

×b7−→Mskew
2∗+1 (ΓK)

P=(P
H1
0 ,P

H1
2 ,P

H2
0 )

−→ imP −→ 0

and

0 −→ φ8φ11f12M
sym
2∗−30(K(2)) −→ imP −→M2∗+1(Sp4(Z))⊕M2∗+3(Sp4(Z)) −→ 0
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to obtain
∞∑
k=0

dimMskew
2k+1(ΓK)t2k+1 =

t33 + t35

(1− t4)(1− t6)(1− t10)(1− t12)
+

t31(1 + t10)

(1− t4)(1− t6)(1− t8)(1− t12)

+ t7
∞∑
k=0

dimMskew
2k (ΓK)t2k,

reducing the computation to the previous paragraph. Altogether we find
∞∑
k=0

dimMk(ΓK)tk =
P (t)

(1− t4)(1− t6)(1− t7)(1− t10)(1− t12)

where

P (t) = 1 + t8 + t9 + t10 + t11 + t16 + t18 + t19 + t24 + t27 + 2t32 + t33 + t34 + 2t35 − t42 + t43.

The table below lists dimensions for the full space of Hermitian modular forms; the subspace of graded-
symmetric Hermitian modular forms; and the subspace of Maass lifts.

Table 7. Dimensions for Q(
√
−7)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dimMk(ΓK) 0 0 0 1 0 1 1 2 1 3 2 4 2 5 4 8 5 10 8 13
dimMsym

k (ΓK) 0 0 0 1 0 1 1 2 1 3 2 4 2 5 4 8 5 10 8 13
dim Maassk(ΓK) 0 0 0 1 0 1 1 2 1 3 2 3 2 4 3 5 3 5 4 6

k 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
dimMk(ΓK) 10 17 14 22 17 26 23 35 28 42 37 52 44 63 57 76 66 90 84 109
dimMsym

k (ΓK) 10 17 14 22 17 26 23 34 28 41 36 50 43 60 54 72 63 84 78 101
dim Maassk(ΓK) 4 7 5 7 5 8 6 9 6 9 7 10 7 11 8 11 8 12 9 13

6.2. Dimension formulas for K = Q(
√
−11). The procedure we use to compute Hilbert series of Hermitian

modular forms for the field Q(
√
−11) is mostly the same as the previous subsection. Here we need the

corresponding series for symmetric paramodular forms of level three:
∞∑
k=0

dimMsym
k (K(3))tk =

1 + t8 + t9 + t10 + t11 + t19

(1− t4)(1− t6)2(1− t12)
.

(This can be derived from Corollary 5.6 of [5] or computed directly. We remark that the series presented in
[5] do not agree with this because the definition of “symmetric” there is not graded-symmetric.)

Again write

Heven(t) =
∑
k even

dimMsym
k (ΓK)tk, Hodd(t) =

∑
k odd

dimMsym
k (ΓK)tk.

Let P = (PH1
0 , PH1

2 , PH1
4 , PH3

0 , PH3
1 ) denote the tuple of pullbacks

P : Msym
2∗ (ΓK)→M2∗(Sp4(Z))⊕ S2∗+2(Sp4(Z))⊕ S2∗+4(Sp4(Z))⊕Msym

2∗ (K(3))⊕ Ssym2∗+1(K(3)).

Reducing graded-symmetric even-weight forms against b5 yields the exact sequences

0→ ker
(
PH3

0 : Msym
2∗−5(ΓK)→Msym

2∗−5(K(3))
)
×b5−→Msym

2∗ (ΓK)
P−→ imP → 0,

0→ ψ2
10 ·
( ⊕
k∈{0,2,4}

M2∗−20+2k(Sp4(Z))
)
−→ imP −→Msym

2∗ (K(3))⊕Msym
2∗+1(K(3)) −→ 0,

from which we obtain

Hilb imP =
t16 + t18 + t20

(1− t4)(1− t6)(1− t10)(1− t12)
+

1 + 2t8 + 2t10 + t18

(1− t4)(1− t6)2(1− t12)
16



and

Heven(t) = Hilb imP + t5
(
Hodd(t)−

t9 + t11 + t19

(1− t4)(1− t6)2(1− t12)

)
= t5Hodd(t) +

1 + 2t8 + t10 − t14 − t20 − t22 − t24 − t28 + t34

(1− t4)(1− t6)2(1− t10)(1− t12)
.

Similarly, the reduction of odd-weight symmetric forms against b5 through the tuple of pullbacks P =
(PH1

1 , PH1
3 , PH3

0 ) yields the exact sequences

0 −→Msym
2∗−4(ΓK)

×b5−→Msym
2∗+1(ΓK)

P−→ imP −→ 0

and

0 −→ ψ10 ·
(
M2∗−9(Sp4(Z))⊕M2∗−7(Sp4(Z))

)
−→ imP −→Msym

2∗+1(K(3)) −→ 0,

so

Hodd(t) =
t7 + t9

(1− t4)(1− t6)(1− t10)(1− t12)
+

t9 + t11 + t19

(1− t4)(1− t6)2(1− t12)
+ t5Heven(t).

Altogether we find

HilbMsym
∗ (ΓK) = Heven(t) +Hodd(t)

=
1 + t5 + t7 + 2t8 + 2t9 + 2t10 + t11 + t12 + t13 + t14 + t15 + t16 + t17 + t18 + t19 + t23 − t29

(1− t4)(1− t6)2(1− t10)(1− t12)
.

For skew-symmetric modular forms we argue as in the previous subsection and find
∞∑
k=0

dimMskew
2k (ΓK)t2k =

t26 + t28 + t30 + t32 + t34

(1− t4)(1− t6)(1− t10)(1− t12)
+ t24

∞∑
k=0

dimMsym
2k (ΓK)t2k

and
∞∑
k=0

dimMskew
2k+1(ΓK)t2k+1 =

t31 + t33 + t35

(1− t4)(1− t6)(1− t10)(1− t12)
+

t27 + t29 + t37

(1− t4)(1− t6)2(1− t12)

+ t5
∞∑
k=0

dimMskew
2k (ΓK)t2k,

and altogether
∞∑
k=0

dimMk(ΓK)tk =
P (t)

(1− t4)(1− t5)(1− t6)2(1− t12)

where

P (t) = 1 + t7 + 2t8 + 2t9 + 2t10 + t11 − t13 − t14 − t15 + t17 + 2t18 + 2t19 + t20

− t22 − t23 − t24 − t25 + t26 + 2t27 + 2t28 + 2t29 + 2t30 + t31 − t36 + t37.

The table below lists dimensions for the full space of Hermitian modular forms; the subspace of graded-
symmetric Hermitian modular forms; and the subspace of Maass lifts.

Table 8. Dimensions for Q(
√
−11)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

dimMk(ΓK) 0 0 0 1 1 2 1 3 3 5 4 8 6 10 10 15 14 21 19 28

dimMsym
k (ΓK) 0 0 0 1 1 2 1 3 3 5 4 8 6 10 10 15 14 21 19 28

dim Maassk(ΓK) 0 0 0 1 1 2 1 3 3 4 3 5 4 6 5 7 6 8 6 9

k 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

dimMk(ΓK) 27 36 35 49 45 60 60 77 76 98 94 120 120 147 147 181 177 216 219 260

dimMsym
k (ΓK) 27 36 35 48 45 59 59 75 74 94 91 114 114 138 138 168 165 198 200 236

dim Maassk(ΓK) 8 10 8 11 9 12 10 13 11 14 11 15 13 16 13 17 14 18 15 19
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