Brandon Williams

Contact Information	RWTH Aachen Lehrstuhl A für Mathematik Templergraben 55, 52062 Aachen	<i>E-mail:</i> brandon.williams@ matha.rwth-aachen.de <i>WWW:</i> btw-47.github.io
Research Interests	Modular forms and their generalizations, including vector-valued modular forms, Jacobi forms, mock modular forms and automorphic forms on more general groups.	
EDUCATION	University of California, Berkeley, CA	
	Ph.D., Mathematics	2013-2018
	 Dissertation title: <i>Computing modular forms for the Weil representation</i> Adviser: Prof. Richard Borcherds Area of Study: Automorphic forms 	
	Ruprecht-Karls-Universität Heidelberg, Germa	ny
	M.Sc., Mathematics	2011-2013
	 Thesis title: On elliptic curves with completerpolation Adviser: Prof. Dr. Otmar Venjakob 	ex multiplication, L-functions, and p-adic in-
	B.Sc., Mathematics	2009-2011
	 Thesis title: <i>GARCH(1,1)-models</i> Adviser: Prof. Dr. Rainer Dahlhaus 	
Employment	RWTH Aachen, Germany	
	Postdoctoral researcher	2020-present
	• Postdoc mentor: Prof. Dr. Aloys Krieg	
	Technische Universität Darmstadt, Germany	
	Postdoctoral researcher	2018-2020
	• Postdoc mentor: Prof. Dr. Jan Bruinier	
Awards	• 2018 Ken Ribet – Lisa Goldberg Award in Alg	gebra (department dissertation award)
	• Lehmer Fellowship in Number Theory, Spring 2018.	
PUBLICATIONS	 Williams, B. Poincaré square series for the Weil representation. Ramanujan J. 47 (2018), no. 3, 605–650. 	
	 [2] Williams, B. Vector-valued Hirzebruch–Zagier series and class number sums. Res. Math. Sci. 5 (2018), no. 2, Paper No. 25, 13 pp. 	
	[3] Williams, B. Rankin–Cohen brackets and Serre derivatives as Poincaré series. Res. Num- ber Theory 4 (2018), no. 4, Art. 37, 13 pp.	
	[4] Williams, B. Vector-valued Eisenstein series (2019), no. 2, 265–287.	s of small weight, Int. J. Number Theory 15

- [5] Williams, B. Poincaré square series of small weight. Ramanujan J. 48 (2019), no. 3, 585–612.
- [6] Williams, B. Overpartition M2-rank differences, class number relations, and vectorvalued mock Eisenstein series. Acta Arith. 189 (2019), no. 4, 347–365.
- [7] Pribitkin, W. and Williams, B. Short proof of Rademacher's formula for partitions. Res. Number Theory 5 (2019), no. 2, Art. 17, 6 pp.
- [8] Williams, B. Remarks on the theta decomposition of vector-valued Jacobi forms, J. Number Theory 197 (2019), 250–267.
- [9] Schwagenscheidt, M. and Williams, B. Twisted component sums of vector-valued modular forms, Abh. Math. Sem. Univ. Hamburg 89 (2019), no. 2, 151–168.
- [10] Williams, B. A construction of antisymmetric modular forms for Weil representations, Math. Zeitschrift 296 (2020) 391–408.
- [11] Williams, B. Graded rings of paramodular forms of level 5 and 7, J. Number Theory 209 (2020) 483–515.
- [12] Williams, B. The rings of Hilbert modular forms for Q(sqrt29) and Q(sqrt37), J. Algebra 559 (2020) 679–711.
- [13] Wang, H. and Williams, B. On some free algebras of orthogonal modular forms, Adv. Math. 373 (2020), Article 107332.
- [14] Williams, B. *Higher pullbacks of modular forms on orthogonal groups*, Forum Math. 33 (2021), 631–652.
- [15] Wang, H. and Williams, B. Borcherds products of half-integral weight, J. Number Theory 238 (2022), 944–950.
- [16] Williams, B. Two graded rings of Hermitian modular forms, Abh. Math. Sem. Univ. Hamburg 91 (2021) 257–285.
- [17] Wang, H. and Williams, B. Graded rings of Hermitian modular forms with singularities, Manuscripta Math. 170 (2023) 283–311.
- [18] Wang, H. and Williams, B. Siegel modular forms of degree two and level five, Ramanujan J. 60 (2023) 597–613.
- [19] Hauffe-Waschbüsch, A. and Krieg, A. and Williams, B. On Hermitian Eisenstein series of degree 2, Funct. Approx. 68(1) (2023), 127–141.
- [20] Wang, H. and Williams, B. *Projective spaces as orthogonal modular varieties*, Transform. Groups, in press.
- [21] Wang, H. and Williams, B. *Simple lattices and free algebras of modular forms*, Adv. Math. 413 (2023), Article 108835.
- [22] Schwagenscheidt, M. and Williams, B. Binary theta functions and Borcherds products, J. Number Theory 249 (2023) 441–461.
- [23] Wang, H. and Williams, B. On weak Jacobi forms of rank two, J. Algebra, in press.
- [24] Wang, H. and Williams, B. Modular forms with poles on hyperplane arrangements, Algebraic Geom., in press.

[25] Wang, H. and Williams, B. Free algebras of modular forms on ball quotients, 2021, arXiv: 2105.14892
[26] Wang, H. and Williams, B. The fake monster algebra and singular Borcherds products, 2022, arXiv:2207.14518
[27] Wang, H. and Williams, B. Mathieu moonshine and Borcherds products, 2022, arXiv: 2208.00574
[28] Wang, H. and Williams, B. On the non-existence of singular Borcherds products, 2023, arXiv:2301.13367
[29] Wang, H. and Williams, B. Automorphic products that are singular modulo primes, 2023, arxiv:2307.14222
 Poincaré square series for the Weil representation in Trends in modular forms, Daejeon, South Korea, December 19-22, 2017.
• Computing obstruction spaces for Borcherds products in ABKLS seminar, Aachen, Germany, February 14, 2018.
• Vector-valued Hirzebruch-Zagier series and class number sums in Emory University Algebra and Number Theory Seminar, April 17, 2018.
• <i>Class number sums</i> in Universität Köln Oberseminar Zahlentheorie und Modulformen, June 12, 2018.
• <i>Hilbert modular forms and Borcherds products</i> in Chalmers University of Technology, Algebraic Geometry and Number Theory Seminar, November 21, 2018.
• <i>Hilbert modular forms and Borcherds products</i> in Darmstadt Algebra Group Winter Seminar, February 22, 2019.
• <i>Hilbert modular forms and Borcherds products</i> in Dartmouth College Number Theory Seminar, May 23, 2019.
• <i>Higher pullbacks of modular forms on orthogonal groups</i> in Darmstadt Algebra Seminar, February 18, 2020.
• Higher pullbacks of modular forms on orthogonal groups in Integrable systems and auto- morphic forms, Sochi, Russia, February 23-27, 2020.
• Free algebras of orthogonal modular forms in Darmstadt Algebra Group Winter Seminar, March 13, 2020.
• Simple lattices and free algebras of modular forms, RWTH Aachen, January 18, 2021. (On- line)
• <i>Simple lattices and free algebras of modular forms</i> , Brown University, March 1, 2021. (Online)
• Borcherds products and a ring of Hermitian modular forms, University of Oregon, May 3, 2021. (Online)
• <i>Weak Jacobi forms of rank two</i> , 34th Automorphic Forms Workshop, March 19, 2022. (Online)
• Free algebras of modular forms on complex ball quotients in Universität Bielefeld Oberseminar Gruppen und Geometrie, April 27, 2022.

- *Free algebras of modular forms on complex ball quotients* in International Seminar on Automorphic Forms, May 3, 2022. (Online)
- Additive theta lifts that are Borcherds products in ENTR Workshop, Darmstadt, Germany, October 27, 2022.
- *Modular products that are singular modulo primes*, KTH Royal Institute of Technology, Stockholm, June, 7, 2023.
- Computation of vector-valued modular forms (Lightning talk) in LuCaNT, ICERM, Providence, RI, July 13, 2023.

TEACHING EXPERIENCE

Teaching assistant	2020-present
Complex analysis II	
Analytic number theory	
Smart Study Start - Mathematics (Introductory mathematics	course)
Fechnische Universität Darmstadt, Germany	
Teaching assistant	2019-2020
Analysis II (English)Linear Algebra I (English)	
University of California, Berkeley, CA	
Instructor (GSI)	Summers 2014-2016
• Math 16B (Analytic geometry and calculus)	
• Math 54 (Linear algebra and differential equations)	
• Math 110 (Linear algebra)	
Teaching assistant (GSI)	2013-2017
• Math 16A (Analytic geometry and calculus)	
• Math 53 (Multivariable calculus)	
• Math 54 (Linear algebra and differential equations)	
• Math 55 (Discrete mathematics)	
 Main H54 (Honors linear algebra and differential equations) Math 110 (Linear algebra) 	
Math 185 (Introduction to complex analysis)	
Math 250A (Groups, rings, and fields)	
Grader	Spring 2014
• Math H185 (Honors introduction to complex analysis)	
Ruprecht-Karls-Universität Heidelberg, Germany	
Teaching assistant (Tutor)	2011-2013
• Linear algebra	
• Algebra 1 (field and Galois theory)	
• Elementary number theory	

Mentoring	Directed Reading Program I met weekly with an undergraduate student at UC Berkeley and worked with them on an inde- pendent reading project that led to a presentation at the end of the semester.		
	<i>Computing class numbers,</i> Fall 2016.<i>Elliptic curve cryptography,</i> Spring 2017.		
	• Insolvability of the quintic equation, Fall 2017.		
	• Modular forms, Spring 2018.		
Reviewing	• I have served as a referee for several journals including Bull. Korean Math. Soc., Compositio Math., Forum Math., J. Number Theory, Math. Annalen, Proc. A.M.S., Proc. Natl. Acad. Sci. USA, Res. Number Theory, Transformation Groups.		
	• I have reviewed papers for Mathematical Reviews (MathSciNet) and Zentralblatt MATH (zbMath).		
Other Experience	 Ruprecht-Karls-Universität Heidelberg, Germany Data mining practicum (Summer 2012) Analyzed clusters in graphs of OSM geographic data using a variant of the PageRank algorithm. 		
	Heidelberg Collaboratory for Image Processing, Heidelberg, Germany		
	• Computer vision practicum (Summer 2011) Used histograms of oriented gradients and related image descriptors to analyze illuminated manuscripts.		
Software	Programming languages:I am proficient with Python.I have some experience programming in C++ and Julia.		
	Mathematical software: • Mathematica, MATLAB, SageMath		
	Other: • T _E X (L ^A T _E X, BIBT _E X), • Microsoft Office, LibreOffice, Google Docs		
Languages	English, German (fluent) Dutch, French, Russian (intermediate)		