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Abstract. We give coefficient formulas for antisymmetric vector-valued cusp forms with rational Fourier

coefficients for the Weil representation associated to a finite quadratic module. The forms we construct

always span all cusp forms in weight at least three. These formulas are useful for computing explicitly with
theta lifts.

1. Introduction

This note is an extended version of chapter 7 of the author’s dissertation and is in some sense a contin-
uation of [14]. Its purpose is to give formulas for a spanning set of vector-valued cusp forms with rational
Fourier coefficients for the (dual) Weil representation ρ∗ attached to a finite quadratic module (A,Q) which
are antisymmetric under the action of −I ∈ SL2(Z). Equivalently the weight k of these cusp forms is such
that k + sig(A,Q)/2 is odd, where sig(A,Q) is the signature of (A,Q).

Bases of modular forms with rational coefficients are known to exist due to the work of McGraw [8].
On the other hand, all algorithms to compute such bases in the literature that the author is aware of (e.g.
[11], [14]) assume that k + sig(A,Q)/2 is even. Computing antisymmetric modular forms has received less
attention; the first effective formula to compute the space of Eisenstein series in antisymmetric weights
for arbitrary (A,Q) was given in [12]. The computation of cusp forms here complements this. The most
important application of antisymmetric vector-valued modular forms is that they are mapped to orthogonal
modular forms under the additive theta lift (of Gritsenko, Kudla, Oda, Rallis-Schiffmann and many others).

Our main results are the two theorems below. (The terms and notation are explained in section two.)

Theorem 1.1. Let (A,Q) be a finite quadratic module, and let k ≥ 3 be a weight for which k + sig(A,Q)/2
is an odd integer. For any β ∈ A and m ∈ Z−Q(β), m > 0, let Rk,m,β be the cusp form defined through the
Petersson scalar product by

(f,Rk,m,β) = 2 · Γ(k − 1)

(4πm)k−1
Lm,β(f, 2k − 1) for all cusp forms f,

where Lm,β is essentially a rescaled symmetric square L-function:

Lm,β(f, s) =

∞∑
λ=1

c(λ2m,λβ)

λs
if f(τ) =

∑
γ∈A

∑
n∈Z−Q(γ)

c(n, γ)qneγ , q = e2πiτ .

Then all Rk,m,β have rational Fourier coefficients, and there is a finite collection of indices (m,β) for which
the forms Rk,m,β span the entire cusp space Sk(ρ∗).

Theorem 1.2. Let (Λ, Q) be an even lattice which realizes the discriminant group A = Λ′/Λ, and let k ≥ 4
be a weight for which k+sig(Λ)/2 is odd. For any β ∈ Λ′ and m ∈ Z−Q(β), m > 0, let Λm,β denote the even
lattice with underlying group Λ⊕Z and quadratic form Qm,β(v, λ) = Q(v+λβ)+mλ2. Let cm,β(n, γ) denote
the Fourier coefficients of the weight k − 3/2 Eisenstein series for the dual Weil representation attached to
Λm,β (as in [3]), i.e.

Ek−3/2(τ ; Λm,β) =
∑

γ∈Λ′m,β/Λm,β

∑
n∈Z−Qm,β(γ)

cm,β(n, γ)qneγ .
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Then Rk,m,β is given explicitly by the formula

Rk,m,β(τ) =
1

2m

∑
γ∈A

∑
n∈Z−Q(γ)

[ ∑
r∈Z−〈γ,β〉

r · cm,β
(
n, (γ − r

2m
β,

r

2m
β)
)]
qn+r2/4meγ .

This rest of this note is organized as follows. Sections 2 contains background material on vector-valued
modular forms for Weil representations. Section 3 constructs the cusp forms Rk,m,β and proves Theorem
1.2. In section 4 we adapt the construction to small weights and completes the proof of Theorem 1.1 and
indicate how the formula in weight three can be used to compute identities among class numbers. Section 5
discusses the main application i.e. the theta lift and orthogonal modular forms. We compute the theta lift
of Rk,m,β and give examples for lattices of signature (2, 1) and (2, 2) where the lift can be interpreted as an
elliptic modular form and a Hilbert modular form respectively.

An implementation of the coefficient formula (Theorem 1.2) and its adaptation to low weights in SAGE
is available on the author’s university webpage.

Acknowledgments: I am grateful to Richard Borcherds for supervising the dissertation this note is
based on, and for many discussions when I was a graduate student to which I owe my interest in vector-
valued modular forms. I also thank Jan Hendrik Bruinier and Martin Raum for helpful discussions, and I
thank the reviewer for suggestions which improved the structure of this note. This work was supported by
the LOEWE research unit Uniformized Structures in Arithmetic and Geometry.

2. Finite quadratic modules and modular forms

This section reviews finite quadratic modules, their Weil representations, and vector-valued modular forms
for those representations in order to fix some conventions and notation for the rest of the note. For a more
thorough introduction see chapter 14 of [4].

A finite quadratic module (A,Q) consists of a finite abelian group A and a nondegenerate (Q/Z)-valued
quadratic form Q on it. (In other words the bilinear form 〈x, y〉 = Q(x+y)−Q(x)−Q(y) is nondegenerate.)

Given this data there is a unitary representation ρ∗ = ρ∗(A,Q) of the metaplectic group Γ̃ = Mp2(Z) on the

group ring C[A], through which the generators S = (
(

0 −1
1 0

)
,
√
τ) and T = (( 1 1

0 1 ) , 1) act by

ρ∗(S)eγ =
1√
|A|

e(sig(A,Q)/8)
∑
β∈A

e
(
〈γ, β〉

)
eβ , ρ∗(T )eγ = e(−Q(γ))eγ , γ ∈ A.

(Recall that elements of Mp2(Z) may be understood as pairs (M,φ) where M =
(
a b
c d

)
∈ SL2(Z) and where

φ is a branch of
√
cτ + d on H.) Here we are using the notation e(x) = e2πix, and eγ , γ ∈ A denotes

the canonical basis of C[A]. In the most common convention ρ∗ is called the dual Weil representation
associated to (A,Q). In the definition above, sig(A,Q) ∈ Z/8Z is the signature of (A,Q), i.e. the signature
mod 8 of any even lattice whose discriminant is isomorphic to (A,Q). The signature can be computed
intrinsically by means of Milgram’s formula ([9], appendix 4):

e(sig(A,Q)/8) =
1√
|A|

∑
β∈A

e
(
Q(β)

)
.

Let H = {τ = x + iy : y > 0} be the upper half-plane. Modular forms for ρ∗ of weight k ∈ 1
2Z are

holomorphic functions f = f(τ) : H → C[A] which remain bounded as y = im(τ) tends to ∞ and which
satisfy

f

(
aτ + b

cτ + d

)
= (cτ + d)kρ∗

((
a b
c d

)
,
√
cτ + d

)
f(τ)

for all M =
((

a b
c d

)
,
√
cτ + d

)
∈ Γ̃. The space of modular forms of weight k for ρ∗ will be denoted Mk(ρ∗).

2



The transformation under T implies that a modular form f for ρ∗ has a Fourier expansion of the form

f(τ) =
∑
γ∈A

∑
n∈Z−Q(γ)

c(n, γ)qneγ , c(n, γ) ∈ C.

The element Z = (−I, i) = S2 ∈ Mp2(Z) acts through ρ∗ by ρ∗(Z)eγ = (−1)sig(A,Q)/2e−γ and it acts trivially
on H, so the transformation under Z implies that Mk(ρ∗) = 0 if k+ sig(A,Q)/2 is not integral, and that the
Fourier coefficients c(n, γ) of any modular form f(τ) satisfy

c(n, γ) = (−1)k+sig(A,Q)/2c(n,−γ).

Therefore it seems reasonable to refer to k as a symmetric or antisymmetric weight when k+sig(A,Q)/2
is respectively even or odd.

The spaces Mk(ρ∗) of modular forms of weight k are always finite-dimensional and their dimensions can
be calculated with some effort with the Riemann-Roch theorem. An effective formula (in terms of certain
Gauss sums, which can be computed with only one iteration over A) that is valid for both symmetric and
antisymmetric weights appears as Theorem 2.1 of [5].

The easiest way to produce modular forms is by averaging. Let Γ̃∞ = 〈T,Z〉 ≤ Γ̃ be the stabilizer of
the constant function e0. For any k > 2 and any smooth function φ : H → C[A] which satisfies φ(τ) =
(−1)kρ∗(Z)φ(τ) and φ(τ + 1) = ρ∗(T )φ(τ), the Poincaré series, if it converges locally uniformly, is the
series

Pk(φ) =
∑

M∈Γ̃∞\Γ̃

φ|k,ρ∗M =
1

2

∑
c,d∈Z

gcd(c,d)=1

(cτ + d)−kρ∗
((

a b
c d

)
,
√
cτ + d

)−1

φ

(
aτ + b

cτ + d

)
.

In the sum on the right, M = (
(
a b
c d

)
,
√
cτ + d) is any element with bottom row c, d. The most important

case is the Poincaré series of exponential type: for β ∈ A and m ∈ Z−Q(β), we take the seed function

φ(τ) = qm
eβ+(−1)ke−β

2 and define Pk,m,β = Pk(φ). These converge normally when k ≥ 5/2 and are cusp
forms when m > 0. Moreover they are a spanning set of Sk(ρ∗) as β runs through A and as m runs through
(Z−Q(β))>0 because, with respect to the Petersson scalar product

(f, g) =

∫
SL2(Z)/H

〈f(τ), g(τ)〉yk−2 dxdy, f, g ∈ Sk(ρ∗),

these Poincaré series satisfy

(f, Pk,m,β) = (4πm)1−kΓ(k − 1)c(m,β) for all f(τ) =
∑
γ∈A

∑
n∈Z−Q(γ)

c(n, γ)qneγ ∈ Sk(ρ∗).

(This is proved by the usual Rankin-Selberg unfolding argument.) In particular any cusp form orthogonal
to all Pk,m,β is identically zero.

3. Antisymmetric Poincaré series with rational coefficients

Fix a discriminant form (A,Q) and a weight k ≥ 7/2 which is antisymmetric, i.e. k + sig(A,Q)/2 is odd.
For an index (m,β) with β ∈ A and m ∈ Z−Q(β), let Pk,m,β be the Poincaré series of exponential type of
weight k as in section 2.

Lemma 3.1. The series Rk,m,β =
∑
λ∈Z λPk,λ2m,λβ = 2 ·

∑∞
λ=1 λPk,λ2m,λβ converges in Sk(ρ∗).

Proof. Sk(ρ∗) is finite-dimensional so every reasonable notion of convergence (e.g. with respect to any norm)
coincides with that of the weak topology with respect to the Petersson scalar product; in other words, it is
enough to show that

∞∑
λ=1

λ(f, Pk,λ2m,λβ) = (4πm)1−kΓ(1− k)
∞∑
λ=1

c(λ2m,λβ)

λ2k−3

converges for all cusp forms f(τ) =
∑
n,γ c(n, γ)qneγ . For k ≥ 7/2 this follows from known coefficient bounds

for cusp forms. See also the analogous argument in remark 10 of [14]. �
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Lemma 3.2. The series Rk,m,β span Sk(ρ∗) as β runs through A and m runs through positive elements of
Z−Q(β).

Proof. Let µ be the Möbius function. Möbius inversion implies

Pk,m,β =
1

2

∞∑
λ=1

λµ(λ)Rk,λ2m,λβ

with convergence by the same argument as the previous lemma. Since Sk(ρ∗) is finite-dimensional it follows
from this that all Poincaré series Pk,m,β lie in the span of Rk,m,β . �

The most practial way to compute Rk,m,β is to view it as a development coefficient of a (vector-valued)
Jacobi Eisenstein series of weight k − 1. For now we assume k ≥ 9/2. The cases k ∈ {5/2, 3, 7/2, 4} are
treated in the next section.

A Jacobi form of weight k and index (m,β) is a holomorphic function of two variables

Φ : H× C −→ C

which satisfies the transformation laws

Φ
(aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

( mcz2

cτ + d

)
ρ∗(M)Φ(τ, z) for all M = (

(
a b
c d

)
,
√
cτ + d) ∈ Γ̃

and

Φ(τ, z + λτ + µ) = e(−λµm)q−mλ
2

ζ−2mλσ∗β(λ, µ)Φ(τ, z) for all λ, µ ∈ Z,

together with a vanishing condition on Fourier coefficients, where q = e2πiτ and ζ = e2πiz and where

σ∗β(λ, µ)eγ = e
(
− µ〈β, γ〉+ λµQ(β)

)
eγ−λβ .

The maps σ∗β do not define a representation of Z2 but they can be interpreted as a sort of finite analogue of
the Schrödinger representations of the integral Heisenberg group H. In particular Jacobi forms Φ as in the
definition above are automorphic under the Jacobi group J = H oMp2(Z) with respect to the semidirect
product representation ρ∗β = σ∗βoρ∗. (This is explained in more detail in section 3 of [14].) Any Jacobi form

of index (m,β) has a Fourier expansion of the form

Φ(τ, z) =
∑
γ∈A

∑
n∈Z−Q(γ)

∑
r∈Z−〈γ,β〉

c(n, r, γ)qnζreγ , c(n, r, γ) ∈ C,

and the vanishing condition on Fourier coefficients is that c(n, r, γ) = 0 whenever 4mn− r2 < 0.

The Jacobi Eisenstein series Ek,m,β of weight k and index (m,β) is obtained by averaging out the
constant function e0 to a Jacobi form of that weight and index:

Ek,m,β(τ, z) =
1

2

∑
c,d∈Z

gcd(c,d)=1

(cτ + d)−k
∑
λ∈Z

e
(mλ2(aτ + b) + 2mλz − cmz2

cτ + d

)
ρ∗
((

a b
c d

)
,
√
cτ + d

)−1

eλβ ,

where
(
a b
c d

)
∈ SL2(Z) is any matrix with bottom row (c, d). This converges and defines a Jacobi form when

k ≥ 3 (and it is zero unless k is a symmetric weight for ρ∗).

Lemma 3.3. Suppose k ≥ 9/2 is an antisymmetric weight. Then

Rk,m,β(τ) =
1

4πmi

∂

∂z

∣∣∣
z=0

Ek−1,m,β(τ, z).
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Proof. The triple series over (c, d, λ) in the definition of Ek−1,m,β converges normally (as remarked in [14])
so we swap the order of summation and find

∂

∂z

∣∣∣
z=0

Ek−1,m,β(τ, z)

=
∑
λ∈Z

∑
c,d

(cτ + d)1−k ∂

∂z

∣∣∣
z=0

e
(mλ2(aτ + b) + 2mλz − cmz2

cτ + d

)
ρ∗
((

a b
c d

)
,
√
cτ + d

)−1

eλβ

= 4πmi
∑
λ∈Z

∑
c,d

λ(cτ + d)−ke
(
mλ2 aτ + b

cτ + d

)
ρ∗
((

a b
c d

)
,
√
cτ + d

)−1

eλβ

= 4πmiRk,m,β . �

In particular, if we write out the Fourier expansion of the Jacobi Eisenstein series as

Ek−1,m,β(τ, z) =
∑
γ∈A

∑
n∈Z−Q(γ)

∑
r∈Z−〈γ,β〉

c(n, r, γ)qnζreγ

then we find the Fourier expansion

Rk,m,β(τ) =
1

2m

∑
γ∈A

∑
n∈Z−Q(γ)

∑
r∈Z−〈γ,β〉

c(n, r, γ)qneγ
1

2πi

∂

∂z

∣∣∣
z=0

ζr

=
∑
γ∈A

∑
n∈Z−Q(γ)

( 1

2m

∑
r∈Z−〈γ,β〉
r2≤4mn

rc(n, r, γ)
)
qneγ .

To complete the proofs of Theorems 1 and 2 of the introduction (in weights k ≥ 9/2), we use the theta
decomposition (Theorem 5.1 of [6]) to relate the coefficients of the Jacobi Eisenstein series to the usual
(modular) Eisenstein series. The proof of Eichler and Zagier [6] does not immediately apply to Jacobi forms
of non-integral index but a minor extension ([17]; see also the errata) is sufficient. Following [17], if Λ is an
even lattice which realizes the discriminant form (A,Q) and Λm,β is defined as in the statement of Theorem
1.2 above, then there is an isomorphism

Θ : Mk−3/2(ρ∗Λm,β )
∼−→ Jk−1,m,β(ρ∗Λ)

(of modules over the graded ring of classical modular forms of level one) which identifies a vector-valued
modular form

F (τ) =
∑

γ∈Λ′m,β/Λm,β

∑
n∈Z−Qm,β(γ)

c(n, γ)qneγ ∈Mk−3/2(ρ∗Λm,β )

with the Jacobi form

Φ(τ, z) =
∑

γ∈Λ′/Λ
n∈Z−Q(γ)
r∈Z−〈γ,β〉

c
(
n− r2

4m
, (γ − r

2m
β,

r

2m
β)
)
qnζreγ .

Moreover, this correspondence identifies vector-valued Eisenstein series with Jacobi Eisenstein series ([17],
section 5). This immediately yields Theorem 1.2; and the rationality result (Theorem 1.1) follows from
rationality of the Fourier coefficients of vector-valued Eisenstein series (which follows from the formula [3]).

4. Low weights

In weights 5/2 ≤ k ≤ 4 it is still possible to define a cusp form Rk,m,β through the identity

(f,Rk,m,β) = (4πm)1−kΓ(1− k)

∞∑
λ=1

c(λ2m,λβ)

λ2k−3
, for all cusp forms f =

∑
m,β

c(m,β)qmeβ ∈ Sk(ρ∗),
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where the L-value
∑∞
λ=1

c(λ2m,λβ)
λ2k−3 is defined by analytic continuation if necessary. We will compute these

series using the Jacobi Eisenstein series

E∗k−1,m,β(τ, z; s)

=
1

2

∑
c,d∈Z

gcd(c,d)=1

∑
λ∈Z

ys

(cτ + d)k+s−1(cτ + d)s
e
(mλ2(aτ + b) + 2mλz − cmz2

cτ + d

)
ρ∗
((

a b
c d

)
,
√
cτ + d

)−1

eλβ ,

which is well-defined for Re[s] sufficiently large and has an analytic continuation to s = 0. (If k > 1 then
the analytic continuation is given by continuing each Fourier coefficient to s = 0 separately.) The zero-
value E∗k−1,m,β(τ, z, 0) is not necessarily holomorphic, but one can obtain a well-defined series Rk,m,β by

replacing 1
4πmi

∂
∂z

∣∣∣
z=0

Ek−1,m,β(τ, z) by its holomorphic projection, i.e. its orthogonal projection with re-

spect to the Petersson scalar product to the space of holomorphic cusp forms. The identity (f,Rk,m,β) =

(4πm)1−kΓ(1− k)
∑∞
λ=1

c(λ2m,λβ)
λ2k−3 is clear.

We should point out that for k ∈ {7/2, 4} this agrees with the definition (Lemma 3.1) by essentially the
same proof as that of Lemma 3.4: since one can swap the order of summation and differentiate termwise
freely for large enough Re[s], and use the uniqueness of analytic continuation to s = 0.

It will be convenient to denote by R̃k,m,β the q-series obtained in Theorem 1.2 when one takes as cm,β(n, γ)
the result of Bruinier and Kuss’s formula [3] for the Eisenstein series naively evaluated in low weights (where
it generally does not define a modular form). To be explicit we can use the formula of Proposition 4.3
of [3] in the following form. Suppose (A,Q) is represented by an `-dimensional even lattice Λ. Then
Ek(τ) =

∑
n,γ c(n, γ)qneγ with

c(n, γ) =
(−2πi)knk−1e(−sig(A,Q)/8)

Γ(k)
√
|A|

L̃(n, γ, k + `/2)

where L̃(n, γ, s) is the L-series

L̃(n, γ, s) = ζ(s− `)−1
∞∑
c=1

Nn,γ(c)c1−s, where Nn,γ(c) = #{x ∈ Λ/cΛ : Q(x− γ) + n ≡ 0 mod c}.

(Unlike [3] we have normalized such that c(0, 0) = 1.) These Eisenstein series are also discussed in [18] in
more detail.

Proposition 4.1. Suppose k = 4. Then R4,m,β = R̃4,m,β; i.e. Theorem 1.1 and Theorem 1.2 hold with no
modifications.

This result is not very surprising and the proof is essentially the same as the propositions below, so we
omit the details. Ultimiately the reason why no modification is necessary is the fact that all Eisenstein series
in weight k − 3/2 = 5/2 (including the ones appearing in Theorem 1.2) are holomorphic modular forms.

Proposition 4.2. Suppose k = 7/2. Then

R7/2,m,β = R̃7/2,m,β −
1

3πm

∂2

∂τ∂z

∣∣∣
z=0

ϑ(τ, z),

where ϑ(τ, z) is the unique weight 1/2 Jacobi form for which E∗5/2,m,β(τ, z, 0) + y−1ϑ(τ, z) is holomorphic.

A formula for the Fourier coefficients of ϑ is given in section 7 of [14]:

ϑ(τ, z) =
∑
n,r,γ

r2=4mn

a(n, r, γ)qnζreγ ,

where

a(n, r, γ) = (−1)
5+sig(A,Q)

4 · π

2
√

2m|A|
· Res

(
L̃(n, γ, s+ 5/2 + `/2); s = 0

)
.
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From [14] it follows that L̃(n, γ, s + (5/2 + `/2)) equals ζ(s+1)
ζ(s+2) up to finitely many Euler factors which are

rational at s = 0. In particular the coefficients of ϑ lie in 1
π ·Q. (This should be compared with the modular

correction of the classical Eisenstein series of weight two: E∗2 (τ) = E2(τ) − (3/π)y.) Therefore all Fourier
coefficients of R7/2,m,β are rationals.

Proof. If we write out the Fourier expansions

ϑ(τ, z) =
∑
γ,n,r

a(n, r, γ)qnζreγ , E∗5/2,m,β(τ, z, 0) =
∑
γ,n,r

(
c(n, r, γ) + y−1a(n, r, γ)

)
qnζreγ

then the Fourier expansion of R7/2,m,β(τ) =
∑
n,γ b(n, γ)qneγ may be found using the Rankin-Selberg

method:

b(n, γ) = (4πn)5/2Γ(5/2)−1(R7/2,m,β , P7/2,n,γ)

= (4πn)5/2Γ(5/2)−1
( 1

2πi

∂

∂z

∣∣∣
z=0

E∗5/2,m,β(τ, z, 0), P7/2,n,γ

)
=

64π2n5/2

3m

∑
r∈Z−〈γ,β〉

∫ ∞
0

r ·
(

(c(n, r, γ) + y−1a(n, r, γ)
)
e−4πnyy3/2 dy

=
∑

r∈Z−〈γ,β〉

r ·
( 1

2m
c(n, r, γ) +

4πn

3m
a(n, r, γ)

)
,

whereas R̃7/2,m,β(τ, z) = 1
2m

∑
γ,n

∑
r∈Z−〈γ,β〉 rc(n, r, γ)qneγ . �

Proposition 4.3. Suppose k = 3. Then all Fourier coefficients of R3,m,β are rational, and the collection of
(R3,m,β)m,β as (m,β) runs through valid indices spans S3(ρ∗).

Proof. By [16] one has the decomposition

E∗2,m,β(τ, z, 0) = E2,m,β(τ, z) + y−1/2
∑
γ∈A

∑
n∈Z−Q(γ)

n>0

∑
r∈Z−〈γ,β〉
r2≥4mn

a(n, r, γ)β
(πy(r2 − 4mn)

m

)
qnζreγ ,

where E2,m,β(τ, z) is holomorphic with rational Fourier coefficients, β(t) = 1
16π

∫∞
1
u−3/2e−tu du is an in-

complete Gamma function, and where a(n, r, γ) are coefficients lying in 1√
m|A|

· Q which are zero unless√
|A|(r2 − 4mn) ∈ Q (and, when nonzero, can be computed effectively). As before, we apply the Rankin-

Selberg method to obtain the Fourier expansion R3,m,β(τ) =
∑
γ,n b(n, γ)qneγ with

b(n, γ) =
(4πn)2

Γ(2)
(R3,m,β , P3,n,γ)

= 16π2n2
( 1

2πi

∂

∂z

∣∣∣
z=0

E∗2,m,β(τ, z, 0), P3,n,γ

)
= 16π2n2

∑
r∈Z−〈γ,β〉

∫ ∞
0

r ·
(
c(n, r, γ) + y−1/2a(n, r, γ)β(πm−1y(r2 − 4mn))

)
e−4πnyy dy

=
1

2m

∑
r

rc(n, r, γ) + (4πn)2
∑
r

ra(n, r, γ)

∫ ∞
0

e−4πnyβ(πy(r2/m− 4n))y1/2 dy.

Here 1
2m

∑
r rc(n, r, γ) is the coefficient of R̃3,m,β . The integral above can be easily computed by reversing

the order of integration:∫ ∞
0

e−4πnyβ(πy(r2/m− 4n))y1/2 dy =
1

16π

∫ ∞
0

∫ ∞
1

u−3/2y1/2e4πny(u−1)−πr2yu/m dudy

=
1

16π

∫ ∞
1

u−3/2[(r2/m− 4n)u+ 4n]−3/2 du

=
1

16π|r|
(|r| −

√
r2 − 4mn)2,

7



so altogether the coefficient of qneγ in the correction R3,m,β − R̃3,m,β is

1

32m3/2

∑
r∈Z−〈γ,β〉

sgn(r)a(n, r, γ)(|r| −
√
r2 − 4mn)2.

The sum over r above is generally an infinite series but it can be computed in exact form using the a
similar argument to section 7 of [16]. If the discriminant |A| is square, then the sum is actually finite (as
there are only finitely many r ∈ Z − 〈γ, β〉 for which r2 − 4mn is a perfect square) and the series can be

summed directly. Moreover, each term a(n,r,γ)
m3/2 and (|r| −

√
r2 − 4mn)2 is rational, so the correction is a

finite sum of rational numbers and therefore rational.

Otherwise, let dβ and dγ be the denominators of β and γ (that is, the smalllest positive integers such that

dβ · β and dγ · γ are zero in A), and let K = Q(
√
|A|) with ring of integers OK . The main point of section 7

of [16] is that there are finitely many algebraic integers µi, i = 1, ..., N (“congruent fundamental solutions”
to a Pell-type equation) and finitely many units εi ∈ O×K such that, as r runs through the numbers Z±〈γ, β〉
for which (r2 − 4mn)|A| is a rational square, dβdγ(|r| −

√
r2 − 4mn) runs through

{µi, µiε−ni , µ′iε
−n
i : i = 1, ..., N, n ∈ N}

(where µ′i denotes the conjugate of µi in K) exactly once, with two exceptions: that r2 − 4mn = 0 has a

solution with r ∈ Z ± 〈γ, β〉 (in which case dβdγ(|r| −
√
r2 − 4mn) takes the value dβdγ |r| twice) or that

µ′i ∈ µi · OK (in which case each element in the multiset {µi, µiε−ni , µ′iε
−n
i } appears twice and the result

needs to be divided by two). Moreover, the modified coefficient

ai = a(n, r, γ)×

{
1 : r2 6= 4mn;

2 : r2 = 4mn;

depends only on the index i of dβdγ(|r| −
√
r2 − 4mn) as an element of {µi, µiε−ni , µ′iε

−n
i }, and the sign

sgn(r) equals (−1)n where −n is the exponent of εi.

With that in mind, one can compute the correction term, using the antisymmetry of R3,m,β and R̃3,m,β

under eγ 7→ e−γ :

1

32m3/2

∑
r∈Z−〈γ,β〉

sgn(r)a(n, r, γ)
(
|r| −

√
r2 − 4mn

)2

=
1

64m3/2

∑
r∈Z−〈±γ,β〉

sgn(r)a(n, r,±γ)
(
|r| −

√
r2 − 4mn

)2

=
1

64m3/2

N∑
i=1

ai
dβdγ

(
µ2
i + (µ2

i + (µ′i)
2)

∞∑
n=1

(−ε2
i )
−n
)
×

{
1 : µ′i 6∈ µiOK ;

1/2 : µ′i ∈ µiOK ;

=
1

64m3/2

N∑
i=1

ai
dβdγNK/Q(1 + ε2

i )

(
µ2
i − (µ′i)

2 + (µiεi)
2 − (µ′iε

′
i)

2
)
×

{
1 : µ′i 6∈ µiOK ;

1/2 : µ′i ∈ µiOK .

This is a rational number because each ai lies in
√
m|A| ·Q and because each µ2

i − (µ′i)
2 and (µiεi)

2− (µ′iε
′
i)

2

lies in
√
|A| ·Q.

To see that (R3,m,β)(m,β) span S3(ρ∗) one can argue similarly to section 3. It is helpful to deform the
Poincaré series to

P ∗k,m,β(τ, s) =
∑

M∈Γ̃∞\Γ̃

(ysqmeβ)
∣∣∣
k,ρ∗

M

(which is not the usual real-analytic deformation, as ysqm is not harmonic!) and to use Möbius inversion to
see that

P ∗3,m,β(τ, s)− 1

2

∞∑
λ=1

λµ(λ) · 1

4πmi

∂

∂z

∣∣∣
z=0

E∗2,m,β(τ, z, s)

8



is well-defined and orthogonal to all cusp forms in S3(ρ∗) for every Re[s] > 0. (For convergence in the range
Re[s] > 0 we need the full strength of the Deligne bound: the coefficients c(n, γ) of a cusp form of weight
three have growth bounded by O(n1+ε) for every ε > 0.) Taking the limit as s→ 0 shows that

P3,m,β =
1

2

∞∑
λ=1

λµ(λ)R3,m,β ∈ Span(R3,m,β)m,β = Span(R3,m,β)m,β

so the series R3,m,β span all Poincaré series and therefore all of S3(ρ∗). �

Example 4.4. Suppose (A,Q) is the cyclic quadratic module A = 1
NZ/Z, Q(x) = −Nx2+Z with N ≡ 1 (4).

Then sig(A,Q) ≡ 0 mod 8 so k = 3 is an antisymmetric weight. It was pointed out in [15] that the Jacobi
Eisenstein series of weight two and the smallest index (m,β) = (1/N, 1/N) has the Fourier expansion

E∗2,1/N,1/N (τ, z) =
∑
γ∈A

∑
n∈Z−Q(γ)

∑
r∈Z−〈γ,1/N〉

12H(4n−Nr2)qnζreγ

+ y−1/2
∑
γ∈A

∑
n∈Z−Q(γ)

∑
r∈Z−〈γ,1/N〉

A(n, r, γ)β(πy(Nr2 − 4n))qnζreγ ,

where H(d) is the Hurwitz class number (the number of SL2(Z)-equivalence classes of binary quadratic forms
of discriminant d, each form weighted by 2/w where w is the size of its automorphism group), and where

A(n, r, γ) =


−24 : Nr2 − 4n = 0;

−48 : Nr2 − 4n is a nonzero square;

0 : otherwise.

(Bear in mind that 4n −Nr2 in the above sum is always integral even though n and r are not.) In partic-
ular, the Fourier coefficients of R3,1/N,1/N are sums over Hurwitz class numbers. When N ∈ {5, 9} one can
compute S3(ρ∗(A,Q)) = 0 and the identity R3,1/N,1/N = 0 yields identities for class number sums which are

more difficult to prove by other arguments.

We will give the computation for N = 5. The coefficient of qn in the naive expression R̃3,1/N,1/N is

−30
∑
r∈Z

(r + 4/5)H(4n− 5r2 − 8r − 4) or − 30
∑
r∈Z

(r − 2/5)H(4n− 5r2 + 4r − 4)

when γ equals 1/5 or 2/5 mod Z, respectively (and their negatives when γ equals 4/5 or 3/5). Here we
set H(d) = 0 for d < 0. Therefore we need to compute the correction term 1

32m3/2

∑
r sgn(r)a(n, r, γ)(|r| −

√
r2 − 4mn)2. Let K = Q(

√
5). The “congruent fundamental units” εi above are all ( 1+

√
5

2 )4 = 7+3
√

5
2 and

for µ = a+ b
√

5 ∈ OK , we can compute

µ2 − (µ′)2 + (µεi)
2 − (µ′ε′i)

2 = −3
√

5(7a2 − 30ab+ 35b2).

The series r ∈ Z − 〈±γ, β〉 is easier to compute when rephrased as a sum over ideals in OK : after some
algebra we find

1

32(1/5)3/2

∑
r∈Z−〈γ,1/5〉

sgn(r)a(n, r, γ)(|r| −
√
r2 − 4n/5)2

=
1

5

∑
N(a)=5n

(
7(c2 − a2)− 30(|cd| − |ab|) + 35(d2 − b2)

)
,

where a runs through ideals of OK = Z[ 1+
√

5
2 ] and where a+ b

√
5, c+ d

√
5 ∈ a are generators with minimal

positive trace 2a, 2c > 0 satisfying the following congruences:
(1) if n ∈ 4/5 + Z then a ≡ 3 (5) and c ≡ 2 (5);
(2) if n ∈ 1/5 + Z then a ≡ 1 (5) and c ≡ 4 (5).
Altogether, by comparing coefficients in R3,1/5,1/5 = 0 we obtain the identities

9



∑
r∈Z

(r + 4/5)H(4n− 5r2 − 8r) = − 1

150

∑
N(a)=5n+4

(
7(c2 − a2)− 30(|cd| − |ab|) + 35(d2 − b2)

)
,

∑
r∈Z

(r − 2/5)H(4n− 5r2 + 4r) = − 1

150

∑
N(a)=5n+1

(
7(c2 − a2)− 30(|cd| − |ab|) + 35(d2 − b2)

)
,

where n ∈ N0, and where a, b, c, d are defined as above for any ideal a of Z[ 1+
√

5
2 ]. For example, when n = 3,

the left-hand side of the equations above are∑
r∈Z

(r + 4/5)H(4n− 5r2 − 8r) =
−6H(8)−H(15) + 4H(12)

5
= − 8

15
,

∑
r∈Z

(r − 2/5)H(4n− 5r2 + 4r) =
−7H(3)− 2H(12) + 3H(11) + 8H(0)

5
= − 8

15
.

The ideals of norm 5n+ 4 = 19 are (2
√

5− 1) and (2
√

5 + 1), and they have minimal-trace generators

a+ b
√

5 = 8 + 3
√

5, c+ d
√

5 =
9

2
+

1

2

√
5 ∈ (2

√
5− 1),

a+ b
√

5 = 8− 3
√

5, c+ d
√

5 =
9

2
− 1

2

√
5 ∈ (2

√
5 + 1)

satisfying the congruence conditions. In particular, we find

− 1

150

∑
N(a)=19

(
7(c2−a2)−30(|cd|−|ab|)+35(d2−b2)

)
= − 2

150

(
7·(81/4−64)−30·(9/4−24)+35·(1/4−9)

)
= − 8

15
.

The only ideal of norm 16 in OK is a = (4) with minimal-trace generators

a+ b
√

5 = 6 + 2
√

5, c+ d
√

5 = 4 ∈ a,

so we find

− 1

150

∑
N(a)=4

(
7(c2−a2)−30(|cd|−|ab|)+35(d2−b2)

)
= − 1

150

(
7·(42−62)−30·(0−12)+35·(0−22)

)
= − 8

15
.

By treating N = 9 similarly and focusing on the components γ = 1/3, 2/3 of norm zero one obtains the
identity ∑

r≡a (3)

rH(4n− r2) = χ3(a)ε(n)
∑
d|n

χ3(d) min(d, n/d)2, n ∈ N0, a ∈ Z/3Z,

where χ3(n) =
(
n
3

)
is the Kronecker symbol and where

ε(n) =

{
−1 : n ≡ 0 (3);

1/2 : n 6≡ 0 (3).

Here the correction terms are finite sums of expressions involving d = (3/2)(|r| −
√
r2 − 4n/9), which is

always an integral divisor of n that is less than or equal to n/d = (3/2)(|r|+
√
r2 − 4n/9).

Finally we consider the construction in weight k = 5/2.

Proposition 4.5. Suppose k = 5/2. Then

R5/2,m,β(τ) =
1

4πmi

∂

∂z

∣∣∣
z=0

E∗3/2,m,β(τ, z, 0)

is a holomorphic cusp form with rational Fourier coefficients and R5/2,m,β − R̃5/2,m,β is a weight 3/2 theta
series.

We should emphasize that R5/2,m,β−R̃5/2,m,β is a cusp form but its multiplier system is not related to ρ∗.

(Its components are essentially of the form
∑∞
n=1 nq

n2

, up to rescaling.) Therefore R̃5/2,m,β is not generally
a modular form at all.
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Proof. Section 5 of [16] points out that the zero-value E∗3/2,m,β(τ, z, 0) is always a holomorphic Jacobi form

(which may be identically zero) that differs from the naive result E3/2,m,β(τ, z) of the coefficient formula of
[14] by a weight 1/2 theta series ϑ(τ, z) =

∑
n,r,γ

r2=4mn
a(n, r, γ)qnζreγ . Therefore

R5/2,m,β(τ) =
1

4πmi

∂

∂z

∣∣∣
z=0

E∗k−1,m,β(τ, z, 0)

=
1

4πmi

∂

∂z

∣∣∣
z=0

Ek−1,m,β(τ, z, 0) +
1

2m

∑
n,r,γ

r2=4mn

ra(n, r, γ)qneγ

= R̃5/2,m,β(τ) +
1

2m

∑
r

a(r2/4m, r, γ)rqr
2/4meγ ,

and each component of the correction R5/2,m,β−R̃5/2,m,β is a weight 3/2 theta series of the form
∑
r rq

r2/4m.
�

Remark 4.6. The proof that the family (Rk,m,β)m,β spans Sk(ρ∗) as (m,β) runs through all valid indices
does not carry over to k = 5/2, even if one assumes the strongest possible (unproven) bounds on the
coefficients of cusp forms in this weight, since s = 0 no longer lies in the closure of the half-plane of absolute
convergence. In fact the spanning claim is almost certainly false. A specific discriminant form which seems
to be a counterexample is A = Z/26Z with quadratic form Q(x) = 1

52x
2 +Z. Using the theta decomposition

([6], Theorem 5.1), we can construct a weight 5/2 cusp form for ρ∗(A,Q) from the unique (up to multiples)

weight 3 Jacobi form of index 13:

φ3(τ, z) =
(

9 sin(2πz)+7 sin(4πz)−17 sin(6πz)+4 sin(8πz)+7 sin(10πz)−5 sin(12πz)+sin(14πz)
)
q+O(q2).

Some computations make it seem likely that all R5/2,m,β are identically zero. Nevertheless there are many
other discriminant forms for which the R5/2,m,β construction is nontrivial and even yields spanning sets.

5. Theta lifts

The most important application of antisymmetric vector-valued modular forms is as inputs into the ad-
ditive theta lift. This is a useful way to construct orthogonal modular forms which generalizes a number of
better-known lifts (including the Shimura, Doi-Naganuma and Saito-Kurokawa lifts).

We recall this in the following simplified situation, in which we consider only lattices which split a uni-
modular plane and consider Fourier expansions at the distinguished cusp corresponding to this splitting.
Suppose S is a symmetric integral matrix with even diagonal and signature (1, `− 1) for some ` ∈ N, and let
Λ be the lattice Z` with quadratic form Q(x) = 1

2x
TSx. Fix a cone C ⊆ C` of vectors with positive norm

under Q. Then the tube domain

HΛ = {z = x+ iy ∈ C` : y ∈ C}
is acted upon by the discriminant kernel

ΓΛ = {M ∈ SO+(Λ⊕ II1,1) : M acts trivially on Λ′/Λ}

by Möbius transformations in a natural way that induces a cocycle j(M ; z). More explicitly one can realize

ΓΛ as a subgroup of integral matrices which preserve the quadratic form
(

0 0 1
0 S 0
1 0 0

)
and define

M · z = w if and only if M
(
−Q(z)
z
1

)
= j(M ; z)

(
−Q(w)
w
1

)
.

A modular form is a holomorphic function f : HS → C satisfying the functional equations f(M · z) =
j(M ; z)kf(z) and the usual growth condition at the cusps of ΓS\HS.

Every modular form f(z) has a Fourier expansion which we write in the form

f(z) =
∑
λ∈Λ′

a(λ)qλ, qλ = e2πi〈λ,z〉 = e2πiλTSz,
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where a(λ) = 0 unless 〈λ, y〉 ≥ 0 for all y ∈ C.

Let k ≥ 2, k ∈ N. To any cusp form F (τ) =
∑
γ∈Λ′/Λ

∑
n∈Z+Q(γ) c(n, γ)qneγ of weight κ = k + 1 − `/2

for the non-dual Weil representation attached to Λ (which is, with our definition, the Weil representation
attached to (Λ,−Q)), the theta lift

ΦF (z) =
∑
λ∈Λ′

〈λ,C〉>0

∞∑
n=1

c(Q(λ), λ)nk−1qnλ

is a cusp form for ΓΛ of weight k. Moreover the map F 7→ ΘF is injective. In particular the forms Rk,m,β
may be lifted to orthogonal cusp forms of odd weight.

Following Oda [10] (see also Borcherds [1]), one can write ΦF as the integral

ΦF (z) =
1

2
(2iQ(v))−k

∫
SL2(Z)\H

〈F (τ),Θk(τ, z)〉yk−1 dxdy, z = u+ iv ∈ HΛ,

where
Θk(τ, z) =

∑
a,c∈Z
b∈Λ′

(aQ(z) + 〈b, z〉+ c)ke−
πy
Q(v)
|aQ(z)+〈b,z〉+c|2+2πiτ(Q(b)−ac) eb

is the theta kernel. When F = Pκ,m,β , κ = k + 1 − `/2 ≥ 2 is the Poincaré series, the Rankin-Selberg
unfolding method yields

ΦF (z) =
1

2
(2iQ(v))−k

∑
a,c∈Z
b∈Λ+β

Q(b)−ac=m

(aQ(z) + 〈b, z〉+ c)k
∫ ∞

0

e−πy|aQ(z)+〈b,z〉+c|2/Q(v)yk−1 dy

=
1

2
(2iQ(v))−k

∑
a,b,c

(aQ(z) + 〈b, z〉+ c)k
(k − 1)!Q(v)k

πk|aQ(z) + 〈b, z〉+ c|2k

=
(k − 1)!

2
(2πi)−k

∑
a,b,c

(aQ(z) + 〈b, z〉+ c)−k.

When k is odd (and κ is at least 7/2, so k ≥ (` + 5)/2) we can apply this to the series F = Rκ,m,β =
2
∑∞
λ=1 Pk,λ2m,λβ by first lifting each Poincaré series and then summing over λ, i.e.

ΦF (z) = (k − 1)!(2πi)−k
∑
a,c∈Q
b∈Λ⊗Q

Q(b)−ac=m

∑
λ∈N

λ(a,b,c)∈Z⊕(Λ+β)⊕Z

λ1−k(aQ(z) + 〈b, z〉+ c)−k.

Finally, by replacing each tuple (a, b, c, λ) in the expression above by (a/λ, b/λ, c/λ, λ) we obtain the formula:

Proposition 5.1. The theta lift of F = Rκ,m,β is

ΦF (z) = (k − 1)!(2πi)−kζ(k − 1)
∑
a,c∈Q
b∈Λ⊗Q

Q(b)−ac=m

denom(a, b− β, c)1−k(aQ(z) + 〈b, z〉+ c)−k,

where d = denom(a, b − β, c) ∈ N is minimal such that da, dc ∈ Z and d(b − β) ∈ Λ, and where ζ(s) =∑∞
n=1 n

−s is the Riemann zeta function.

We will work out two examples in detail for lattices of signature (2, 1) and (2, 2) whose automorphic forms
have classical interpretations as elliptic and Hilbert modular forms respectively.

Example 5.2. PSL2(R) is identified with SO+(2, 1) through the adjoint action on its Lie algebra, and Γ0(N)

preserves the lattice {
√
N ·

(
x y/N
z −x

)
: x, y, z ∈ Z} ⊆ sl2(R), which (with the Killing form) is isometric to

A1(N)⊕ II1,1. Therefore, taking S = (2N), we obtain elliptic modular forms of level Γ0(N) as theta lifts.
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When N = 1 there are no antisymmetric modular forms for ρ∗Λ. For N = 2 one can identify the input
vector-valued forms of antisymmetric weight k ∈ 3/2 + 2Z with scalar-valued modular forms of level 1 and
weight k − 3/2 by the isomorphism

Mk−3/2
∼−→ Sk(ρ∗), f(τ) 7→ f(τ)η(τ)3(e1/4 − e3/4),

where η(τ) = q1/24
∏∞
n=1(1−qn) is the Dedekind eta function. For example, in weight 11/2 our construction

yields the input function

R11/2,1/8,(3/4)(τ) = E4(τ)η(τ)3(e1/4 − e3/4) = (q1/8 + 237q9/8 + 1440q17/8 ± ...)(e1/4 − e3/4).

Writing this in the form F (τ) =
∑∞
n=1 c(n)qn/8(e1/4 − e3/4) we obtain the theta lift

ΦF (z) =

∞∑
n=1

∑
d|n

(−1

d

)
c(d2)(n/d)4qn = q + 16q2 − 156q3 + 256q4 ± ... = η(z)8η(2z)8(2E2(2z)− E2(z))

where E2(z) = 1− 24
∑∞
n=1

nqn

1−qn . By unfolding the lift as above we obtain the identity∑
a,b,c∈Q
b2−4ac=1

denom
(a

2
,
b− 3

4
, c
)−4

(az2 + bz + c)−5 = 120πi · η(z)8η(2z)8(2E2(2z)− E2(z)).

Of course one can use the forms Qk,m,β defined in [14] to compute expressions of this type for even k.
For example, when N = 1, computing the preimage of the discriminant ∆ under the Shimura lift yields the
expression

∆(τ) = − 691

26 · 35 · 72

∑
a,b,c∈Q
b2−4ac=1

denom
(
a,
b− 1

2
, c
)−6

(aτ2 + bτ + c)−6.

Example 5.3. Suppose K = Q(
√
D) is a real-quadratic number field of discriminant D ≡ 1 (4). Let Λ = OK

be its lattice of integers with quadratic form given by the norm NK/Q. There is a well-known embedding
of PSL2(OK) into the orthogonal modular group ΓΛ, under which translations Tb = ( 1 b

0 1 ) by b ∈ OK corre-

spond again to translations and under which S =
(

0 −1
1 0

)
corresponds to the block matrix

(
0 0 −1
0 J 0
−1 0 0

)
where

J : OK → OK is the orthogonal reflection along the vector 1. (By a theorem of Vaserstein, PSL2(OK) is
generated by S and Tb.) In this sense, orthogonal modular forms are the same as Hilbert modular forms
which satisfy some extra symmetry conditions.

When K has prime discriminant p and the weight k is even, Bruinier and Bundschuh [2] have given an
equivalence between vector-valued modular forms (of symmetric weights) for the Weil representation at-
tached to (Λ, Q) and scalar-valued modular forms for Γ0(p) with the quadratic Nebentypus whose Fourier
coefficients are supported on quadratic residues mod p. Through this interpretation the theta lift becomes
the well-known Doi-Naganuma lift from M∗(Γ0(p)) to M∗(SL2(OK)). This equivalence involves summing the
components of the vector-valued modular forms and always yields zero in antisymmetric weights; in particu-
lar, one does not obtain Doi-Naganuma lifts in odd weight by lifting modular forms of level Γ0(p). (In view
of [13] one can fix this by considering component sums which are twisted by odd Dirichlet characters, which
yields a subspace of modular forms of level Γ0(p2) which can be characterized through the Atkin-Lehner
involution.)

In the simplest case we take the field K = Q(
√

5). There is a unique (appropriately normalized) cusp
form s5 of weight 5, which was constructed by Gundlach [7] as the product of ten theta constants and whose
divisor consists of a simple zero exactly on the orbit of the diagonal {(τ, τ) : τ ∈ H}. From the formula of
Theorem 1.2 we find an input form in weight 5 for the Gram matrix S =

(
2 1
1 −2

)
:

R5,1/5,(2/5,1/5)(τ) = (q1/5 + 42q6/5 ± ...)(e(2/5,1/5) − e3/5,4/5) + (−26q4/5 − 39q9/5 ± ...)(e(1/5,3/5) − e(4/5,2/5)),
13



whose theta lift must equal s5. As before, the fact that s5 is obtained by lifting a form Rk,m,β yields an
identity, here

s5(τ1, τ2) =
1

120πi

∑
a,c∈Q
b∈Q(

√
5)

NK/Q(b)−ac=1/5

denom
(
a, b− 1

2
− 1√

5
, c
)−4

(aτ1τ2 + bτ1 + b′τ2 + c)−5,

where d = denom(a, b, c) is minimal such that da, dc ∈ Z and db ∈ OK .
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[14] Brandon Williams. Poincaré square series for the Weil representation. Ramanujan J., 2018. doi: 10.1007/
s11139-017-9986-2. URL https://doi.org/10.1007/s11139-017-9986-2.

[15] Brandon Williams. Vector-valued Hirzebruch-Zagier series and class number sums. Res. Math. Sci., 5(2):Paper No. 25,

13, 2018. ISSN 2522-0144. doi: 10.1007/s40687-018-0142-4. URL https://doi.org/10.1007/s40687-018-0142-4.
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