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BW

The reference [LADR] stands for Axler’s Linear Algebra Done Right, 3rd edition.
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Sets and fields - 6/20

Set notation

Definition 1. A set is a collection of distinguishable objects, called elements.

Actually, this is not the correct definition. There are a number of paradoxes that
arise when you use the word “set” too carelessly. However, as long as you avoid self-
referential constructions like “the set of all sets”, or even “the set of all real vector
spaces”, there should be no problem.

Notation: We write
x ∈M

to say that x is an element of the set M , and x 6∈M to say that it is not. We write

N ⊆M or equivalently N ⊂M

to say that a set N is a subset of a set M ; that means that every element of N is also
an element of M . Not all authors agree on exactly what the symbol “⊂” means, but
“⊆” is always read the same way.
Sets can be defined either by listing their elements inside brackets { }, or by specifying
properties that define the set with a colon : or bar | .

Example 1. {
x : x ∈ {1, 2, 3, 4, 5, 6}, x is even

}
= {2, 4, 6}.

Here are some common constructions with two subsets M and N of a set A.

Name Symbol Definition
Complement M c {x ∈ A : x 6∈M}
Union M ∪N {x ∈ A : x ∈M orx ∈ N}
Intersection M ∩N {x ∈ A : x ∈M andx ∈ N}
Difference M\N {x ∈ A : x ∈M andx /∈ N} = M ∩N c

Cartesian product M ×N {(x, y) : x ∈M, y ∈ N}.

Elements of the product M × N are pairs, or lists of two elements. The order
matters: (1, 2) and (2, 1) are different elements of N× N!
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Definition 2. Let M and N be sets. A function f : M → N associates an
element f(x) ∈ N to every element x ∈M.

Three properties of a function f : M → N are worth mentioning:
(i) f is injective, or one-to-one, if for any x, y ∈M , f(x) 6= f(y) unless x = y.
(ii) f is surjective, or onto, if for any z ∈ N, there is at least one element x ∈M such
that f(x) = z.
(iii) f is bijective if it is both injective and surjective.

Fields

Fields are the number systems we will use as coefficients throughout the course. There
are several axioms that our number systems have to obey. Most of these axioms are
very natural, and are common to all reasonable number systems - the axioms you should
pay particular attention to are (vi) and (vii) about existence of inverses. Don’t worry
about memorizing these axioms.

Definition 3. A field F = (F,+, ·, 0, 1) is a set F, together with two distinct
elements 0, 1 ∈ F and functions

+ : F× F −→ F, · : F× F −→ F

which we write x+ y instead of +(x, y) and xy instead of ·(x, y), such that

(i) Addition and multiplication are commutative:

x+ y = y + x and xy = yx for all x, y ∈ F.

(ii) Addition and multiplication are associative:

x+ (y + z) = (x+ y) + z and x(yz) = (xy)z for all x, y, z ∈ F.

(iii) 0 is the additive identity: x+ 0 = x for all x ∈ F.
(iv) 1 is the multiplicative identity: 1 · x = x for all x ∈ F.
(v) The distributive law holds:

x · (y + z) = xy + xz for all x, y, z ∈ F.

(vi) For any x ∈ F, there is an additive inverse −x ∈ F such that (−x) + x = 0.
(vii) For any nonzero x ∈ F\{0}, there is a multiplicative inverse x−1 such that
x−1 · x = 1.

The notation suggests that identities and inverses are unique. This is true. If 0′ is
another additive identity, then

0 = 0 + 0′ = 0′;
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similarly, if 1′ is another multiplicative identity, then

1 = 1 · 1′ = 1′.

If x has two additive inverses −x and (−x)′, then

−x = −x+ 0 = −x+ (x+ (−x)′) = (−x+ x) + (−x)′ = 0 + (−x)′ = (−x)′;

similarly, multiplicative inverses are also unique.

Example 2. The rational numbers Q form a field with the usual addition and multi-
plication.

The real numbers R contain Q and many more numbers that are not in Q. They
also form a field with the usual addition and multiplication.

The integers Z are not a field, because elements other than ±1 do not have multi-
plicative inverses in Z.

Example 3. Complex numbers C are polynomials with real coefficients in the variable
i, but with the understanding that i2 = −1. The operations on C are the usual addition
and multiplication of polynomials.
For example,

(1 + i)3 = 1 + 3i+ 3i2 + i3 = 1 + 3i− 3− i = −2 + 2i

and
(5 + i) · (4 + 3i) = 20 + (4 + 15)i+ 3i2 = 17 + 19i.

C contains R: any real number x ∈ R is interpreted as the complex number x+ 0i ∈ C.
C is a field: most of the axioms should be familiar from working with real polynomials,
and the condition that remains to be checked is that every nonzero element is invertible.
Let a+ bi ∈ C\{0}; then either a or b is nonzero, so a2 + b2 > 0. Then we can multiply

(a+ bi) ·
( a

a2 + b2
− b

a2 + b2
i
)

=
(a+ bi)(a− bi)

a2 + b2
=
a2 + b2

a2 + b2
= 1.

The complex numbers come with another important structure. Complex conju-
gation is defined by

a+ bi := a− bi, a, b ∈ R.

Proposition 1. Let w, z ∈ C be complex numbers. Then:
(i) w + z = w + z;
(ii) wz = w · z;
(iii) z = z if and only if z is real.
(iv) z · z is always real and nonnegative.
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Proof. Write w = a+ bi and z = c+ di with a, b, c, d ∈ R. Then:

(i) w + z = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i = (a− bi) + (c− di) = w + z;

(ii) wz = (ac− bd) + (ad+ bc)i = (ac− bd)− (ad+ bc)i = (a− bi)(c− di) = w · z;

(iii) z − z = (c+ di)− (c− di) = 2di, which is 0 if and only if d = 0; and that is true if
and only if z = c is real.

(iv) z ·z = (c+di) ·(c−di) = (c2 +d2)+(dc−cd)i = c2 +d2 is real and nonnegative.

The fourth property makes the formula for inverting a complex number more clear.
For example,

1

3 + 4i
=

3− 4i

(3 + 4i)(3− 4i)
=

3− 4i

25
.

There are many other examples of fields that are used in math. For example, there
are fields where the set F is finite. The smallest possible example of this is when F
contains nothing other than 0 and 1, and addition and multiplication are defined by

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

Incredibly, most of the theorems in linear algebra (at least until around chapter 5
of our book) do not care whether F represents Q, R, C or any of the other possible
fields we could come up with. In most direct applications, it’s enough to study linear
algebra over R or C, but applying linear algebra to Q and to finite fields is a very useful
technique in areas like number theory, abstract algebra and cryptography.
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Vector spaces - 6/21

Vector spaces

Definition 4 (LADR 1.19). Let F be a field. An F-vector space is a set V ,
together with operations

+ : V × V −→ V and · : F× V −→ V

called vector addition resp. scalar multiplication, such that:

(i) Addition is commutative: v + w = w + v for all v, w ∈ V.

(ii) Addition is associative: (v + w) + x = v + (w + x) for all v, w, x ∈ V.

(iii) There is an additive identity (“zero element”) 0 ∈ V such that v + 0 = v for
all v ∈ V .

(iv) For any v ∈ V, there is an additive inverse −v ∈ V such that v + (−v) = 0.

(v) Scalar multiplication is associative: (λµ) · v = λ · (µ · v) for all λ, µ ∈ F and
v ∈ V.

(vi) The distributive laws hold:

λ · (v + w) = λv + λw and (λ+ µ) · v = λv + µv

for all λ, µ ∈ F and v, w ∈ V.

(vii) 1 · v = v for every v ∈ V.

Again, the additive identity and additive inverses are unique. This is the same ar-
gument as uniqueness for a field. See LADR 1.25 and 1.26 for details.

Condition (vii) may look unimpressive but it must not be left out. Among other
things, it makes sure scalar multiplication doesn’t always return 0.
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Example 4. The basic example of a vector space you should keep in mind is the set

Fn =
{

(x1, ..., xn) : x1, ..., xn ∈ F
}

of lists, or tuples, of n elements from F. We add lists and multiply by scalars compo-
nentwise:

(x1, ..., xn) + (y1, ..., yn) := (x1 + y1, ..., xn + yn), λ · (x1, ..., xn) := (λx1, ..., λxn).

In particular, the field F itself is an F-vector space: it’s just F1.
The zero element in Fn has the zero of F in each component: it’s

0 = (0, ..., 0).

Try not to get the vector 0 ∈ Fn and the number 0 ∈ F confused.

Example 5. Let S be any set. Then the set of functions

FS := {f : S → F}

is a vector space: we add functions by

(f + g)(x) := f(x) + g(x), x ∈ S, f, g ∈ FS

and multiply by scalars by

(λf)(x) := λ · f(x), x ∈ S, λ ∈ F.

The zero element of FS is the constant 0 function:

0 : S −→ F, 0(x) = 0 ∀x.

If S = {1, ..., n}, then we can identify FS with Fn by

f ∈ FS ⇔ (f(1), ..., f(n)) ∈ Fn.

When S = N = {1, 2, 3, 4, ...}, we can elements of FS as sequences by

f ∈ FS ⇔ the sequence (f(1), f(2), f(3), ...).

When we interpret FN as a space of sequences, we will denote it F∞.

Example 6. C is a real vector space. The addition is the usual addition; and scalar
multiplication is the usual multiplication but only allowing reals as scalars.
Similarly, C and R can be interpreted as Q-vector spaces.
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The following observations are not quite as obvious as they might appear.

Proposition 2 (LADR 1.29-1.31). Let V be an F-vector space. Then:
(i) 0 · v = 0 for every v ∈ V ;
(ii) λ · 0 = 0 for every λ ∈ F;
(iii) (−1) · v = −v for every v ∈ V.

Proof. (i) Since
0 · v = (0 + 0) · v = 0 · v + 0 · v,

we can subtract 0 · v from both sides to get 0 · v = 0.
(ii) Since

λ · 0 = λ · (0 + 0) = λ · 0 + λ · 0,

we can subtract λ · 0 from both sides to get λ · 0 = 0.
(iii) This is because

(−1) · v + v = (−1) · v + 1 · v = (−1 + 1) · v = 0 · v = 0

by (i), so (−1) · v is the additive inverse of v.

Subspaces

Definition 5 (LADR 1.34). Let V be an F-vector space. A subspace of V is a
subset U ⊆ V such that:
(i) 0 ∈ U ;
(ii) λv + w ∈ U for all v, w ∈ U and λ ∈ F.

In particular, subspaces are vector spaces in their own right, with the same addition
and scalar multiplication.

Example 7. Consider the space V = R(0,1) of all functions f : (0, 1)→ V. The subset
of continuous functions and the subset of differentiable functions are both subspaces.

Proposition 3 (LADR 1.C.10). Let U and W be subspaces of an F-vector space
V . Then the intersection U ∩W is also a subspace.

Proof. (i) Since 0 ∈ U and 0 ∈ W , the intersection also contains 0.
(ii) Let v, w ∈ U ∩W and λ ∈ F. Since λv + w ∈ U and λv + w ∈ W, the intersection
also contains λv + w.
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In general, the union of two subspaces is not another subspace. The correct analogue
of the union in linear algebra is the sum:

Proposition 4 (LADR 1.39). Let U and W be subspaces of an F-vector space
V . Then their sum

U +W = {v ∈ V : ∃u ∈ U, w ∈ W with v = u+ w}

is a subspace of V , and it is the smallest subspace of V that contains the union
U ∪W.

Proof. U +W contains 0 = 0 + 0, and: let u1, u2 ∈ U , w1, w2 ∈ W and λ ∈ F. Then

λ(u1 + w1) + (u2 + w2) = (λu1 + u2) + (λw1 + w2) ∈ U +W.

U + W is the smallest subspace of V containing the union U ∪W in the following
sense: let X be any subspace of V containing U ∪W. Let u ∈ U and w ∈ W be any
elements; then

u,w ∈ U ∪W ⊆ X.

Since X is closed under addition, u+w ∈ X; since u and w were arbitrary, U+W ⊆ X.

Be careful not to push the analogy between union and sum too far, though. Some
relations that are true for sets, such as the distributive law

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

are not true for subspaces with union replaced by sum: you can find a counterexample
with three lines in the plane R2 for the claim

U1 ∩ (U2 + U3) = (U1 ∩ U2) + (U1 ∩ U3).

The special case of disjoint unions is important when studying sets, and this also
has an analogue to vector spaces:

Definition 6. Let U and W be subspaces of an F-vector space V . The sum of
U and W is direct if U ∩W = {0}. In this case, U +W is denoted U ⊕W.

Of course, vector subspaces can never be truly disjoint because they always share 0.

In general, we can take sums of more than 2 subspaces:

U1 + ...+ Um := {u1 + ...+ um : u1 ∈ U1, ..., um ∈ Um}.

We call the sum direct, written U1 ⊕ ...⊕ Um, if the sum is direct when interpreted as[(
(U1 ⊕ U2)⊕ U3

)
⊕ ...

]
⊕ Um.
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In other words, U1 ∩U2 = {0}, U3 ∩ (U1 +U2) = {0}, ..., Um ∩ (U1 + ...+Um−1) = {0}.

Be careful: a union of sets is disjoint if and only if each pairwise intersection is
empty. But a sum is not necessarily direct when each pairwise sum is direct. This
comes down to the failure of the distributive law. The example of three lines in the
plane R2 is also a counterexample for this.

Proposition 5 (LADR 1.44,1.45). Let U1, ..., Um be subspaces of a vector space
V . The following are equivalent:
(i) The sum U1 ⊕ ...⊕ Um is direct;
(ii) If v ∈ U1+...+Um is any element, then there are unique u1 ∈ U1,...,um ∈ Um
with v = u1 + ...+ um;
(iii) There do not exist elements u1 ∈ U1, ..., um ∈ Um, not all of which are zero,
such that u1 + ...+ um = 0.

Proof. (i) ⇒ (ii): u1, ..., um must exist by definition of the sum U1 + ...+Um. They are
unique, because: assume that

v = u1 + ...+ um = ũ1 + ...+ ũm

with ũk ∈ Uk for all k. Then

um − ũm = (ũ1 − u1) + ...+ (ũm−1 − um−1) ∈ Um ∩ (U1 + ...+ Um−1) = {0},

so um = ũm. Then

um−1 − ũm−1 = (ũ1 − u1) + ...+ (ũm−1 − um−1) ∈ Um−1 ∩ (U1 + ...+ Um−2) = {0},

so um−1 = ũm−1. Continuing in this way, we find that ũk = uk for all k.

(ii) ⇒ (iii): Certainly, 0 = 0 + ... + 0 is one way to write 0 as a sum of elements from
U1, ..., Um. Claim (ii) implies that this is the only way.

(iii) ⇒ (i): Assume that Uk ∩ (U1 + ...+ Uk−1) 6= {0} for some index k, and choose an
element

0 6= uk = u1 + ...+ uk−1 ∈ Uk ∩ (U1 + ...+ Uk−1), with u1 ∈ U1, ..., uk−1 ∈ Uk−1.

Then u1 + ...+ uk−1− uk + 0 + ...+ 0 is a combination of 0 by elements that are not all
0, contradicting claim (iii).
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Linear independence and span - 6/22

Linear independence, span and basis

Definition 7 (LADR 2.17). Let V be a vector space. A finite set {v1, ..., vm} of
vectors is linearly independent if, given that

λ1v1 + ...+ λmvm = 0 for some λ1, ..., λm ∈ F,

we can conclude that all scalars λk are 0.

The empty set ∅ vacuously fulfills this condition, so it is also linearly independent.
A set containing the zero vector can never fulfill this condition!

Sums of the form
λ1v1 + ...+ λmvm, λ1, ..., λm ∈ F

are called linear combinations of v1, ..., vm.

Definition 8 (LADR 2.5, 2.8, 2.27, 2.29). Let V be a vector space.
(i) A finite set {v1, ..., vm} of vectors is a spanning set, or spans V , if every
v ∈ V can be written as a linear combination

v = λ1v1 + ...+ λmvm, λ1, ..., λm ∈ F.

(ii) A finite set {v1, ..., vm} is a basis of V if it is a linearly independent spanning
set. In other words, every v ∈ V can be written in a unique way as a linear
combination

v = λ1v1 + ...+ λmvm, λ1, ..., λm ∈ F.

The two conditions for being a basis are equivalent: because having two different
representations

v = λ1v1 + ...+ λmvm = µ1v1 + ...+ µmvm

is the same as having the nontrivial combination

0 = (λ1 − µ1)v1 + ...+ (λm − µm)vm

to zero. See LADR 2.29 for details.
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More generally, the span of a set of vectors {v1, ..., vm} is the set of all linear
combinations:

Span(v1, ..., vm) :=
{
λ1v1 + ...+ λmvm : λ1, ..., λm ∈ F

}
.

In other words,

Span(v1, ..., vm) = U1 + ...+ Um, where Uk := F · vk = {λvk : λ ∈ F}.

The sum U1 + ...+ Um is direct if and only if {v1, ..., vm} was a basis.

Example 8. (i) One basis of Fn is given by the set{
e1 := (1, 0, 0, ..., 0), e2 := (0, 1, 0, ..., 0), ..., en := (0, 0, 0, ..., 1)

}
.

(ii) The span of the sequences

(1, 1, 1, 1, ...), (0, 1, 2, 3, 4, ...) ∈ R∞

is the set{
(a0, a0 + d, a0 + 2d, a0 + 3d, ...) = a0(1, 1, 1, ...) + d(0, 1, 2, ...), a0, d ∈ R

}
of “arithmetic sequences”.

(iii) The empty set ∅ is the only basis of the zero vector space {0}.

In most of the course, we will want to consider vector spaces that are spanned
by finite lists of vectors. Vector spaces that can be spanned by finitely many vectors
are called finite-dimensional. There are fewer interesting results that hold for all
infinite-dimensional vector spaces (but see the remarks at the end).

Proposition 6 (LADR 2.21). Let V be a vector space and let {v1, ..., vm} be
linearly dependent. Then:
(i) There is some index j such that vj ∈ Span(v1, ..., vj−1).
(ii) For any such index j,

Span({v1, ..., vm}\{vj}) = Span(v1, ..., vm).

Proof. (i) Choose a linear combination

λ1v1 + ...+ λmvm = 0

with scalars λ1, ..., λm that are not all 0. Let j be the largest index such that λj 6= 0;
so the linear combination is actually

λ1v1 + ...+ λjvj + 0 + ...+ 0 = 0.
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Then we can divide by λj and see

vj = −λ1
λj
v1 − ...−

λj−1
λj

vj−1 ∈ Span(v1, ..., vm).

(ii) For any index j such that vj ∈ Span(v1, ..., vj−1), we can find scalars c1, ..., cj−1 with

vj = c1v1 + ...+ cj−1vj−1.

Now let v = λ1v1 + ...+ λmvm ∈ Span(v1, ..., vm) be any linear combination; then

v = λ1v1 + ...+ λj−1vj−1 + λj(c1v1 + ...+ cj−1vj−1) + λj+1vj+1 + ...+ λmvm

is a linear combination only invovling {v1, ..., vm}\{vj}, so

v ∈ Span({v1, ..., vm}\{vj}).

Since v was arbitrary,

Span(v1, ..., vm) ⊆ Span({v1, ..., vm}\{vj}).

The converse inclusion

Span({v1, ..., vm}\{vj}) ⊆ Span(v1, ..., vm)

is obvious.

Proposition 7 (LADR 2.31). Let V be a finite-dimensional vector space and let
{v1, ..., vm} be a spanning set. Then some subset of {v1, ..., vm} is a basis of V .

Proof. Consider the collection of all linearly independent subsets of {v1, ..., vm}, and
pick any such subset B that has the largest possible size. Certainly, B is linearly
independent, so we need to show that it spans V . Assume that it doesn’t, and choose
an index k such that vk /∈ Span(B). (If Span(B) contained v1, ..., vm, then it would
contain Span(v1, ..., vm) = V .) Then B ∪ {vk} does not satisfy claim (i) of the previous
proposition, so it must be linearly independent. This is a contradiction, because B had
the largest possible size.

Proposition 8 (LADR 2.33). Let V be a finite-dimensional vector space and
let {v1, ..., vm} be linearly independent. Then there is a basis of V containing
{v1, ..., vm}.
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Proof. Consider the collection of all spanning subsets of V that contain v1, ..., vm, and
pick any such subset B = {v1, ..., vm, vm+1, ..., vr} that has the smallest possible size.
Certainly, B spans V , so we need to show that it is linearly independent. Assume it
is not; then by the linear dependence lemma (2.21), there is some index j such that
vj ∈ Span(v1, ..., vj−1). Since {v1, ..., vm} is linearly independent, j must be greater than
m. Then, also by the linear dependence lemma,

{v1, ..., vm, vm+1, ..., vr}\{vj}

is a set containing vj whose span is still Span(v1, ..., vr) = V . Contradiction, because B
had the smallest possible size.

Finally, here is an important result relating the sizes of linearly independent and
spanning sets. We’ll use this tomorrow.

Proposition 9 (LADR 2.23). Let V be a finite-dimensional vector space, and
let {v1, ..., vn} be a spanning set. Then every linearly independent set contains n
vectors or fewer.

Proof. Let {u1, ..., um} be any linearly independent set, and assume that m > n. Then
u1 6= 0 is nonzero. If we write u1 =

∑n
i=1 λivi, then there is some coefficient λi 6= 0 that

is not zero. Without loss of generality, assume λ1 6= 0. Then {u1, v2, ..., vn} also spans
V , since

v1 = λ−11

(
u1 −

n∑
i=2

λivi

)
.

Now assume we know that {u1, ..., uk, vk+1, ..., vn} is a spanning set for some 1 ≤ k < m.
Then we can write

uk+1 =
k∑
i=1

λiui +
n∑

i=k+1

µivi, λi, µi ∈ F.

By linear independence of {u1, ..., uk+1}, at least one µi is nonzero; without loss of
generality, µk+1 6= 0. Then we can write

vk+1 = µ−1k+1

(
uk+1 −

k∑
i=1

λiui −
n∑

i=k+2

µivi

)
,

so {u1, ..., uk+1, vk+2, ..., vn} also spans V .

By induction, we see that {u1, ..., un} is a spanning set. This is impossible, because:
it implies that um is a linear combination

um =
n∑
i=1

λiui,
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so we get the nontrivial linear combination

λ1u1 + ...+ λnun − um = 0

to zero.

Example 9. No set of three vectors in F2 can ever be linearly independent, since F2

has a spanning set with fewer than three vectors. This explains the counterexample
yesterday of three lines in R2 - they can never form a direct sum.

Remarks on infinite-dimensional spaces

This section will not be tested: no homework or test problems will refer to infinite
linearly independent or spanning sets.

Generally speaking, linear algebra doesn’t allow any sort of limit processes. That
includes infinite sums. In an infinite-dimensional vector space, “linear independent”
and “spanning” sets can contain infinitely many vectors, but the definitions have to be
changed such that all linear combinations are finite.

Definition 9. Let V be an F-vector space.
(i) A subset M ⊆ V is linearly independent if all of its finite subsets are
linearly independent.
(ii) A subset M ⊆ V is a spanning set if V is the union of the spans of all finite
subsets of M .
(iii) M is a basis of V if it is a linearly independent spanning set.

In other words, M is linearly independent if the only finite linear combination giving
0 is trivial; and it is a spanning set if every element of V is a finite linear combination
of the vectors in M .

Example 10. The infinite set M = {1, x, x2, x3, x4, ...} is a basis of the space P(R) of
polynomials. Every polynomial has only finitely many terms, so it is a finite combination
of M ; and a polynomial is zero if and only if its coefficients are all zero.

Example 11. Let V = F∞ be the space of sequences. Let ek be the sequence with 1
at position k and 0 elsewhere, and consider

M = {e1, e2, e3, ...} =
{

(1, 0, 0, 0, ...), (0, 1, 0, 0, ...), (0, 0, 1, 0, ...), ...
}
.

M is linearly independent, but it is not a basis: the sequence (1, 1, 1, 1, 1, ...) is not a
finite linear combination of M .
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Proposition 7 and proposition 8 still apply to infinite-dimensional spaces: every lin-
early independent set can be extended to a basis, and every spanning set shrinks to
a basis. In particular, every vector space (even an infinite-dimensional space) has a
basis. The proofs are similar - but picking the subset B that has the largest/smallest
possible size is no longer possible to do directly. Its existence depends on Zorn’s lemma,
or equivalently the axiom of choice. If you don’t see why this is a difficulty, then try
writing down a basis of F∞!

Proposition 9 still applies in the sense that there is always an injective map from
any linearly independent set into any spanning set.
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Dimension - 6/23

Dimension

Proposition 10 (LADR 2.35). Let V be a finite-dimensional vector space. Then
any two bases of V have the same size.

Proof. Let B1 and B2 be bases. We use LADR 2.23 twice.
(i) Since B1 is linearly independent and B2 is spanning, #B1 ≤ #B2.
(ii) Since B2 is linearly independent and B1 is spanning, #B2 ≤ #B1.

This is still true for infinite-dimensional vector spaces, but it is harder to prove.

Definition 10. Let V be a vector space. The dimension of V is the size of any
basis of V .

Example 12. The dimension of Fn is n. The basis

e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ... en = (0, 0, 0, ..., 1)

consists of n vectors.

Example 13. Let Pr(F) denote the space of polynomials of degree less than or equal
to r. Then the dimension of Pr(F) is (r + 1), because this is the size of the basis
{1, x, x2, ..., xr}.

Example 14. Over any field, the zero vector space V = {0} has dimension 0. The
only basis is the empty set ∅, which has zero elements.

Example 15. C2 can be interpreted either as a C- or an R-vector space. The dimension
of C2 over C is 2. The dimension of C2 over R is 4; one example of a real basis is

(1, 0), (i, 0), (0, 1), (0, i).
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If we know the dimension of V in advance, then it becomes easier to test whether
sets are a basis:

Proposition 11 (LADR 2.39, 2.42). Let V be a finite-dimensional vector space
of dimension d = dim(V ).
(i) Any linearly independent set of d vectors is a basis.
(ii) Any spanning set of d vectors is a basis.

Proof. (i) Let M be a linearly independent set of d vectors, and extend M to a basis
B. Then B also has d vectors, so M = B.
(ii) Let M be a spanning set of d vectors, and shrink M to a basis B. Then B also has
d vectors, so M = B.

This claim fails dramatically for infinite-dimensional vector spaces. It cannot be
fixed.

Example 16. Let a ∈ R be a real number. Then {1, x− a, (x− a)2, ..., (x− a)n} is a
linearly independent subset of Pn(R), since all of the elements have different degrees:
there is no way to write a polynomial as a sum of polynomials of lower degree. It must
be a basis of Pn(R), because it consists of (n+ 1) vectors.
Without input from calculus, it is not that easy to verify directly that this is a spanning
set. However, it is clear in the context of Taylor’s theorem:

p(x) = p(a) · 1 + p′(a) · (x− a) +
p′′(a)

2
· (x− a)2 + ...+

p(n)(a)

n!
(x− a)n,

since all derivatives of order greater than n of a polynomial p ∈ Pn(R) are 0.

Proposition 12 (LADR 2.38). Let V be a finite-dimensional vector space, and
let U ⊆ V be a subspace. Then dimU ≤ dimV ; and dim(U) = dim(V ) if and
only if U = V.

Proof. Any basis of U is still a linearly independent subset in V , since linear indepen-
dence doesn’t depend on the ambient space. Therefore, the size of any basis of U must
be less than or equal to the size of any spanning set of V ; in particular, this includes
any basis of V .
If dim(U) = dim(V ), then any basis of U is a linearly independent set of dim(V ) vectors
in V , and therefore a basis of V . Since U and V are spanned by the same basis, they
are equal.

Finally, we will work out the relationship between the dimensions of the intersection
and sum of two subspaces. We need to understand how to choose bases for two subspaces
in a way that makes them compatible together.
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Proposition 13. Let V be a finite-dimensional vector space and let U,W ⊆ V
be subspaces. Let C be any basis of U ∩W. Then there is a basis B of U +W such
that B ∩ U is a basis of U , B ∩W is a basis of W , and B ∩ U ∩W = C.

Proof. Since C is linearly independent in U ∩W , it is also linearly independent in each
of U and W . We can extend C to a basis CU of U and CW of W . Written explicitly, let

C = {v1, ..., vr}, CU = {v1, ..., vr, u1, ..., uk}, CW = {v1, ..., vr, w1, ..., wl}.

Then
B := {v1, ..., vr, u1, ..., uk, w1, ..., wl}

is a basis of U +W , because:
(i) Let u + w ∈ U + W be any element. Then u is a linear combination
of {v1, ..., vr, u1, ..., uk} and w is a linear combination of {v1, ..., vr, w1, ..., wl}, so
adding these combinations together, we see that u + w is a linear combination of
{v1, ..., vr, u1, ..., uk, w1, ..., wl}.
(ii) Let

λ1v1 + ...+ λrvr + µ1u1 + ...+ µkuk + ν1w1 + ...+ νlwl = 0

be any combination to 0. Then

v := λ1v1 + ...+ λrvr + µ1u1 + ...+ µkuk︸ ︷︷ ︸
∈U

= −ν1w1 − ...− νlwl︸ ︷︷ ︸
∈W

∈ U ∩W,

so there are coefficients αi ∈ F such that

v = α1v1 + ...+ αrvr.

Then

(λ1 − α1)v1 + ...+ (λr − αr)vr + µ1u1 + ...+ µkuk

=
(
λ1v1 + ...+ λrvr + µ1u1 + ...+ µkuk

)
−
(
α1v1 + ...+ αrvr

)
= v − v = 0.

Since {v1, ..., vr, u1, ..., uk} was linearly independent, it follows that λi = αi and µj = 0
for all i and j. Therefore,

0 = λ1v1 + ...+ λrvr + µ1u1 + ...+ µkuk + ν1w1 + ...+ νlwl

= λ1v1 + ...+ λrvr + 0 + ...+ 0 + ν1w1 + ...+ νlwl

is a linear combination to 0 of the basis {v1, ..., vr, w1, ..., wl} of W . Therefore, λi = 0
and νj = 0 for all i, j.
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Here is the corollary:

Proposition 14 (LADR 2.43). Let U and W be subspaces of a finite-dimensional
vector space V . Then

dim(U +W ) + dim(U ∩W ) = dim(U) + dim(W ).

Proof. This follows from looking at the sizes of the bases in the previous proof. In that
notation,

dim(U ∩W ) = r, dim(U) = r + k, dim(W ) = r + l, dim(U +W ) = r + k + l.

We see that (r + k + l) + r = (r + k) + (r + l).

In concrete examples, we are often given a basis of U and W . In this case, it is not
that hard to find a basis of U +W : we know that the union of the two bases will span
U + W , so we shrink it to a basis by eliminating unnecessary vectors. On the other
hand, it is not so easy to find a basis of U ∩W directly.

Example 17. Consider the two planes

U = Span
(

(1, 1, 0), (0, 1, 1)
)
, W = Span

(
(1, 2, 2), (2, 2, 1)

)
in F3. It is straightforward to check that (1, 2, 2) is not in the span of (1, 1, 0) and
(0, 1, 1) over any field: if we could write

(1, 2, 2) = λ(1, 1, 0) + µ(0, 1, 1),

then comparing the first coefficient shows that λ = 1 and comparing the last coefficient
shows that µ = 2, but then (1, 1, 0) + 2 · (0, 1, 1) = (1, 3, 2) 6= (1, 2, 2). Therefore,

(1, 1, 0), (0, 1, 1), (1, 2, 2)

is a basis of U +W.
The formula shows that these planes intersect in a line:

dim(U ∩W ) = dim(U) + dim(W )− dim(U +W ) = 2 + 2− 3 = 1.

In fact, U ∩W = Span(−1, 0, 1), but it takes more work to figure that out.

Example 18 (LADR 2.C.17). For a sum of three subspaces, we can use this formula
twice to see that

dim(U1 + U2 + U3) = dim(U1 + U2) + dim(U3)− dim((U1 + U2) ∩ U3)

= dim(U1) + dim(U2) + dim(U3)− dim(U1 ∩ U2)− dim((U1 + U2) ∩ U3).

Unfortunately, it is impossible to simplify dim((U1 + U2) ∩ U3) further. In particular,
the inclusion-exclusion principle for counting the elements in the union of three sets
does not carry over. The usual example (three lines in F2) is a counterexample to the
exact claim in 2.C.17.
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When all these intersections are {0}, the formula simplifies considerably:

Proposition 15 (LADR 2.C.16). Let U1, ..., Um ⊆ V be subspaces that form a
direct sum. Then

dim(U1 ⊕ ...⊕ Um) = dim(U1) + ...+ dim(Um).

Proof. Induction on m.
(i) When m = 1, this is obvious: dim(U1) = dim(U1).
(ii) Assume this is true for a direct sum of (m− 1) subspaces, for m ≥ 2. Then

dim(U1 ⊕ ...⊕ Um) = dim((U1 ⊕ ...⊕ Um−1) + Um)

= dim(U1 ⊕ ...⊕ Um−1) + dim(Um)− dim((U1 ⊕ ...⊕ Um−1) ∩ Um︸ ︷︷ ︸
={0}

)

= dim(U1) + ...+ dim(Um−1) + dim(Um).
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Linear maps - 6/27

Linear maps

Let F be a field. U , V , W and X will denote F-vector spaces. S and T will denote
linear maps.

Definition 11 (LADR 3.2). A function T : V → W is linear if it respects linear
combinations:

T (λ1v1 + ...+ λnvn) = λ1T (v1) + ...+ λnT (vn), for v1, ..., vn ∈ V, λ1, ..., λn ∈ F.

It is enough to know that T (v + w) = T (v) + T (w) and T (λv) = λT (v) for all
v, w ∈ V and λ ∈ F, because every linear combination is built up from sums and scalar
multiplication. Equivalently, T is linear if and only if

T (λv + w) = λT (v) + T (w), v, w ∈ V, λ ∈ F.

Example 19. There are lots of examples! Matrix maps are linear (we’ll see more about
this tomorrow); differentiation between appropriate function spaces is linear; and the
map sending a periodic function to its sequence of Fourier coefficients is linear.

Proposition 16 (LADR 3.7). The set of linear maps from V to W is a vector
space with respect to the usual addition and scalar multiplication of functions,
denoted L(V,W ).

Proof. Let S, T : V → W be linear maps and µ ∈ F. Then the linear combination

(µS + T )(v) := µ · S(v) + T (v)

is linear, because for any v, w ∈ V and λ ∈ F,

(µS + T )(λv + w) = µ · S(λv + w) + T (λv + w)

= µ(λS(v) + S(w)) + λT (v) + T (w)

= λ · (µS + T )(v) + (µS + T )(w).

The additive identity is the zero function 0(v) = 0, v ∈ V. This makes L(V,W ) a
subspace of the vector space of all functions from V to W .
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Proposition 17 (LADR 3.8). Let T : U → V and S : V → W be linear maps.
Then their composition

ST : U −→ W, ST (u) := S(T (u))

is linear.

Proof. For any λ ∈ F and u, v ∈ U ,

ST (λu+v) = S(T (λu+v)) = S(λT (u)+T (v)) = λS(T (u))+S(T (v)) = λST (u)+ST (v).

The composition is sometimes called the product - particularly when S, T are matrix
maps between spaces of the form Fn - because it satisfies the basic axioms we expect a
product to have:

(1) associativity: (T1T2)T3 = T1(T2T3) for all linear maps T3 : U → V , T2 : V → W ,
T3 : W → X;

(2) existence of identity: T idV = idWT for all linear maps T : V → W , where idV
is the identity on V (idV (v) = v ∀ v) and idW is the identity on W . If the vector space
on which idV is clear, then we denote it by I.

(3) distributive law: (S1 + S2)T = S1T + S2T and S(T1 + T2) = ST1 + ST2.

Certainly, composition is not commutative in general: even if they are both defined,
ST and TS are not necessarily maps between the same vector spaces.

Definition 12 (LADR 3.67). A linear map T : V → V from a vector space to
itself is called an operator on V . The space of operators on V is denoted L(V ),
rather than L(V, V ).

Even operators do not generally commute. Physics students may recognize the
following example:

Example 20. Let V = {infinitely differentiable functions f : R → R}, and define
operators X̂, P̂ ∈ L(V ) by

X̂(f)(x) := x · f(x), P̂ (f)(x) := f ′(x), x ∈ R.

Then (P̂ X̂ − X̂P̂ )(f) = (xf)′ − xf ′ = f , so P̂ X̂ − X̂P̂ = I 6= 0.

Now we will prove that, given a basis B of V , there is a bijection

L(V,W )↔ {functionsB → W}.
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This is proved in a few steps.

Definition 13. Let T : V → W and let U ⊆ V be a subspace. The restriction
of T to U is the linear function

T |U : U −→ W, T |U(u) := T (u), u ∈ U ⊆ V.

Proposition 18. Let U1, ..., Um ⊆ V be subspaces that form a direct sum. Let
Ti : Ui → W be linear functions. Then there is a unique linear function

T : U1 ⊕ ...⊕ Um −→ V with T |Ui
= Ti for all i.

Proof. The only way to define T is

T (u1 + ...+ um) = T (u1) + ...+ T (um) := T1(u1) + ...+ Tm(um), ui ∈ Ui.

There is no ambiguity in this definition, since every element v ∈ U1 ⊕ ... ⊕ Um can be
written in only one way as v = u1+ ...+um. The map T defined above is linear, because:
for any ui, vi ∈ Ui and λ ∈ F,

T
(
λ(u1 + ...+ um) + (v1 + ...+ vm)

)
= T

(
(λu1 + v1) + ...+ (λum + vm)

)
= T1(λu1 + v1) + ...+ Tm(λum + vm)

= λT1(u1) + T1(v1) + ...+ λTm(um) + Tm(vm)

= λ
(
T1(u1) + ...+ Tm(um)

)
+
(
T1(v1) + ...+ Tm(vm)

)
= λT (u1 + ...+ um) + T (v1 + ...+ vm).

Proposition 19 (LADR 3.5). Let v1, ..., vn be a basis of V and w1, ..., wn ∈ W.
Then there is a unique linear map T : V → W such that T (vj) = wj for all j.

Proof. Consider the subspaces Uj := F · vj. There is a unique linear map Tj : Uj → W
with Tj(vj) = wj, and it is

Tj : Uj −→ W, Tj(λvj) := λwj, λ ∈ F.

By the previous proposition, there is a unique linear map

T : U1 ⊕ ...⊕ Un = V −→ W with T |Uj
= Tj,

or equivalently T (vj) = wj for all j.
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Range and null space

Definition 14 (LADR 3.12, 3.17). Let T : V → W be a linear map.
(i) The null space, or kernel, of T is

null(T ) = ker(T ) = {v ∈ V : T (v) = 0}.

(ii) The range, or image, of T is

range(T ) = im(T ) = {w ∈ W : w = T (v) for some v ∈ V }.

Example 21. Consider the differentiation operator D ∈ L(P4(R)). The null space of
D is

null(D) = {p : p′ = 0} = Span(1).

The range is all of P3(R): since {1, x, x2, x3, x4} spans P4(R),

{D(1), D(x), D(x2), D(x3), D(x4)} = {0, 1, 2x, 3x2, 4x3}

spans range(T ).

Proposition 20 (LADR 3.14, 3.19). Let T ∈ L(V,W ). Then null(T ) ⊆ V and
range(T ) ⊆ W are subspaces.

Proof. (i) Since T (0V ) = 0W , we know that 0V ∈ null(T ) and 0W ∈ range(T ).
(ii) For any v1, v2 ∈ null(T ) and λ ∈ F,

T (λv1 + v2) = λT (v1) + T (v2) = λ · 0 + 0 = 0,

so λv1 + v2 ∈ null(T ).
(iii) For any w1 = T (v1) and w2 = T (v2) ∈ range(T ) and λ ∈ F,

λw1 + w2 = λT (v1) + T (v2) = T (λv1 + v2) ∈ range(T ).

Definition 15. The dimensions of null(T ) resp. range(T ) are called the nullity
resp. the rank of T .

Nullity and rank are more precise variants of the concepts of “injective” and “sur-
jective”, in the following sense:

Proposition 21 (LADR 3.16, 3.20). Let T ∈ L(V,W ). Then T is injective if
and only if null(T ) = {0}, and T is surjective if and only if range(T ) = W.
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Proof. (i) Assume that T is injective, and v ∈ null(T ). Then T (v) = 0 = T (0), so v = 0.
On the other hand, assume that null(T ) = {0}. If T (v) = T (w), then T (v −w) = 0, so
v − w ∈ null(T ) = {0} and v = w.
(ii) T is surjective if and only if range(T ) = W : this is clear from the definition of
“surjective”.

The following result is called the Fundamental Theorem of Linear Maps in the
textbook. Many other books call it the rank-nullity theorem. The rank-nullity theorem
itself is only a statement about dimensions; for some applications, the particular basis
we construct is important, so it is included in the statement below.

Proposition 22 (LADR 3.22). Let V be a finite-dimensional vector space and
let T ∈ L(V,W ). Then there is a basis {u1, ..., um, v1, ..., vn} of V such that
{u1, ..., um} is a basis of null(T ) and T (v1), ..., T (vn) is a basis of range(T ). In
particular,

dim(V ) = dim null(T ) + dim range(T ).

Proof. Choose any basis {u1, ..., um} of null(T ) and extend it to a basis
{u1, ..., um, v1, ..., vn} of V . Then T (v1), ..., T (vn) is a basis of range(T ), because:
(i) It is linearly independent: assume that

λ1T (v1) + ...+ λnT (vn) = 0.

Then T (λ1v1 + ...+ λnvn) = 0, so

λ1v1 + ...+ λnvn ∈ null(T ) = Span(u1, ..., um).

If we write λ1v1 + ...+ λnvn = µ1u1 + ...+ µmum, then

µ1u1 + ...+ µmum − λ1v1 − ...− λnvn = 0

is a combination to 0; since {u1, ..., um, v1, ..., vn} is linearly independent, we see that
all µi and λj are 0.
(ii) It spans range(T ): let w = T (v) ∈ range(T ) be any element, and write

v = λ1v1 + ...+ λnvn + µ1u1 + ...+ µmum.

Then

T (v) = λ1T (v1)+ ...+λnT (vn)+µ1 T (u1)︸ ︷︷ ︸
=0

+...+µm T (um)︸ ︷︷ ︸
=0

= λ1T (v1)+ ...+λnT (vn).
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Matrices - 6/28

Matrices

For working with matrices, we use the convention that Fn consists of column vectors,
rather that row vectors.

Definition 16 (LADR 3.30,3.39). Let m,n ∈ N. An (m × n)-matrix is a rect-
angular array

A = (aij)i,j =

a11 ... a1n
... ... ...
am1 ... amn


with entries aij ∈ F. The set of matrices is denoted Fm,n.

It is straightforward to check that Fm,n is an F-vector space with entrywise addition
and scalar multiplication, just as Fn is. A natural basis is given by the matrices Ei,j,
with a 1 in the ith row and jth column, and 0 elsewhere. In particular, dim(Fm,n) = mn.

Example 22. In C2,3,(
1 + i 3 + 2i 4

5 i 2 + i

)
+

(
4− 2i 5 1

3 2 i

)
=

(
5− i 8 + 2i 5

8 2 + i 2 + 2i

)
,

and

(1 + i) ·
(

1 + i 3 + 2i 4
5 i 2 + i

)
=

(
2i 1 + 5i 4 + 4i

5 + 5i −1 + i 1 + 3i

)
.

Example 23. A natural basis for F2,2 is

E1,1 =

(
1 0
0 0

)
, E1,2 =

(
0 1
0 0

)
, E2,1 =

(
0 0
1 0

)
, E2,2 =

(
0 0
0 1

)
.
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Definition 17 (LADR 3.32). Let B = {v1, ..., vn} be a basis of V and let
C = {w1, ..., wm} be a basis of W. Let T : V → W . The representation
matrix of T with respect to B and C is the matrix

M(T ) =MB
C (T ) = (aij)i,j,

where the entries aij are defined by

T (vj) = a1jw1 + ...+ amjwm =
m∑
i=1

aijwi.

Example 24. Consider the linear map

T : P3(C) −→ C4, T (p) := (p(1), p(i), p(−1), p(−i)).

We will calculate its representation matrix with respect to the usual bases {1, x, x2, x3}
and {e1, e2, e3, e4}.
The first column of M(T ) is found by applying T to the constant 1, and writing the
result as a column vector; we get

M(T ) =


1 ? ? ?
1 ? ? ?
1 ? ? ?
1 ? ? ?

 .

The second column of M(T ) is found by applying T to x; we get

M(T ) =


1 1 ? ?
1 i ? ?
1 −1 ? ?
1 −i ? ?

 .

The third column of M(T ) is found by applying T to x2; we get

M(T ) =


1 1 1 ?
1 i −1 ?
1 −1 1 ?
1 −i −1 ?

 .

Finally, apply T to x3 to find

M(T ) =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .
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The representation matrix gives a correspondence between matrices and linear func-
tions. It is useful in two ways: it is easier to do practical calculations with matrices,
but it is easier to prove theorems about linear functions.

Proposition 23. Let V and W be finite-dimensional vector spaces. Let
B = {v1, ..., vn} be a basis of V and let C = {w1, ..., wm} be a basis of W . There
is a bijection

L(V,W )↔ Fm,n, T 7→ M(T ).

This bijection also preserves the vector space structure; i.e. M(S+T ) =M(S)+M(T )
and M(λT ) = λ · M(T ).

Proof. For any elements x1, ..., xn ∈ W , there is a unique linear map T ∈ L(V,W ) with
T (vj) = xj for all j; and for any elements x1, ..., xn ∈ W , there is a unique matrix
(aij)i,j with xj =

∑m
i=1 aijwi for all j. In other words, there are two bijections

L(V,W )↔ {listsx1, ..., xn ∈ W} ↔ matrices,

T 7→
(
T (v1), ..., T (vn)

)
7→ M(T ).

Definition 18 (LADR 3.62). Let V be a finite-dimensional vector space with an
ordered basis B = {v1, ..., vn}. For any v ∈ V , the coordinates of v with respect
to B are

M(v) :=MB(v) :=

λ1...
λn

 , where v = λ1v1 + ...+ λnvn.

In other words, M(v) =
∑n

i=1 λiei if v =
∑n

i=1 λivi.

Example 25. The coordinates of 1 + 2x + 3x2 ∈ P2(R) with respect to the basis

{1, x, x2} are

1
2
3

 .

The coordinates of 1 + 2x + 3x2 with respect to the basis {1 + x, 1 + x2, x + x2} are0
1
2

 , because

1 + 2x+ 3x2 = 0 · (1 + x) + 1 · (1 + x2) + 2 · (x+ x2).
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Definition 19 (LADR 3.65). We define the product of a matrix and a vector by

MB
C (T ) · MB(v) :=MC(T (v))

for any linear map T : V → W and vector v ∈ V , and any bases B of V and C of
W .

We should check that this doesn’t depend on the linear maps and bases, but only on
the matrixMB

C (T ) and column vectorMB(v). Let B = {v1, ..., vn} and C = {w1, ..., wm}.
Let M(T ) = (aij)i,j and v =

∑n
j=1 λjvj. Then

T (v) =
n∑
j=1

λjT (vj) =
n∑
j=1

(
λj

m∑
i=1

aijwi

)
=

m∑
i=1

( n∑
j=1

aijλj

)
wi,

so

MC(T (v)) =
n∑
j=1

aijλj,

which depends only on the matrix (aij)i,j and the column vector (λj)
n
j=1.

Example 26.

(
1 2 3
2 3 4

)
·

5
7
9

 =

(
1 · 5 + 2 · 7 + 3 · 9
2 · 5 + 3 · 7 + 4 · 9

)
=

(
46
67

)
.

Example 27. Let T : P3(C) → C4, T (p) := (p(1), p(i), p(−1), p(−i)) be the linear
map from above. To calculate T (1+2x+x2), we can express 1+2x+x2 by coordinates

in the basis {1, x, x2, x3}, i.e.


1
2
1
0

 , and use matrix multiplication:


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ·


1
2
1
0

 =


4
2i
0
−2i

 .

The product (composition) of functions gives us a product of matrices:

Definition 20 (LADR 3.43). We define the product of two matrices by

MA
C (ST ) :=MB

C (S) · MA
B (T ),

for any linear maps T ∈ L(U, V ) and S ∈ L(V,W ), and bases A of U ; B of V ;
and C of W .
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We should check that this doesn’t depend on the linear maps and bases, but only
on the matrices M(S) and M(T ) themselves. If A = {u1, ..., ul}, B = {v1, ..., vm} and
C = {w1, ..., wn}, and M(S) = (aij)i,j and M(T ) = (bjk)j,k, then M(ST ) = (cik)i,k is
defined as follows:

n∑
i=1

cikwi = ST (uk)

= S(T (uk))

= S
( m∑
j=1

bjkvj

)
=

m∑
j=1

bjkS(vj)

=
m∑
j=1

bjk

n∑
i=1

aijwi

=
n∑
i=1

( m∑
j=1

aijbjk

)
wi,

or in other words cik =
∑m

j=1 aijbjk.

Example 28. Let T : P3(R)→ P2(R) be the differentiation map and let S : P2(R)→ P3(R)
be the antiderivative without constant term; i.e. S(p)(x) =

∫ x
0
p(t) dt. With respect to

the standard bases, the composition ST has the matrix
0 0 0
1 0 0
0 1/2 0
0 0 1/3


0 1 0 0

0 0 2 0
0 0 0 3

 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Note that matrix-vector multiplication is a special case of matrix-matrix multipli-
cation: if we let T : F → V be the linear map with T (1) = v and choose the standard
basis {1} of F, then M(T ) =M(v), and

M(ST ) =M(S) · M(T ) =M(S) · M(v) =M(S(v)).

The following properties are easier to check for the underlying linear functions,
rather than for matrix multiplication directly:
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Proposition 24.
(i) Let A ∈ Fm,n, B ∈ Fn,r, C ∈ Fr,s be matrices. Then (AB) · C = A · (BC).
(ii) Let A ∈ Fm,n and B,C ∈ Fn,r. Then A(B + C) = AB + AC.
(iii) Let A,B ∈ Fm,n and C ∈ Fn,r. Then (A+B)C = AC +BC.
(iv) The identity matrix

I =M(idV ) =


1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1

 ∈ Fn,n

satisfies AI = A and IB = B for all A ∈ Fm,n and B ∈ Fn,r.
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Isomorphisms - 6/29

Isomorphisms

Definition 21 (LADR 3.53, 3.58). Let V and W be vector spaces. A linear map
T : V → W is an isomorphism if there is a linear map S : W → V such that
TS = idW and ST = idV .
If there is an isomorphism T : V → W , we call V and W isomorphic and write
V ∼= W.

Isomorphic vector spaces are, for most purposes, the same. The map T : V → W
can be thought of as a “relabeling” of the elements of V .

As usual, the inverse S, if it exists, is unique:

Proposition 25 (LADR 3.54). Let T : V → W be an isomorphism. Then the
inverse is unique, and is denoted T−1 : W → V.

Proof. Assume that S1, S2 : W → V are two linear maps such that TS1 = idW = TS2

and S1T = idV = S2T. Then

S1 = S1(TS2) = (S1T )S2 = S2.

What we have shown here is a little stronger: if T has both a “left-inverse” and a
“right-inverse”, then the left- and right-inverses are equal. It follows that any two left-
inverses are equal: they both equal the right-inverse. Similarly, any two right-inverses
are equal.

We can’t prove this if we don’t know that T has an inverse on both sides; for
example, the matrix A =

(
1 2

)
has no left-inverse and infinitely many right-inverses:

(
1 2

)
·
(

1− 2x
x

)
= 1 = idF, x ∈ F.
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Proposition 26 (LADR 3.56). Let T : V → W be a linear map. Then T is an
isomorphism if and only if it is both injective and surjective.

Proof. (i) Assume that T is an isomorphism. Then T is injective (i.e. null(T ) = {0}),
because:

v ∈ null(T ) =⇒ v = T−1(T (v)) = T−1(0) = 0.

T is surjective, because: any w ∈ W has the form

w = T (T−1(w)) ∈ range(T ).

(ii) Assume that T is injective and surjective. Define T−1 such that

T−1(w) = v is the unique vector with T (v) = w;

so T (T−1(w)) = w and T−1(T (v)) = v. Then T−1 is linear, because: for any λ ∈ F and
w1, w2 ∈ W ,

T (T−1(λw1 +w2)) = λw1 +w2 = λT (T−1(w1))+T (T−1(w2)) = T (λT−1(w1)+T−1(w2))

shows that T−1(λw1 + w2) = λT−1(w1) + T−1(w2).

Proposition 27 (LADR 3.59). Two finite-dimensional vector spaces are isomor-
phic if and only if they have the same dimension.

This is also true for infinite-dimensional vector spaces, although the dimension needs
to be made more precise than simply “∞”.

Proof. (i) Assume that T : V → W is an isomorphism; then W = range(T ) and
null(T ) = {0}. By the rank-nullity theorem,

dim(V ) = dim null(T ) + dim range(T ) = 0 + dim(W ).

(ii) Assume that V and W have the same dimension, and choose bases {v1, ..., vn} of V
and {w1, ..., wn} of W . Let

T : V −→ W and T−1 : W −→ V

be the unique linear maps such that T (vj) = wj and T−1(wj) = vj. Then

TT−1(wj) = T (vj) = wj = idW (wj) and T−1T (vj) = T−1(wj) = vj = idV (vj),

so T−1T and idV , and TT−1 and idW agree on a basis; so T−1T = idV and TT−1 = idW .
Therefore, T is an isomorphism.
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If we already know that the vector spaces V and W have the same finite dimension,
then it becomes easier to test whether a linear map T : V → W is an isomorphism.
(Often, proving surjectivity is the harder part, since for any w ∈ W we have to “guess”
an element v ∈ V with T (v) = w.)

Proposition 28 (LADR 3.69). Assume that dim(V ) = dim(W ) < ∞, and let
T ∈ L(V,W ). The following are equivalent:
(i) T is an isomorphism;
(ii) T is injective;
(iii) T is surjective.

Proof. (i) ⇒ (ii): This follows from LADR 3.56.
(ii) ⇒ (iii): By the rank-nullity theorem,

dim range(T ) = dim(V )− dim null(T )︸ ︷︷ ︸
=0

= dim(V ) = dim(W );

therefore, range(T ) = W , and T is surjective.
(iii) ⇒ (i): By the rank-nullity theorem,

dim null(T ) = dim(V )− dim range(T ) = dim(V )− dim(W ) = 0.

Therefore, null(T ) = {0}, so T is also injective. By LADR 3.56, it is an isomorphism.

Example 29. Let (x0, y0), ..., (xn, yn) be any (n+ 1) points in the real plane R2, where
x0, ..., xn are distinct. We will show that there is a unique interpolating polynomial of
degree at most n; i.e. a polynomial p ∈ Pn(R) with p(xj) = yj for all j.
The map

T : Pn(R) −→ Rn+1, T (p) := (p(x0), ..., p(xn))

is injective, because: any nonzero polynomial with (n+ 1) distinct zeros x0, ..., xn must
have all of (x − x0), ..., (x − xn) as factors, and therefore have degree at least n + 1.
This means that null(T ) = {0}. By the previous theorem, it is also surjective.

Example 30. This fails for infinite-dimensional vector spaces. For example, the dif-
ferentiation map

T : P(R) −→ P(R), p 7→ p′

is surjective, but not injective.

Taking inverses reverses the order of multiplication:

Proposition 29 (LADR 3.D.1, 3.D.9). Let S, T ∈ L(V ) be operators.
(i) If S and T are both invertible, then ST is invertible with inverse
(ST )−1 = T−1S−1.
(ii) If ST is invertible, then S is surjective and T is injective.
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In particular, if V is finite-dimensional, then S and T are both invertible, and by (i),
TS is also invertible. This does not need to be true when V is not finite-dimensional.

Proof. (i) We can check that

(T−1S−1) · (ST ) = T−1(S−1S)T = T−1T = idV

and
(ST ) · (T−1S−1) = S(TT−1)S−1 = SS−1 = idV .

(ii) Assume that ST is invertible. Then S is surjective, because: any v ∈ V can be
written as

v = (ST )(ST )−1(v) = S
(
T (ST )−1v

)
∈ range(S).

Also, T is injective, because: if T (v) = 0, then

v = (ST )−1(ST )(v) = (ST )−1S(0) = 0.

Note that even if V is infinite-dimensional and ST is invertible, the fact that T is
injective means that T defines an isomorphism

T : V −→ range(T ).

It follows by (i) that

S|range(T ) = (ST ) · T−1 : range(T ) −→ V

is also invertible, and we can write

(ST )−1 = T−1(S|range(T ))−1.

In this sense, the formula for the inverse is still valid.

Example 31. Let V = P(R) with linear maps

S(p) := p′, T (p)(x) :=

∫ x+1

0

p(t) dt.

Then ST (p)(x) = p(x+ 1), so ST is invertible with inverse p(x) 7→ p(x− 1). The range
of T is

range(T ) = {p ∈ P(R) : p(−1) = 0} =: U,

and the inverse of ST is the composition of

(S|U)−1 : V −→ U, (S|U)−1(p)(x) =

∫ x

−1
p(t) dt

and
T−1 : U −→ V, T−1(p)(x) = p′(x− 1).

Notice that TS is not invertible because it sends all constants to 0.
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Here is a useful corollary:

Proposition 30 (LADR 3.D.10). Let V be a finite-dimensional vector space and
let S, T ∈ L(V ) be operators. Then ST = I if and only if TS = I.

Proof. Assume that ST = idV . Then T is injective and S is surjective by the previous
proposition. By LADR 3.69, S and T are isomorphisms, and

S = S(TT−1) = (ST )T−1 = T−1,

so TS = TT−1 = I.
The other direction is the same proof, with the roles of S and T swapped.

Example 32. This is also false for infinite-dimensional spaces. The operators

S, T ∈ L(P(R)), S(p) := p′, T (p)(x) :=

∫ x

0

p(t) dt

satisfy ST = id but not TS = id.
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Product and quotient space - 6/30

Product

Recall that the Cartesian product of two sets A and B is the set of ordered pairs

A×B = {(a, b) : a ∈ A, b ∈ B};

more generally, if A1, ..., Am are sets, their product is the set of lists

m∏
i=1

Ai = A1 × ...× Am = {(a1, ..., am) : ai ∈ Ai}.

Proposition 31 (LADR 3.73). Let V1, ..., Vm be vector spaces. Then their product

V1 × ...× Vm

is a vector space with the componentwise operations

(v1, ..., vm) + (w1, ..., wm) := (v1 + w1, ..., vm + wm), vi, wi ∈ Vi

and
λ · (v1, ..., vm) := (λv1, ..., λvm).

Proof. All of the axioms are straightforward to verify. The zero element is 0 = (0, ..., 0),
and the additive inverse of (v1, ..., vm) is (−v1, ...,−vm).

Example 33. Rn is the product R× ...× R︸ ︷︷ ︸
n times

.

Example 34. There is a natural identification

Rm × Rn ∼→ Rm+n,
(

(x1, ..., xm), (y1, ..., yn)
)
7→ (x1, ..., xm, y1, ..., yn).

In general, even though V1 × (V2 × V3) and (V1 × V2) × V3 and V1 × V2 × V3 are
technically not the same spaces, there are natural ways to identify them with each
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other and mathematicians often do not bother distinguishing these spaces. The same
is true for V ×W and W × V.

Let V1, ..., Vm be vector spaces. Each Vi is isomorphic to the subspace

{0} × ...× {0} × Vi × {0}...× {0} = {(0, ..., 0, v(i), 0, ..., 0) : v(i) ∈ Vi} ⊆ V1 × ...× Vm

via the obvious map

Vi −→ {0} × ...× {0} × Vi × {0}...× {0}, v(i) 7→ (0, ..., 0, v(i), 0, ..., 0).

We will abbreviate {0} × ...× {0} × Vi × {0} × ...× {0} by V(i).

Proposition 32. Let V1, ..., Vm be vector spaces. Then V1 × ... × Vm is a direct
sum of its subspaces V(i).

For this reason, the product is also called the exterior direct sum. In fact, when
V and W are unrelated vector spaces (not subspaces of an ambient vector space), the
notation V ⊕W is used equivalently to V ×W - although we will avoid using “⊕” that
way in this course.

Proof. Every v = (v(1), ..., v(m)) ∈ V1 × ...× Vm can be written in exactly one way as a
sum

v = (v(1), 0, ..., 0) + ...+ (0, ..., 0, v(m)).

Proposition 33 (LAD+ 3.76). Let V1, ..., Vm be finite-dimensional vector spaces.
Then V1 × ...× Vm is finite-dimensional, and

dim(V1 × ...× Vn) = dim(V1) + ...+ dim(Vm).

The dimension of the product is not the product of the dimensions! There is another
construction, called the tensor product, whose dimension is actually the product of the
dimensions of each space. We will not discuss this here, but you have already seen one
example of it: the space of linear maps L(V,W ), which has dimension dim(V ) ·dim(W ).

Proof. This follows from the formula for the dimension of a direct sum:

dim(V1 × ...× Vm) = dim(V(1) ⊕ ...⊕ V(m))

= dim(V(1)) + ...+ dim(V(m))

= dim(V1) + ...+ dim(Vm).
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Here is the relationship between sums and products:

Proposition 34 (LADR 3.77). Let U1, ..., Um ⊆ V be subspaces of a vector space
V . Then there is a surjective linear map

Γ : U1 × ...× Um −→ U1 + ...+ Um, Γ(u1, ..., um) := u1 + ...+ um,

and it is injective if and only if U1, ..., Um form a direct sum.

Proof. Γ is surjective by definition of the sum U1 + ... + Um. It is injective if and only
if the only way to write

0 = u1 + ...+ um with ui ∈ Ui
is when ui = 0 for all i. This is equivalent to U1, ..., Um forming a direct sum.

This gives us a very clean proof of problem 8 on the first problem set: since Γ is
surjective, we know that

dim(U1 + ...+ Um) = dim range(Γ) ≤ dim(U1 × ...× Um) = dim(U1) + ...+ dim(Um),

since the rank-nullity theorem implies that

dim range(Γ) = dim(U1 × ...× Um)− dim null(Γ).

We also see that those expressions are equal if and only if dim null(Γ) = 0; or equiva-
lently, if Γ is injective; or equivalently, if U1, ..., Um form a direct sum.

Affine subsets

Definition 22 (LADR 3.79, 3.81). Let V be a vector space. A subset A ⊆ V is
called affine if it can be written in the form

A = v + U = {v + u : u ∈ U}

for some vector v ∈ V and subspace U ⊆ V.

Example 35. In R2, the line ` = {(x, y) : x + y = 1} is an affine subset. It has the
form

` = (1, 0) + Span((−1, 1)).

Definition 23 (LADR 3.81). Let U ⊆ V be a vector space. An affine subset
A ⊆ V is parallel to U if it has the form A = v + U for some v ∈ V.
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More generally, two affine subsets are called parallel if they are parallel to the same
subspace of V .

Example 36. In calculus, taking indefinite integrals results in expressions of the form∫
x2 dx =

1

3
x3 + C.

The algebraic point of view is that
∫
x2 dx is an affine subset of the space of polyno-

mials (or whatever function space we are working with) that is parallel to the space of
constants R : ∫

x2 dx =
1

3
x3 + R.

Proposition 35 (LADR 3.E.7). An affine subset A ⊆ V is parallel to only one
subspace of V .

Proof. Assume that A = v + U = x + W with v, x ∈ V and subspaces U,W ⊆ V. In
problem 8 on the current problem set, we will show that U = W.

Proposition 36 (LADR 3.85). Let U ⊆ V be a subspace and v, w ∈ V . The
following are equivalent:
(i) v − w ∈ U ;
(ii) v + U = w + U ;
(iii) (v + U) ∩ (w + U) 6= ∅.

Proof. (i) ⇒ (ii): Let u ∈ U be arbitrary; then

v + u = w + (v − w) + u︸ ︷︷ ︸
∈U

∈ w + U.

Therefore, v + U ⊆ w + U. The same argument shows that w + U ⊆ v + U.
(ii) ⇒ (iii): Since 0 ∈ U , it follows that v = v + 0 ∈ w + U and therefore
v ∈ (v + U) ∩ (w + U).
(iii) ⇒ (i): Choose u1, u2 ∈ U such that

v + u1 = w + u2 ∈ (v + U) ∩ (w + U).

Then v − w = u2 − u1 ∈ U.
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Definition 24. Let U ⊆ V be a subspace of a vector space V . The quotient
space V/U is the set of all affine subsets of V that are parallel to U .

The vector space operations are defined by

(v + U) + (w + U) := (v + w) + U and λ · (v + U) := (λv) + U.

It is not immediately clear that these definitions are valid, because we aren’t allowed
to extract the vector v from the affine subset v + U . We need to check that this is
well-defined : that

if v1 + U = v2 + U andw1 + U = w2 + U, then (v1 + w1) + U = (v2 + w2) + U,

and similarly for scalar multiplication.

Proof. If v1 + U = v2 + U and w1 + U = w2 + U, then v1 − v2, w1 − w2 ∈ U. Therefore,

(v1 + w1)− (v2 + w2) = (v1 − v2) + (w1 − w2) ∈ U,

so (v1 + w1) + U = (v2 + w2) + U.
Similarly, if v1 + U = v2 + U , then for any λ ∈ F,

λv1 − λv2 = λ · (v1 − v2) ∈ U,

so λv1 + U = λv2 + U.

It is common to think of elements of V/U simply as elements of V , but with a
different definition of “=”: we can no longer distinguish elements that differ by U . For
example, if U = Span((0, 1)) ⊆ R2, then taking the quotient R2/U means intuitively
that we are not allowed to look at the y-component, so the vectors (1, 2) and (1, 4)
become “equal”.
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Quotient space II - 7/5

Quotient space cont.

Recall that the quotient space V/U is the set of affine subsets v + U parallel to U .
Intuitively, it is just the set V with a more inclusive definition of “=”: two vectors
v, w ∈ V are considered the same in V/U if they differ only by an element v − w ∈ U.

Definition 25 (LADR 3.88). Let U ⊆ V be a subspace. The quotient map is
the surjective linear map

π : V −→ V/U, π(v) := v + U.

The null space of π is U , because

v ∈ null(π) ⇔ π(v) = v + U = 0 + U ⇔ v = v − 0 ∈ U.

Proposition 37 (LADR 3.89). Let V be finite-dimensional and let U ⊆ V be a
subspace. Then

dim(V/U) = dim(V )− dim(U).

Proof. The canonical projection π : V → V/U is a surjective map with null space U .
By the rank-nullity theorem,

dim(V ) = dim null(π) + dim range(π) = dim(U) + dim(V/U).

When V is infinite-dimensional, it is harder to know what dim(V/U) is - it can be
either finite- or infinite-dimensional.

The following theorem is a cleaner way to formulate the rank-nullity theorem. It is
also called the first isomorphism theorem. There are analogous statements in many
other areas of algebra.

Proposition 38 (LADR 3.91). Let T ∈ L(V,W ) be a linear map. Then there is
a natural isomorphism T : V/null(T )→ range(T ) such that T = T ◦ π.
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In other words, T fits into the commutative diagram

V W

V/null(T ) range(T )

π

T

T

ι

where ι : range(T )→ W is the inclusion ι(w) = w.

Proof. Define T by T (v + null(T )) := T (v). This is well-defined, because: if
v + null(T ) = w+ null(T ), then v −w ∈ null(T ), so T (v)− T (w) = T (v −w) = 0. It is
clear that T is also linear.

It is injective, because: assume that T (v + null(T )) = 0. Then T (v) = 0, so
v ∈ null(T ), and v + null(T ) = 0 + null(T ) is the zero element of V/null(T ).

It is surjective: any element w = T (v) ∈ range(T ) also has the form
w = T (v + null(T )).

We immediately recover the classical rank-nullity theorem when V is finite-dimensional:

dim(V )− dim null(T ) = dim(V/null(T )) = dim range(T ).

Of course, this is a circular proof, since we used the rank-nullity theorem to calculate
the dimension of the quotient V/null(T ) in the first place.

Example 37. The differentiation operator T : P(R)→ P(R) is surjective, and its null
space is the space of constants, R. The induced isomorphism is the map

T : P(R)/R −→ P(R), (p+ R) 7→ p′,

and its inverse is the indefinite integral

T
−1

: P(R) −→ P(R)/R, p 7→
∫
p(x) dx.

Remark: You can think of injective maps and subspaces in the same way: any
subspace U ⊆ V comes with its inclusion i : U → V, v 7→ v, and any injective map
i : U → V lets you identify U with the subspace i(U) ⊆ V.
In the same manner, you can think of surjective maps and quotient spaces in the same
way. Any quotient space V/U comes with its quotient map π : V → V/U , and any
surjective map T : V → W lets you identify W with the quotient space V/null(T ).
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Proposition 39. If T : V → W is a linear map and U1 ⊆ V , U2 ⊆ W are
subspaces such that T (U1) ⊆ U2, then T induces a linear map

T : V/U1 −→ W/U2, T (v + U1) := T (v) + U2.

LADR 3.91 is the special case that U1 = null(T ) and U2 = {0}, since W/{0} ∼= W.

Proof. It is clear that T will be linear. We need to verify that it is well-defined. Assume
that

v + U1 = w + U1 for some v, w ∈ V ;

then v − w ∈ U1, so T (v)− T (w) = T (v − w) ∈ U2, and

T (v) + U2 = T (w) + U2.

The “dimension formula” relating the dimension of an intersection and of a sum
of subspaces is also a special case of a more general statement about quotient spaces,
called the second isomorphism theorem:

Proposition 40. Let U,W ⊆ V be subspaces of a vector space V . Then there is
a natural isomorphism

ϕ : U/(U ∩W ) −→ (U +W )/W.

When V is finite-dimensional, we recover the formula

dim(U)−dim(U∩W ) = dim(U/(U∩W )) = dim((U+W )/W ) = dim(U+W )−dim(W ).

Before proving this, let’s make the statement a little clearer. Students are often
not sure whether calling an isomorphism “natural” is just an opinion, or a precise
mathematical concept.
Short answer: it’s natural because you don’t have to choose a basis.
Long(er) answer: Saying that two spaces are naturally isomorphic is more than just
knowing that they have the same dimension. A natural isomorphism is a method of
constructing an isomorphism that works for every vector space at the same time - here,
it should be something like a function

{pairs of subspaces} −→ {isomorphisms}, (U,W ) 7→ ϕ.

Since the domain here is not “pairs of vector spaces together with bases”, we know in
particular that we shouldn’t be accessing a basis when we define the isomorphism ϕ.

It is not so easy to motivate why looking at natural isomorphisms is important when
our examples are mostly spaces like Fn and Pn(R) that are relatively easy to handle.
But when your vector spaces are more complicated, say

L
(
L(L(F∞,F∞),L(F∞,F)),F

)
,
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you become grateful for the linear maps you can find without having to understand
what the vectors look like.

Proof. Define a linear map

T : U −→ (U +W )/W, T (u) := u+W.

This is surjective, because: for any u ∈ U and w ∈ W , the affine space u + w + W is
also represented by

u+ w +W = u+W = T (u)

(since (u+ w)− u = w ∈ W ). The null space is U ∩W , because:

T (u) = u+W = 0 +W ⇔ u = u− 0 ∈ W ⇔ u ∈ U ∩W.

The first isomorphism theorem implies that

ϕ := T : U/(U ∩W ) −→ (U +W )/W, ϕ(u+ (U ∩W )) := u+W

is a well-defined isomorphism.

Finally, the third isomorphism theorem is a statement about quotients of quo-
tient spaces. Assume that W ⊆ U ⊆ V is a chain of subspaces. We can think of U/W
as the subspace of V/W consisting of those affine spaces u+W with u ∈ U.

Proposition 41. There is a natural isomorphism

ϕ : (V/W )/(U/W )
∼−→ V/U.

This does not lead to any insightful formula when V is finite-dimensional: but we
can verify that

dim((V/W )/(U/W )) = dim(V/W )− dim(U/W )

= (dim(V )− dim(W ))− (dim(U)− dim(W ))

= dim(V )− dim(U),

as it should be.

Proof. Since the identity I : V → V sends W into U , it induces a linear map

T : V/W −→ V/U, v +W 7→ v + U.

It is surjective: every element of V/U has the form v + U = T (v +W ) for some v ∈ V.
The null space of T is U/W , because:

T (v +W ) = v + U = 0 + U ⇔ v ∈ U ⇔ v +W ∈ U/W.
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The first isomorphism theorem implies that

ϕ := T : (V/W )/(U/W ) −→ V/U, ϕ
(

(v +W ) + U/W
)

:= v + U

is an isomorphism.

The third isomorphism theorem can be useful for certain proofs by induction, since
V/W generally has a smaller dimension than V .
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Dual space - 7/11

Dual space

Definition 26 (LADR 3.92, 3.94). Let V be a vector space. The dual space of
V is

V ′ = L(V,F) = {linear mapsϕ : V → F}.

There are many names for elements of V ′: depending on the application, they
are called linear functionals, or linear forms, or one-forms, or covectors.

Remarks: Despite the notation, this has nothing to do with the derivative. If it
isn’t already clear from the context, it should be clear from the capitalization of the
letter which notation is meant.

The dual space is also often denoted V ∗ - you will see this in other textbooks (in-
cluding the Wikipedia article on the dual space). Be careful, because we will use the
asterisk for a different concept later on.

The different names for elements of V ′ are similar to the different names for linear
functions / maps / transformations - there is no mathematical difference, but the word
choice does imply a particular way of thinking about the same object. “One-forms”
usually appear in geometry and topology; “linear functionals” usually appear in ad-
vanced calculus; etc.

When V is finite-dimensional, we know that V ′ is isomorphic to V because

dimV ′ = dim(V ) · dim(F) = dim(V ) · 1 = dim(V ).

However, this isomorphism is not natural. In fact, if V is infinite-dimensional, then V
can never be isomorphic to V ′ (although this is not so easy to prove). Any isomorphism
between finite-dimensional V and V ′ must involve knowledge of what the elements of
V look like.

Definition 27 (LADR 3.96). Let V be a finite-dimensional vector space with
ordered basis {v1, ..., vn}. The dual basis of V ′ is the list ϕ1, ..., ϕn ∈ V ′, defined
by

ϕj(vk) = δjk =

{
1 : j = k;

0 : j 6= k.
.
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Example 38. Consider Fn as the space of column vectors with the canonical basis

e1 =


1
0
...
0

 , ..., en =


0
...
0
1

 .

The dual space (Fn)′ = L(Fn,F) is the space of (1×n)-matrices (i.e. row vectors), and
the dual basis to {e1, ..., en} is the list of row vectors

ϕ1 =
(
1 0 ... 0

)
, ..., ϕn =

(
0 ... 0 1

)
.

Proposition 42 (LADR 3.98). Let V be a finite-dimensional vector space with
ordered basis {v1, ..., vn}. Then the dual basis {ϕ1, ..., ϕn} is a basis of V ′.

Proof. Since dim(V ) = dim(V ′) = n, it is enough to show that ϕ1, ..., ϕn is linearly
independent. Assume that

λ1ϕ1 + ...+ λnϕn = 0 with λ1, ..., λn ∈ F.

Plugging in vk shows that

0 =
(
λ1ϕ1 + ...+ λnϕn

)
(vk) = λ1 · 0 + ...+ λk · 1 + ...+ λn · 0 = λk

for every k.

The name “dual” space is appropriate because, although finite-dimensional spaces
V are not naturally isomorphic to their dual V , they are naturally isomorphic to their
bidual space (dual of the dual space) V ′′ = (V ′)′. In the case of column vectors Fn,
passing to the dual space is the same as taking the matrix transpose, and transposing
twice leaves us with the column vector we started with. The identification V ∼= V ′′ is
an abstraction of that idea.

Proposition 43 (LADR 3.F.34). Let V be a finite-dimensional vector space.
Then there is a natural isomorphism

j : V −→ V ′′, j(v)(ϕ) := ϕ(v), v ∈ V, ϕ ∈ V ′.

When V is infinite-dimensional, j is only an injective map.
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Proof. Since dim(V ) = dim(V ′) = dim(V ′′), it is enough to show that j is injective.
Let v 6= 0 be any nonzero vector; then v can be extended to a basis {v = v1, v2, ..., vn}
of V . Let {ϕ1, ..., ϕn} be the dual basis; then ϕ1 is a linear form such that ϕ1(v) 6= 0,
and therefore

j(v)(ϕ1) = ϕ1(v) 6= 0;

i.e. j(v) 6= 0. Since v was arbitrary, null(j) = {0}.

Dual map

Definition 28. Let T : V → W be a linear map. The dual map is

T ′ : W ′ −→ V ′, T ′(ϕ) := ϕ ◦ T.

Example 39. Let T : P(R) → P(R) be the map that multiplies by x, and define the
linear form

ϕ : P(R)→ R, ϕ(p) := p(2).

Then
T ′(ϕ)(p) = ϕ(T (p)) = ϕ(x · p) = 2 · p(2);

i.e. T ′(ϕ) = 2ϕ is the linear form p 7→ 2p(2).

Proposition 44 (LADR 3.101). Let U, V,W be vector spaces. The dual defines
a linear map

′ : L(V,W ) −→ L(W ′, V ′), T 7→ T ′.

It also reverses products: for any T ∈ L(U, V ) and S ∈ L(V,W ),

(ST )′ = T ′S ′.

Here is a “fun” thought experiment: since ′ : L(V,W )→ L(W ′, V ′) is itself a linear
map, we can take its dual. What exactly does its dual map

(′)′ : L(W ′, V ′)′ −→ L(V,W )′

do?
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Proof. (i) Let T1, T2 ∈ L(V,W ) be linear maps and let λ ∈ F be a scalar. For any
ϕ ∈ W ′ and v ∈ V , (

(λT1 + T2)
′(ϕ)

)
(v) =

(
ϕ ◦ (λT1 + T2)

)
(v)

= ϕ
(
λT1(v) + T2(v)

)
= λϕ(T1(v)) + ϕ(T2(v))

=
(
λT ′1(ϕ) + T ′2ϕ

)
(v),

so (λT1 + T2)
′ = λT ′1 + T ′2.

(ii) For any ϕ ∈ W ′,

(ST )′ϕ = ϕ ◦ (ST ) = (ϕ ◦ S) ◦ T = (S ′ϕ) ◦ T = T ′(S ′ϕ),

so (ST )′ = T ′ ◦ S ′.

Proposition 45 (LADR 3.114). Let T : V → W be a linear map between finite-
dimensional vector spaces. Let B and C be ordered bases of V resp. W , and let
B′ and C ′ be the dual bases of V ′ and W ′. Then

MC′
B′(T

′) =
(
MB
C (T )

)T
.

Here, if A = (aij)i,j is any matrix, AT = (aji)i,j denotes the transpose.

Proof. Write MB
C (T ) = (aij)i,j; i.e. if

B = {v1, ..., vn} and C = {w1, ..., wm},

then T (vj) =
∑m

i=1 aijwi. Denote the dual bases by

B = {v′1, ..., v′n} and C ′ = {w′1, ..., w′m}.

Then

T ′(w′j)(vk) = w′jT (vk) = w′j

( m∑
l=1

alkwl

)
= ajk =

n∑
i=1

ajiv
′
i(vk),

so T ′(w′j) and
∑n

i=1 ajiv
′
i agree on the basis {v1, ..., vn}; therefore, T ′(w′j) =

∑n
i=1 ajiv

′
i.

Example 40. Consider the matrix A =

(
1 2 3
4 5 6

)
: R3 → R2. The dual map is

A′ : (R2)′ −→ (R3)′,
(
x y

)
7→
(
x y

)(1 2 3
4 5 6

)
,
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and with respect to the standard bases {(1, 0), (0, 1)} and {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
this is represented by 1 4

2 5
3 6

 .

Using this point of view and the fact that (ST )′ = T ′S ′ for any linear maps S, T , it
follows that (AB)T = BTAT for any matrices A,B.

Annihilator

Definition 29. Let U ⊆ V be a subspace. The annihilator of U is

U0 := {ϕ ∈ V ′ : ϕ(u) = 0 for all u ∈ U}.

Example 41. The annihilator of the subspace

U = Span
(1

1
0

 ,

0
1
1

) ⊆ Q3

is U0 := Span
(

(−1, 1,−1)
)
.

Proposition 46 (LADR 3.107, 3.109). Let T : V → W be a linear map. Then:
(i) null(T ′) = (range(T ))0;
(ii) range(T ′) = (null(T ))0.

Proof. (i) Let ϕ ∈ null(T ′); then, for any w = T (v) ∈ range(T ),

ϕ(w) = ϕ(T (v)) = T ′(ϕ)(v) = 0(v) = 0,

so ϕ ∈ (range(T ))0.
On the other hand, let ϕ ∈ (range(T ))0; then, for any v ∈ V ,

T ′(ϕ)(v) = ϕ(T (v)) = 0,

so T ′(ϕ) = 0 and ϕ ∈ null(T ′).

(ii) Let ϕ = T ′(ψ) ∈ range(T ′). Then, for any v ∈ null(T ),

ϕ(v) = T ′(ψ)(v) = ψ(Tv) = ψ(0) = 0;
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therefore, ϕ ∈ null(T )0.

On the other hand, let ϕ ∈ null(T )0, and define

ψ : range(T ) −→ F, ψ(T (v)) := ϕ(v).

This is well-defined, because: if T (v) = T (w), then T (v − w) = 0, so v − w ∈ null(T )
and ϕ(v − w) = 0. By extending a basis of range(T ) to a basis of W , and extending ψ
by 0, we can find a linear form ψ̃ ∈ W ′ such that ψ̃|range(T ) = ψ. Then

T ′(ψ̃) = ψ̃ ◦ T = ψ ◦ T = ϕ,

so ϕ ∈ range(T ′).

Proposition 47 (LADR 3.108, 3.110). Let T : V → W be a linear map. Then:
(i) T is injective if and only if T ′ is surjective;
(ii) T is surjective if and only if T ′ is injective.

Proof. (i) T is injective if and only if null(T ) = {0}, which is equivalent to
range(T ′) = null(T )0 = V ′.
(ii) T is surjective if and only if range(T ) = W , which is equivalent to
null(T ′) = range(T )0 = {0}.
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Invariant subspaces - 7/12

Invariant subspaces

Definition 30 (LADR 5.2). Let T ∈ L(V ) be an operator on a vector space. A
subspace U ⊆ V is invariant under T if T (U) ⊆ U.

In particular, T can be restricted to an operator T |U on U . It also induces the
quotient operator T = T/U on V/U.

Example 42. The null space and range of T are invariant subspaces under T ; so are
{0} and V itself.

Example 43. The following matrices are considered as operators on R2.

(i) The matrix

(
1 0
0 2

)
has invariant subspaces {0}, Span(

(
1
0

)
), Span(

(
0
1

)
) and R2.

(ii) The matrix

(
0 −1
1 0

)
has only the invariant subspaces {0} and R2.

(iii) The matrix

(
0 1
0 0

)
has only the invariant subspaces {0}, Span(

(
1
0

)
) and R2.

We will discuss how to find the invariant subspaces later.

Eigenvectors (more precisely, their spans) are the smallest possible invariant sub-
spaces:

Definition 31 (LADR 5.5, 5.7). Let T ∈ L(V ) be an operator on a vector space.
A nonzero vector v ∈ V is an eigenvector of T if Span(v) is invariant under T .

It follows that T (v) = λv for a unique scalar λ ∈ F, called the eigenvalue associ-
ated to v.

Definition 32 (LADR 5.36). Let T ∈ L(V ) be an operator and λ ∈ F. The
eigenspace of T for λ is

E(λ, T ) = null(T − λI) = {0} ∪ {eigenvectors of T with eigenvalueλ}.

It is clear thatE(λ, T ) is an invariant subspace of T : if v ∈ E(λ, T ), then T (v) = λv ∈ E(λ, T ).
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Proposition 48 (LADR 5.21). Let T ∈ L(V ) be an operator on a finite-
dimensional complex vector space. Then T has an eigenvector.

Both assumptions here are necessary:

(i) The operator

(
0 −1
1 0

)
on R2, which acts as counterclockwise rotation by 90 de-

grees, has no eigenvectors;
(ii) The operator T : P(C)→ P(C), p 7→ x · p has no eigenvectors, because T (p) never
even has the same degree as p for nonzero p.
This theorem is more of a result in calculus, rather than a theorem of linear algebra,
since it depends fundamentally on properties of C (or R). The (relatively short) proof
below is adapted from the article [S]. You will probably want to skip it.

[S] Singh, D. The Spectrum in a Banach Algebra. The American Mathematical
Monthly, vol. 113, no. 8, pp. 756-758.

Proof. Assume that T has no eigenvalues; then (T − λI)−1 exists for all λ ∈ C. (In
particular, T itself is invertible.) Choose a linear functional ϕ ∈ L(V )′ such that
ϕ(T−1) 6= 0; then ϕ is differentiable, because it is linear. Consider the function

F (r) :=

∫ 2π

0

ϕ((T − reiθI)−1) dθ, r ∈ [0,∞).

Then

irF ′(r) =

∫ 2π

0

irϕ((T − reiθ)−2)eiθ dθ

=

∫ 2π

0

∂

∂θ

(
ϕ((T − reiθ)−1)

)
dθ

= ϕ((T − re2πiI)−1)− ϕ((T − re0iI)−1) = 0.

Here we are using the chain rule:

∂

∂r
ϕ((T−reiθI)−1) = ϕ((T−reiθI)−2)·eiθ, ∂

∂θ
ϕ((T−reiθI)−1) = ϕ((T−reiθI)−2)ireiθ.

It follows that F ′(r) = 0 everywhere, so F (r) is constant in r. On the other hand,
as r →∞ becomes large, (T − reiθI)−1 ≈ (−reiθI)−1 = −1

r
e−iθI tends to 0 (uniformly

in θ, since e−iθ is bounded), so its integral F (r) tends to 0; it follows that

0 = lim
r→∞

F (r) = F (0) = 2πϕ(T−1);

contradiction.
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Proposition 49 (LADR 5.10). Let T ∈ L(V ), and let v1, ..., vm ∈ V be eigenvec-
tors for distinct eigenvalues λ1, ..., λm. Then {v1, ..., vm} is linearly independent.

Proof. Assume that T is linearly dependent, and let k be the smallest index such that
vk ∈ Span(v1, ..., vk−1). Write

vk = a1v1 + ...+ ak−1vk−1 with ai ∈ F.

Then

λkvk = T (vk) = T
(
a1v1 + ...+ ak−1vk−1

)
= λ1a1v1 + ...+ λk−1ak−1vk−1.

On the other hand,

λkvk = λk ·
(
a1v1 + ...+ ak−1vk−1

)
= λka1v1 + ...+ λkak−1vk−1.

Subtracting these equations gives us

0 = (λ1 − λk)a1v1 + ...+ (λk−1 − λk)ak−1vk−1;

here, {v1, ..., vk−1} is linearly independent since k was chosen minimally, and
(λ1 − λk), ..., (λk−1 − λk) are all nonzero, so

a1 = ... = ak−1 = 0.

This is a contradiction, because it implies that

vk = a1v1 + ...+ ak−1vk−1 = 0v1 + ...+ 0vk−1 = 0.

Example 44. For any N ∈ N, the functions sin(x), sin(2x), ..., sin(Nx) are linearly
independent elements of

V = {f : R→ R : f is differentiable infinitely often},

because they are eigenvectors of the double-differentiation operator T : V → V, T (f) := f ′′

for the distinct eigenvalues −1,−4, ...,−N2.

The following is an immediate corollary:

Proposition 50 (LADR 5.13). Let T ∈ L(V ) be an operator on a finite-
dimensional vector space. Then T has at most dim(V ) distinct eigenvalues.
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Proof. Let v1, ..., vm be eigenvectors for distinct eigenvalues λ1, ..., λm. Then {v1, ..., vm}
is linearly independent, so m ≤ dim(V ).

Remark for students interested in that sort of thing: this statement also holds for
infinite-dimensional vector spaces. For instance, the shift operator

T : R∞ −→ R∞, (a1, a2, a3, ...) 7→ (a2, a3, a4, ...)

has every real number λ as an eigenvalue, corresponding to the eigenvector (1, λ, λ2, λ3, ...).
This forces dim(R∞) to be at least the cardinality of R.

Finally, let’s recall how to find eigenvalues and eigenvectors in practice:

Proposition 51. Let T ∈ L(V ) be an operator on a finite-dimensional vector
space, and let v1, ..., vn be an ordered basis of V . Then λ ∈ F is an eigenvalue
of T if and only if it is an eigenvalue of the matrix M(T ), and v ∈ V is an
eigenvector of T for λ if and only if its coordinates M(v) are an eigenvector of
M(T ) for λ.

Proof. The equation T (v) = λv is equivalent to the equation

M(T )M(v) =M(Tv) =M(λv) = λM(v).

The eigenvalues of a square matrix are found by computing the characteristic poly-
nomial and finding its zeros. We will give a basis-free definition of the characteristic
polynomial later - but for a square matrix A, it is the determinant det(tI − A).

Example 45. Consider the operator

T : C2,2 −→ C2,2,

(
a b
c d

)
7→
(
a c
b d

)
(i.e. the transpose). With respect to the basis {

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
},

it is represented by

A =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The eigenvalues are the roots of

det


λ− 1 0 0 0

0 λ −1 0
0 −1 λ 0
0 0 0 λ− 1

 = (λ− 1)3(λ+ 1),
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so they are 1 and −1. To find bases of the corresponding eigenspaces, we look at

null(A− I) = null


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 = Span
(

1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1

)

and

null(A+ I) = null


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 = Span
(

0
1
−1
0

).
These are coordinates for the following eigenvectors of T :(

1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
︸ ︷︷ ︸

eigenvalue 1

,

(
0 1
−1 0

)
︸ ︷︷ ︸
eigenvalue−1

.
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Diagonalizability - 7/13

Upper-triangular matrices

Definition 33. A square matrix A = (aij)i,j is upper-triangular if aij = 0 for
all pairs (i, j) with i > j.
The diagonal of A is the entries a11, ..., ann. A is a diagonal matrix if all entries
that are not on the diagonal are 0.

Example 46. The matrix


1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

 is upper-triangular; its diagonal is 1, 5, 8, 10.

Proposition 52 (LADR 5.26). Let T ∈ L(V ) be an operator on a finite-
dimensional space, and let {v1, ..., vn} be an ordered basis of V . The following are
equivalent:
(i) The matrix of T with respect to {v1, ..., vn} is upper-triangular;
(ii) T (vj) ∈ Span(v1, ..., vj) for each j;
(iii) Span(v1, ..., vj) is invariant under T for each j.

Proof. (i) ⇒ (ii): Let (aij)i,j be the matrix of T . Then

T (vj) = a1jv1 + ...+ anjvn = a1jv1 + ...+ ajjvj + 0vj+1 + ...+ 0vn ∈ Span(v1, ..., vj).

(ii) ⇒ (iii): Assuming (ii), we see that

T (vi) ∈ Span(v1, ..., vi) ⊆ Span(v1, ..., vj)

for all i ≤ j; so T (Span(v1, ..., vj)) ⊆ Span(v1, ..., vj).
(iii) ⇒ (i): Write T (vj) = a1jv1 + ... + anjvn for each j. Since T (vj) ∈ Span(v1, ..., vj),
it follows that aj+1,j, ..., anj = 0; in other words, aij = 0 whenever i > j, so the matrix
(aij)i,j is upper-triangular.
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Proposition 53 (LADR 5.30, 5.32). Let T ∈ L(V ) be an operator on a finite-
dimensional space, and assume that T is represented by an upper-triangular ma-
trix with respect to some basis of V . Then the eigenvalues of T are exactly the
entries on the diagonal of that matrix.

Proof. Assume that T is represented by the matrix

M(T ) =

λ1 ∗ ∗
0

. . . ∗
0 0 λn

 ;

then, for any λ ∈ F , the matrix of T − λI is

M(T − λI) =

λ1 − λ ∗ ∗
0

. . . ∗
0 0 λn − λ

 .

By induction on n, we prove that this is invertible if and only if all λ 6= λk for all k:
(i) When n = 1, this is obvious.
(ii) In general, assume first that λ 6= λn. Then the equationλ1 − λ ∗ ∗

0
. . . ∗

0 0 λn − λ

 ·
v1...
vn

 =

0
...
0


implies (λn − λ)vn = 0 in the lowest row, and therefore vn = 0. The first (n− 1) rows
give us the equationλ1 − λ ∗ ∗

0
. . . ∗

0 0 λn−1 − λ

 ·
 v1

...
vn−1

 =

0
...
0

 .

By the induction assumption, this matrix is injective if and only if λ 6= λk for all
1 ≤ k ≤ n− 1.
On the other hand, if λ = λn, then the matrix

M(T − λI) =

λ1 − λ ∗ ∗
0

. . . ∗
0 0 0


has its range contained in the proper subspace Span(e1, ..., en−1), so it is not surjective.
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Example 47. The derivative T : P3(R)→ P3(R) is represented by the matrix
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 ,

so its only eigenvalue is 0.

Proposition 54 (LADR 5.27). Let V be a finite-dimensional complex vector
space and T ∈ L(V ). Then T has an upper-triangular matrix with respect to
some basis of V .

Proof. Induction on dim(V ). This is clear when dim(V ) = 1.
In general, fix an eigenvector v ∈ V and eigenvalue λ, and define U := range(T − λI).
Then U is an invariant subspace of V with dim(U) < dim(V ). By the induction as-
sumption, there is a basis {u1, ..., um} of U such that T |U is represented by an upper-
triangular matrix. Extend this to a basis {u1, ..., um, v1, ..., vn} of V ; then

Tvk = (T − λI)vk︸ ︷︷ ︸
∈Span(u1,...,um)

+λvk ∈ Span(u1, ..., um, v1, ..., vk) for all k,

so the matrix of T with respect to that basis is upper-triangular.

Diagonalizable maps

Definition 34 (LADR 5.39). Let T ∈ L(V ) be an operator on a finite-
dimensional vector space. T is diagonalizable if there is a basis of V , with
respect to which T is represented by a diagonal matrix.

Proposition 55 (LADR 5.41). Let T ∈ L(V ) be an operator on a finite-
dimensional vector space. The following are equivalent:
(i) T is diagonalizable;
(ii) There is a basis of V consisting of eigenvectors of T ;
(iii) V =

⊕m
i=1E(λi, T ) is a direct sum of eigenspaces of T ;

(iv) dim(V ) =
∑m

i=1 dimE(λi, T ).

The dimension dimE(λ, T ) = dim null(T −λI) is called the geometric multiplic-
ity of λ as an eigenvalue of T . It is 0 whenever λ is not an eigenvalue.
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Proof. (i)⇒ (ii): Let {v1, ..., vn} be a basis of V with respect to which T is represented

by the diagonal matrix

λ1 ... 0

0
. . . 0

0 ... λn

 . Then T (vi) = λivi for all i, so {v1, ..., vn} is a

basis consisting of eigenvectors of T .
(ii) ⇒ (iii): The spaces E(λi, T ), where λi are distinct, always form a direct sum: if
there were a nonzero element

0 6= vj ∈ E(λj, T ) ∩
(
E(λ1, T ) + ...+ E(λj−1, T )

)
,

then vj = v1+ ...+vj−1 would be a sum of eigenvectors for distinct, different eigenvalues
(where some vi may be zero and not appear in the sum). This is a contradiction, because
eigenvectors to distinct eigenvalues are linearly independent.
The assumption (ii) implies that E(λ1, v)⊕+...+E(λm, T ) is all of V , since it contains
the basis of eigenvectors (v1, ..., vn).
(iii) ⇒ (iv): This is the formula for the dimension of a direct sum.
(iv) ⇒ (i): Induction on m.
(1) When m = 1, i.e. dim(V ) = dimE(λ1, T ), it follows that V = E(λ1, T ), so T = λ1I
has a diagonal matrix with respect to every basis of V .
(2) The restrictions of T to the invariant subspaces U = E(λ1, T ) + ... + E(λm−1, T )
and W = E(λm, T ) are diagonalizable (by the induction assumption). Let {v1, ..., vm}
be a basis of U and let {w1, ..., wk} be a basis of W , with respect to which T |U and T |W
are represented by diagonal matrices. Since U ∩W = {0} (by linear independence of
eigenvectors for distinct eigenvalues), {v1, ..., vm, w1, ..., wk} is a basis of V , with respect
to which

M(T ) =

(
M(T |U) 0

0 M(T |W )

)
is diagonal.

Example 48. Unless dim(V ) = 0 or 1, there are always operators that are not diago-
nalizable. For example, let {v1, ..., vn} be a basis of V and define

T ∈ L(V ), T (v1) = 0, T (vk) := vk−1 (k ≥ 2).

Then T is represented by the matrix
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1
0 0 0 ... 0

 .

This is upper-triangular with only 0 on the diagonal, so 0 is the only eigenvalue. How-
ever, the null space of T is one-dimensional, spanned by v1; so

n = dim(V ) 6=
∑

dimE(λ, T ) = 1.
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The following theorem shows that “most” operators are diagonalizable:

Proposition 56 (LADR 5.44). Let T ∈ L(V ) be an operator on a finite-
dimensional space that has n = dim(V ) distinct eigenvalues. Then T is diag-
onalizable.

Proof. Choose eigenvectors v1, ..., vn for the distinct eigenvalues λ1, ..., λn; then
{v1, ..., vn} is linearly independent. Since n = dim(V ), we know that {v1, ..., vn} is
a basis of V .

Example 49. Diagonalizability of a matrix depends on the field that matrix is defined

over. For example, the matrix

(
1 2
2 3

)
has distinct eigenvalues 2 ±

√
5, so it is diago-

nalizable as an operator on R2; but if we interpret it as an operator on Q2, then it has
no eigenvalues at all and is not diagonalizable.

Similarly, the matrix

(
0 −1
1 0

)
is diagonalizable over C because it has distinct eigen-

values ±i; but it is not diagonalizable over R.
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Minimal polynomial - 7/14

Minimal polynomial

Definition 35 (LADR 5.17). Let T ∈ L(V ) be an operator and let p ∈ P(F) be
a polynomial. If p(x) = anx

n + an−1x
n−1 + ...+ a0, we define

p(T ) := anT
n + an−1T

n−1 + ...+ a1T + a0I.

When V is finite-dimensional, we know that L(V, V ) is also finite-dimensional with
dimL(V, V ) = dim(V )2. In particular, the list {I, T, T 2, T 3, ...} will eventually become
linearly dependent.

Definition 36 (LADR 8.43). Let T ∈ L(V ) be an operator on a
finite-dimensional space, and let k be the smallest index such that
T k ∈ Span(I, T, T 2, ..., T k−1). Write

T k = ak−1T
k−1 + ak−2T

k−2 + ...+ a1T + a0I.

The minimal polynomial of T is

p(x) := xk − ak−1xk−1 − ...− a0.

Example 50. (i) The minimal polynomial of

(
1 0
0 1

)
is x− 1.

(ii) Let T =

(
2 1
1 2

)
as an operator on C2. It is clear that {I, T} is linearly independent;

however, we find

T 2 =

(
5 4
4 5

)
= 4 ·

(
2 1
1 2

)
+ (−3) ·

(
1 0
0 1

)
,

so the minimal polynomial of T is x2 − 4x+ 3.

By construction, the minimal polynomial p of T satisfies p(T ) = 0. It is minimal in
the following sense:
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Proposition 57 (LADR 8.46). Let T ∈ L(V ) be an operator on a finite-
dimensional space, and let q ∈ P(F) be a polynomial. Then q(T ) = 0 if and
only if q is a polynomial multiple of the minimal polynomial p.

Proof. If q = p · r is a multiple, then q(T ) = p(T ) · r(T ) = 0 · r(T ) = 0.
On the other hand, let q ∈ P(F) such that q(T ) = 0. We perform polynomial division
with remainder: write

q = p · r + s, where deg(s) < deg(p) or s = 0.

It follows that
0 = q(T ) = p(T ) · r(T ) + s(T ) = s(T ).

If d = deg(p) is the degree of p, then {I, T, ..., T d−1} is linearly independent (since
d is the smallest index with T d ∈ Span(I, ..., T d−1).) The expression s(T ) = 0 is a
linear combination of {I, T, ..., T d−1} to zero; it must be the trivial combination, so all
coefficients of s are 0. In other words, q = p · r + 0 = p · r is a multiple of p.

One of the most important properties of the minimal polynomial is that we can read

off the eigenvalues of T from its zeros. For example, the minimal polynomial of

(
2 1
1 2

)
was x2 − 4x+ 3 = (x− 3)(x− 1), so the eigenvalues of

(
2 1
1 2

)
are 3 and 1.

Proposition 58 (LADR 5.B.10, 8.49). Let T ∈ L(V ) be an operator on a finite-
dimensional space with minimal polynomial p. Then the eigenvalues of T are
exactly the zeros of p.

Proof. Let λ ∈ F be any eigenvalue of T , with eigenvector v ∈ V. Since Tv = λv, we
can compute

T 2v = T (Tv) = T (λv) = λ2v, T 3v = T (T 2v) = T (λ2v) = λ3v, ...

and therefore, if p = xn + an−1x
n−1 + ...+ a0,

0 = p(T )v = T nv + an−1T
n−1v + ...+ a0Iv = λnv + an−1λ

n−1v + ...+ a0v = p(λ)v,

so p(λ) = 0.

On the other hand, assume that λ is a zero of p, and factor p(x) = q(x) · (x − λ).
Then

0 = p(T ) = q(T ) · (T − λI).
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If λ is not an eigenvalue of T , then T − λI is invertible and therefore

0 = q(T ) · (T − λI) · (T − λI)−1 = q(T ).

This is impossible, because q cannot be a multiple of p due to its lower degree.

If dim(V ) = n, then L(V ) is n2-dimensional, so it may seem that the minimal
polynomial could have a very large degree (all the way to n2). This is not the case. The
following theorem has a short proof at the end of page 263 in [LADR], but it requires
quite a bit of background and is only valid when F = C. Here is a direct argument.

Proposition 59. Let T ∈ L(V ) be an operator on a finite-dimensional space
with minimal polynomial p. Then deg(p) ≤ dim(V ).

Proof. Induction on dim(V ). This is clear when dim(V ) = 0 or 1, since
dim(V )2 = dim(V ) in those cases.
In general, let n = dim(V ) and fix an arbitrary nonzero vector v ∈ V . Since
{v, Tv, ..., T nv} is a collection of (n + 1) vectors, it must be linearly dependent; so
there is a polynomial q ∈ Pn(F) such that q(T )v = 0. The null space U := null q(T ) is
an invariant subspace under T , because: if q(T )v = 0, then q(T )Tv = Tq(T )v = 0.
Case 1: q(T ) = 0. Then the minimal polynomial of T is a factor of q, so its degree is
at most deg(q) ≤ n.
Case 2: q(T ) 6= 0; then dim(U) < dim(V ). By the induction assumption, the minimal
polynomial r of the restriction T |U has degree at most dim(U). In particular, we know

0 = r(T |U)u = r(T )u for all u ∈ U.

Also, since U 6= 0, the space V/U has strictly smaller dimenision than V . By the
induction assumption, the minimal polynomial p of the quotient operator

T : V/U −→ V/U, T (v + U) := T (v) + U

has degree less than dim(V/U). It follows that

p(T )v + U = p(T )(v + U) = 0 + U

for all v ∈ V, so p(T )v ∈ U for all v ∈ V , and therefore

r(T )p(T )v ∈ r(T )(U) = 0.

Therefore, the minimal polynomial of p is a factor of r · p, which has degree

deg(r · p) = deg(r) + deg(p) ≤ dim(U) + dim(V/U) = dim(V ).
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Example 51. The minimal polynomial can have degree anywhere between 1 and
dim(V ). For example, the minimal polynomial of I is always x − 1, regardless of
dimension. On the other hand, the dimension of the operator

T =


0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1
0 0 0 ... 0

 ∈ L(Cn)

is xn: there is an obvious pattern in the powers T k, so we can calculate its minimal
polynomial directly.

Finally, knowing the minimal polynomial gives us a powerful test for diagonalizabil-
ity:

Proposition 60 (LADR 8.C.12). Let T ∈ L(V ) be an operator on a finite-
dimensional space with minimal polynomial p. Then T is diagonalizable if and
only if p = (x− λ1)...(x− λm) splits into distinct linear factors.

This is notable because, over C, we can test this condition without factoring p - in
particular, without ever finding the eigenvalues. From calculus, we know that p has
distinct roots if and only if it shares no roots in common with its derivative p′. (The
only thing that can go wrong over R is that the roots of p might not be real.)

Example 52. Let T ∈ L(V ) be an operator on a finite-dimensional complex space,
such that T n = I for some number n. Then T n − I = 0, so the minimal polynomial
of T is a factor of xn − 1. Here, xn − 1 has no repeated roots because it has no roots
in common with its derivative nxn−1 (which has no roots other than 0); therefore, T is
diagonalizable.

Even when the roots of p′ are not as obvious as the example above, it is easy to test
by hand whether p and p′ share common roots using the Euclidean algorithm (repeated
division with remainder).

Proof. (i) Assume that T is diagonalizable, and write V = E(λ1, T ) ⊕ ... ⊕ E(λm, T ).
Since (T − λiI) is 0 on E(λi, T ), it follows that (T − λ1I) · ... · (T − λmI) is zero on
each E(λi, T ) and therefore it is zero on all of V ; so the minimal polynomial of T is
p(x) = (x− λ1) · ... · (x− λm).

(ii) On the other hand, assume that p splits into distinct linear factors. We use
induction on dim(V ).
(1) When dim(V ) = 0 or 1, every operator is diagonalizable.
(2) Assume that m > 1 (if p(x) = x − λ1, then T = λ1I is diagonalizable). Using
division with remainder, we find polynomials q, s ∈ P(F) with

(x− λ2) · ... · (x− λm) = q(x)(x− λ1) + s(x), and deg(s) < deg(x− λ1) = 1.
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In particular, s is constant; it is nonzero, since s(λ1) = (λ1 − λ2) · ... · (λ1 − λm) 6= 0.
For any v ∈ V , consider the vector

u :=
1

s
(T − λ2I) · ... · (T − λmI)v;

then (T − λ1I)u = 1
s
p(T ) = 0, so u ∈ E(λ1, T ). Also,

v − u =
1

s

(
sv − (T − λ2I)...(T − λmI)v

)
= −1

s
q(T )(T − λ1I)v

= (T − λ1I)
(
− 1

s
q(T )v

)
∈ range(T − λ1I).

So the decomposition v = u+ (v − u) for arbitrary v shows that

V = null(T − λ1I) + range(T − λ1I).

This must be a direct sum, because the rank-nullity theorem implies that

dim
(

null(T − λ1I) ∩ range(T − λ1I)
)

= dim null(T − λ1I) + dim range(T − λ1I)− dim(V )

= 0.

By induction, the restriction T |range(T−λ1I) is diagonalizable (since its minimal poly-
nomial is a factor of p and dim range(T − λ1I) < dim(V )); since

V = null(T − λ1I)⊕ range(T − λ1I),

it follows that V also has a basis consisting of eigenvectors of T .

Example 53. Whenever T ∈ L(V ) is diagonalizable and U ⊆ V is an invariant sub-
space, the restriction T |U ∈ L(U) and quotient operator T ∈ L(V/U) are also diago-
nalizable because their minimal polynomials are factors of the minimal polynomial of
T .
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Generalized eigenvectors - 7/18

Generalized eigenvectors

Definition 37 (LADR 8.9, 8.10). Let T ∈ L(V ) be an operator on a finite-
dimensional vector space.
(i) The generalized eigenspace of T for λ ∈ F is

G(λ;T ) :=
∞⋃
k=0

null
(

(T − λI)k
)
.

(ii) Nonzero vectors v ∈ G(λ;T ) are called generalized eigenvectors of T for
λ.

In other words, v ∈ V is a generalized eigenvector for λ if and only if (T −λI)kv = 0
for some k ∈ N.

It is a little suspicious that we are defining the subspace G(λ, T ) as a union of null
spaces - remember that in general, unions are not subspaces at all. The reason that
G(λ, T ) is a vector space will be the following lemma. It is phrased in terms of an
operator T : later, we will replace T by (T − λI) so it will apply to G(λ, T ).

Proposition 61 (LADR 8.2, 8.3). Let T ∈ L(V ) be an operator. Then there is
a chain of increasing subspaces

{0} = null(T 0) ⊆ null(T 1) ⊆ null(T 2) ⊆ null(T 3) ⊆ ...

If null(Tm) = null(Tm+1) for any m, then the chain stops at m:

null(Tm) = null(Tm+1) = null(Tm+2) = null(Tm+3) = ...

Proof. (i) If T kv = 0 for some k, then T k+1v = T (T kv) = T (0) = 0. This shows that
null(T k) ⊆ null(T k+1) for every k.
(ii) Assume that null(Tm) = null(Tm+1). Let v ∈ null(Tm+k+1) for some k ≥ 0; then

Tm+1(T kv) = Tm+k+1v = 0,

72



so T kv ∈ null(Tm+1) = null(Tm), so T k+mv = Tm(T kv) = 0. This proves the reverse
inclusion: null(Tm+k+1) ⊆ null(Tm+k).

Proposition 62 (LADR 8.4, 8.11). Let T ∈ L(V ) be an operator and let
n = dim(V ). Then G(λ, T ) = null((T − λI)n).

Proof. It is enough to prove that null(T n) =
⋃∞
k=0 null(T k); the claim for λ other than

0 follows by replacing T by T − λI.

Assume that null(T n) 6= null(T n+1). By the previous proposition, the chain

0 ( null(T 1) ( null(T 2) ( ... ( null(T n+1)

cannot have “=” anywhere: if null(TN) is ever null(TN+1), then null(T k) stops growing
altogether after k = N. It follows that

0 = dim(0) < dim null(T 1) < dim null(T 2) < ... < dim null(T n+1) ≤ dim(V ) = n.

This is impossible, because it implies that dim null(T 1), ..., dim null(T n+1) are (n + 1)
distinct integers in {1, ..., n}.

Example 54. Consider the matrix

A =

1 1 1
0 1 1
0 0 3

 ∈ Q3,3.

We will find the generalized eigenvectors corresponding to λ = 1. Here,

null(A− I) = null

0 1 1
0 0 1
0 0 2

 = Span
(1

0
0

),
and

null((A− I)2) = null

0 0 3
0 0 2
0 0 4

 = Span
(1

0
0

 ,

0
1
0

).
Finally, since

null((A− I)3) = null

0 0 6
0 0 4
0 0 8

 = Span
(1

0
0

 ,

0
1
0

),
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the chain of subspaces null((A− I)k) has stopped growing and

G(1, A) = Span
(1

0
0

 ,

0
1
0

).
Another consequence of this line of reasoning is that there is no need to define

“generalized eigenvalues”; any generalized eigenvector of T must correspond to a true
eigenvalue.

Proposition 63. Let T ∈ L(V ) be an operator on a finite-dimensional vector
space. Then G(λ, T ) 6= {0} if and only if λ is an eigenvalue of T .

Proof. If {0} = null(T − λI), then the chain of subpaces

{0} ⊆ null(T − λI) ⊆ null((T − λI)2) ⊆ ...

has already stopped at the beginning; i.e.

{0} = null(T − λI) = null((T − λI)2) = ... = null((T − λI)dimV ) = G(λ, T ).

In other words, we have shown that when λ is not an eigenvalue of T , then
G(λ, T ) = {0}.

As with eigenvectors, generalized eigenvectors for distinct eigenvalues are linearly
independent:

Proposition 64 (LADR 8.13). Let T ∈ L(V ) and let v1, ..., vm be generalized
eigenvectors for distinct eigenvalues λ1, ..., λm. Then {v1, ..., vm} is linearly inde-
pendent.

Proof. Assume not; let k be minimal such that {v1, ..., vk} is linearly dependent, and
fix a linear combination

a1v1 + ...+ akvk = 0

with ak 6= 0. Choose N to be the largest exponent with

w := (T − λkI)Nvk 6= 0.

Then (T − λkI)w = (T − λkI)N+1vk = 0, so w is an eigenvector with eigenvalue λk.
Therefore, (T − λI)w = (λk − λ)w for all λ ∈ F; in particular,

(T − λI)nw = (λk − λ)nw.

74



Fix n = dim(V ). Applying (T − λ1I)n · ... · (T − λk−1I)n(T − λkI)N to a1v1 + ...+ akvk
gets rid of v1, ..., vk−1 (since these are generalized eigenvectors for λ1, ..., λk−1 and we
are left with

0 = (T − λ1I)n · ... · (T − λk−1I)n(T − λkI)Nakvk

= ak(T − λ1I)n · ... · (T − λk−1I)nw

= ak(λ− λ1)n · ... · (λ− λk−1)nw,

implying ak = 0; contradiction.

Over C, every operator is “diagonalizable” by generalized eigenvectors:

Proposition 65 (LADR 8.21, 8.23). Let V be a finite-dimensional complex vector
space and T ∈ L(V ). Let λ1, ..., λm be the distinct eigenvalues of T . Then

V =
m⊕
i=1

G(λi, T ).

In particular, there is a basis of V consisting of generalized eigenvectors of T .

Proof. Induction on n = dim(V ). This is clear when n = 1.
In general, fix an eigenvalue λ1 of T . Then V decomposes as

V = null(T − λ1I)n + range(T − λ1I)n = G(λ1, T )⊕ U,

with U = range(T − λ1I)n, because: by the rank-nullity theorem, it is enough
to verify that G(λ1, T ) ∩ range(T − λ1I)n = {0}. This is true, because: if
w = (T − λ1I)nv ∈ G(λ1, T ), then (T − λ1I)nw = (T − λ1I)2nv = 0, which
shows that v ∈ G(λ1, T ) and w = 0.

By induction, there is a basis of U consisting of generalized eigenvectors of the
restricted operator T |U ; i.e.

U = G(λ1, T |U)⊕ ...⊕G(λm, T |U) =
m⊕
i=1

G(λi, T |U).

Here,
G(λ1, T |U) = G(λ1, T ) ∩ U = {0},

as we proved in the previous paragraph. If i 6= 1, then G(λi, T |U) = G(λi, T ) because:
let v ∈ G(λi, T ) and write

v = v1 + u = v1 + v2 + ...+ vm, with v1 ∈ G(λ1, T ), u ∈ U, vi ∈ G(λi, T |U).
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Since generalized eigenvectors for distinct eigenvalues are linearly independent, the
equation

v1 + ...+ (vi − v) + ...+ vm = 0

implies that all vk, k 6= i are 0; in particular, v1 = 0 and v = u ∈ U. Therefore,

V = G(λ1, T )⊕ U = G(λ1, T )⊕
(
G(λ2, T )⊕ ...⊕G(λm, T )

)
.

Definition 38. The dimension dimG(λ, T ) is called the algebraic multiplicity
µalg(λ) of λ as an eigenvalue of T .

Compare this to the geometric multiplicity µgeo(λ) = dimE(λ, T ). We see that
µgeo(λ) ≤ µalg(λ), and T is diagonalizable if and only if µgeo(λ) = µalg(λ) for all λ ∈ F.

Finally, we define the characteristic polynomial and prove the Cayley-Hamilton
theorem. This will only be valid over C.

Proposition 66 (LADR 8.34, 8.37). Let T ∈ L(V ) be an operator on a finite-
dimensional complex vector space. Let λ1, ..., λm be the distinct eigenvalues of T ,
with algebraic multiplicites d1, ..., dm. Define the characteristic polynomial

q(x) := (x− λ1)d1 · ... · (x− λm)dm .

Then q(T ) = 0.

Proof. Since q(T ) sends every generalized eigenvector of T to 0, and since these gener-
alized eigenvectors form a basis of V , it follows that q(T ) = 0.

Remark: The characteristic polynomial of a matrix operator A ∈ L(Cn) is the
familiar expression q(x) = det(xI − A). In practice, this is the only effective way to
calculate the characteristic polynomial. If you remember how to work with determinants
from Math 54, then you will be able to prove this. (The first step is to represent A
by an upper-triangular matrix, so without loss of generality, you will assume that A is
upper-triangular.)
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Jordan normal form - 7/19

Yesterday, we argued that every complex matrix admits a basis of generalized eigen-
vectors, so it is “generalized diagonalizable”. This is less useful than it sounds. For
example, the basis vectors e1, e2, e3 are generalized eigenvectors of the three matrices1 0 0

0 1 0
0 0 1

 ,

3 −1 −1
2 0 −1
2 −1 0

 ,

3 −2 0
1 1 −1
0 2 −1


for the eigenvalue 1, but the right two matrices are not in a form that is useful for
computations. Also, it is not obvious at first glance whether the right two matrices are
similar (they are not). We will need something better.

Nilpotent operators

Definition 39. Let N ∈ L(V ) be an operator on a finite-dimensional space V .
N is nilpotent if Nk = 0 for some k ∈ N.

In other words, V = G(0, T ): every nonzero vector is a generalized eigenvector of
N for 0.

Proposition 67 (LADR 8.55). Let N ∈ L(V ) be a nilpotent operator on a
finite-dimensional space. Then N is represented by a matrix (aij)i,j with 0 in
every entry except for possible 1s on the superdiagonal, i.e. the entries ak,k+1,
1 ≤ k ≤ n− 1.

For example, the matrices
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


are of this form.
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Proof. Induction on n = dim(V ). When n = 1, N must be 0.
In general, U := range(N) 6= V (since N is not invertible), and N |U is also a nilpotent
operator. By the induction assumption, N |U is represented by a superdiagonal matrix
of this form.

Note that the basis with respect to which N |U has this matrix must be of the form

{Nd1v1, N
d1−1v1, ..., v1, N

d2v2, ..., v2, ..., N
dkvk, ..., vk}

for some vectors v1, ..., vk ∈ U , such that Nd1+1v1 = ... = Ndk+1vk = 0. Choose vectors
u1, ..., uk ∈ V with Nuj = vj. Then

{Nd1+1u1, N
d1u1, ..., u1, N

dk+1uk, ..., uk}

is linearly independent, because: applying N to any linear combination

λ1,1u1 + ...+ λ1,d1+1N
d1+1u1 + ...+ λk,1uk + ...+ λk,dk+1N

dk+1uk = 0

results in

λ1,1v1 + ...+ λ1,d1N
d1v1 + ...+ λk,1vk + ...+ λk,dkN

dkvk = 0

and therefore
λ1,1 = ... = λ1,d1 = ... = λk,1 = ... = λk,dk = 0.

It follows that
λ1,d1+1N

d1+1u1 + ...+ λk,dk+1N
dk+1uk = 0;

i.e.
λ1,d1+1N

d1v1 + ...+ λk,dk+1N
dkvk = 0.

These vectors are also linearly independent, so λ1,d1+1 = ... = λk,dk+1 = 0.

Notice that {Nd1v1, ..., N
dkvk} is a basis of null(N) ∩ U (which you can see by

applying N to a combination of the basis vectors of U above and setting it equal to 0).
Extending it to a basis {Nd1v1, ..., N

dkvk, w1, ..., wl} of null(N), it follows that

{Nd1+1u1, N
d1u1, ..., u1, N

dk+1uk, ..., uk, w1, ..., wl}

is still linearly independent. It spans V , because: if v ∈ V, then

Nv =
∑
k,e

N evk ∈ U

is a linear combination of v1, ..., N
dkvk, so v differs from

∑
k,eN

euk by an element of
null(N).
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The matrix we have just constructed is the Jordan normal form of N . That was
the hardest part of constructing the Jordan normal form of an arbitrary operator.

Jordan normal form

Definition 40. A complex matrix A is in Jordan normal form if it consists
of Jordan blocks

A =

A1 0
. . .

0 Ap

 ,

with

Aj =


λj 1 0

. . . . . .
. . . 1

0 λj


for some λj ∈ C. The λj do not have to be distinct!

Here are three examples of matrices in Jordan normal form:
2 1 0 0 0
0 2 0 0 0
0 0 3 1 0
0 0 0 3 1
0 0 0 0 3

 ,


2 1 0 0 0
0 2 0 0 0
0 0 3 1 0
0 0 0 3 0
0 0 0 0 3

 ,


2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3


The matrix on the left consists of two Jordan blocks; the matrix in the middle consists
of three Jordan blocks; the matrix on the right consists of five Jordan blocks.

Proposition 68 (LADR 8.60). Let T ∈ L(V ) be an operator on a finite-
dimensional complex vector space. Then T is represented by a matrix in Jordan
normal form.

Proof. For any eigenvalue λi, the operator (T − λiI) is nilpotent on the invari-
ant subspace G(λi, T ). Choose a basis {vλi,1, ..., vλi,ki} of each G(λi, T ) for which
(T −λiI)|G(λi,T ) is represented in Jordan normal form; then T |G(λi,T ) is also represented
in Jordan normal form.

Combining the bases for each i gives a basis of V = G(λ1, T )⊕ ...⊕G(λm, T ) with
respect to which T is represented in Jordan normal form.

Here is an example of calculating the Jordan normal form.
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Example 55. Consider the matrix

A =

1 2 3
0 1 2
0 0 1

 .

The only eigenvalue is 1; it turns out that

dim null(A− I) = 1, dim null(A− I)2 = 2, dim null(A− I)3 = dimG(1, T ) = 3.

We start a Jordan chain by choosing an element of null(A−I)3 that is not contained
in

null(A− I)2 = null

0 0 4
0 0 0
0 0 0

 = Span
(1

0
0

 ,

0
1
0

);

for example, v3 =

0
0
1

 will do. Then we define

v2 = (A− I)v3 =

0 2 3
0 0 2
0 0 0

0
0
1

 =

3
2
0


and

v1 = (A− I)v2 =

0 2 3
0 0 2
0 0 0

3
2
0

 =

4
0
0

 .

You can verify that1 2 3
0 1 2
0 0 1

 =

4 3 0
0 2 0
0 0 1

1 1 0
0 1 1
0 0 1

4 3 0
0 2 0
0 0 1

−1 .
If we had ever found that null(A − I)k was not accounted for by the vectors we

had found previously, then we would find new vectors in null(A− I)k and start Jordan
chains at them also. Each Jordan chain corresponds to a single block in the Jordan
normal form.

If we are only interested in the Jordan normal form, and not the basis with respect
to which T is in Jordan normal form, we only need to look at the dimensions of certain
null spaces.

Example 56. Let T ∈ L(C8) be an operator with eigenvalues 1 and 2, and assume
that

dim null(T − I) = 2, dim null(T − I)2 = 4, dim null(T − I)3 = 4
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and
dim null(T − 2I) = 2, dim null(T − 2I)2 = 3, dim null(T − 2I)3 = 4.

Each Jordan block contributes exactly one eigenvector (up to scale), so there are 2
Jordan blocks for 1 and 2 Jordan blocks for 2.
The fact that null(T − I)2 = null(T − I)3 stops increasing means that both Jordan
blocks for 1 become 0 after squaring (T − I)2, so each Jordan block for 1 is (2× 2).
On the other hand, since dim null(T − 2I)2 = 3, only one of the Jordan blocks for 2
became smaller after squaring (T − 2I)2; so one Jordan block was size (1× 1) and the
other must be (3× 3). The Jordan normal form is

1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 1 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2


.

Here is what happens in general. Try this formula on the previous example.

Proposition 69. Let T ∈ L(V ) be an operator on a finite-dimensional complex
vector space. For any λ ∈ F and k ∈ N, the number of Jordan blocks for λ of size
(k × k) in the Jordan normal form for T is uniquely determined and it is

2 ·
(

dim null(T − λI)k
)
− dim null(T − λI)k−1 − dim null(T − λI)k+1.

In particular, the Jordan normal form of T is unique up to reordering of the Jordan
blocks.

Proof. Without loss of generality, we may assume that λ = 0 (otherwise, replace
T − λI by T ) and that 0 is the only eigenvalue of T (since T acts as an invertible
operator on all other generalized eigenspaces); so assume that T is nilpotent.

It is enough to prove that dim null(T k) − dim null(T k−1) is the number of Jordan
blocks of size at least k: because, assuming that, it follows that the number of Jordan
blocks of size exactly k is(

dim null(T k)− dim null(T k−1)
)
−
(

dim null(T k+1)− dim null(T k)
)

= 2 ·
(

dim null(T − λI)k
)
− dim null(T − λI)k−1 − dim null(T − λI)k+1.
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If T is represented by the Jordan normal form

A1,1 0
. . .

A1,d1
. . .

An,1
. . .

0 An,dn


,

where Aj,1, ..., Aj,dj are the Jordan blocks of size (j × j), then

dim null(T k) =
∑
i,j

dim null(Aki,j).

The nullity of the powers of a (j × j)-Jordan block follows the pattern

dim null(Aj,−) = 1, dim null(A2
j,−) =

{
1 : j = 1;

2 : j ≥ 2;
dim null(A3

j,−) =


1 : j = 1;

2 : j = 2;

3 : j ≥ 3;

...

and we see that

dim null(Akj,−)− dim null(Ak−1j,− ) =

{
1 : j ≥ k;

0 : j < k;

so dim null(T k)− dim null(T k−1) counts 1 for each Jordan block of size at least k.

Remark: For calculations, it is useful to know that a Jordan matrix decomposes
as J = D + N , where D is its diagonal, N = J − D is nilpotent and D and N
commute. (You can prove that D and N commute by showing that they commute on
each generalized eigenspace: D restricts to a multiple of the identity.) For example, we
will calculate the 100-th power

J100 =

1 1 0
0 1 1
0 0 1

100

.

Write J = D + N where D =

1 0 0
0 1 0
0 0 1

 and N =

0 1 0
0 0 1
0 0 0

 . Since D and N
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commute, the binomial theorem is valid and

J100 = (D +N)100

= D100 + 100D99N +

(
100

2

)
D98N2 +

(
100

3

)
D97 N3︸︷︷︸

=0

+ 0 + ...+ 0

=

1 100 4950
0 1 100
0 0 1

 .

The decomposition J = D + N is also called the (additive) Jordan-Chevalley decom-
position. (There is also a “multiplicative” Jordan-Chevalley decomposition, when J is
invertible: it is J = D(I +D−1N) = DU , where D and U also commute.)
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Inner product - 7/20

Inner product and norm

Today, F is either R or C. When F = R, all definitions are the same, but the complex
conjugations should be ignored.

Definition 41 (LADR 6.3, 6.7). Let V be a vector space over F. An inner
product on V is a function 〈−,−〉 : V × V → F with the following properties:
(i) 〈−,−〉 is positive definite: 〈v, v〉 > 0 for all v 6= 0.
(ii) 〈−,−〉 is sesquilinear (linear in the first entry and conjugate-linear in the
second):

〈λu+ v, w〉 = λ〈u,w〉+ 〈v, w〉, 〈u, λv + w〉 = λ〈u, v〉+ 〈u,w〉;

(iii) 〈−,−〉 is conjugate symmetric:

〈u, v〉 = 〈v, u〉.

Example 57. On Cn, the dot product is defined by

〈(w1, ..., wn), (z1, ..., zn)〉 := w1z1 + ...+ wnzn.

It is straightforward to verify conditions (i)-(iii) above.

We needed to include complex conjugation to make the inner product positive def-
inite. Trying to carry over the definition of inner product on Rn to Cn directly would
result in equations like (

i 1
)(i

1

)
= i2 + 12 = 0.

Example 58. Let V be the space of continuous complex-valued functions on the in-
terval [0, 1]. Then

〈f, g〉 :=

∫ 1

0

f(x)g(x) dx

defines an inner product, called the L2-product.
More generally, we can define the L2-product on any bounded interval [a, b]. On un-
bounded intervals such as R, we should modify V to make sure that the indefinite
integral

∫∞
−∞ f(x)g(x) dx exists for any f, g ∈ V.

84



Definition 42. Let V be a vector space over F. A norm on V is a function
‖ · ‖ : V → R with the following properties:
(i) ‖ · ‖ is positive: ‖v‖ > 0 for all v 6= 0;
(ii) ‖ · ‖ is homogeneous: ‖λv‖ = |λ| · ‖v‖ for any v ∈ V and λ ∈ F, where |λ|
denotes the absolute value;
(iii) ‖ · ‖ satisfies the triangle inequality

‖u+ v‖ ≤ ‖u‖+ ‖v‖, u, v ∈ V.

‖ · ‖ is an abstraction of the concept of “length” of a vector. Although for general
vector spaces V , this has no geometric meaning (what is the “length” of a polynomial?’),
we can apply geometric intuition to prove algebraic results in V .

Proposition 70 (LADR 6.10, 6.18). Let V be a vector space with inner product
〈−,−〉. Then

‖v‖ :=
√
〈v, v〉

is a norm on V .

Proving the triangle inequality takes a little work. We will use another important
inequality to prove it - the Cauchy-Schwarz inequality:

Proposition 71 (LADR 6.15). Let V be a vector space with inner product 〈−,−〉
and induced norm ‖ · ‖. Then

|〈u, v〉| ≤ ‖u‖ · ‖v‖, u, v ∈ V,

and equality holds if and only if {u, v} is linearly dependent.

Proof. Case 1: v = 0. Then both sides of the inequality are 0.
Case 2: v 6= 0. Define the vector

z :=
〈u, v〉
〈v, v〉

v − u

(geometrically, z is the distance between u and its projection onto the line through v).
Then:
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0 ≤ 〈z, z〉

=
〈u, v〉
〈v, v〉

〈v, z〉 − 〈u, z〉

=
〈u, v〉
〈v, v〉

〈
v,
〈u, v〉
〈v, v〉

v − u
〉
−
〈
u,
〈u, v〉
〈v, v〉

v − u
〉

=
〈u, v〉 · 〈u, v〉
〈v, v〉 · 〈v, v〉

〈v, v〉 − 〈u, v〉 · 〈v, u〉
〈v, v〉

− 〈u, v〉 · 〈u, v〉
〈v, v〉

+ 〈u, u〉

=
|〈u, v〉|2

〈v, v〉
− |〈u, v〉|

2

〈v, v〉
− |〈u, v〉|

2

〈v, v〉
+ 〈u, u〉

= −|〈u, v〉|
2

〈v, v〉
+ 〈u, u〉.

Rearranging this inequality gives us |〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉, and the claim follows after
taking square roots. Equality occurs only when z = 0, in which case u is a multiple of
v.

Example 59. It is difficult to calculate the integral
∫ π
0

√
sin(x) dx ≈ 2.396 directly.

However, we can get a reasonably good bound by letting f =
√

sin(x) and g = 1 and
calculating∫ π

0

√
sin(x) dx = 〈f, g〉 ≤ ‖f‖ · ‖g‖ =

√∫ π

0

| sin(x)| dx ·

√∫ π

0

1 dx =
√

2π ≈ 2.507,

letting 〈−,−〉 denote the L2-product on [0, π].

Proof. [Proof of Proposition 70] (i) Since 〈−,−〉 is positive definite, ‖ · ‖ is also positive
definite.
(ii) For any λ ∈ F and v ∈ V,

‖λv‖2 = 〈λv, λv〉 = λλ〈v, v〉 = |λ|2‖v‖2,

so ‖λv‖ = |λ| · ‖v‖.
(iii) For any u, v ∈ V ,

‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈v, u〉+ 〈u, v〉+ 〈v, v〉

= ‖u‖2 + 2Re
[
〈u, v〉

]
+ ‖v‖2

≤ ‖u‖2 + 2|〈u, v〉|+ ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2,
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where the last inequality was the Cauchy-Schwarz inequality. Therefore,

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Conversely, we can ask when a norm comes from an inner product. It turns out
that there are many norms that do not; for example, on Cn, the maximum norm

‖(z1, ..., zn)‖∞ := max{|z1|, ..., |zn|}

is a norm but it does not come from a scalar product (you will verify this on the problem
set). There is a simple criterion - but proving it would take a little too long. This is
known as the Jordan-von Neumann theorem.

Proposition 72 (LADR 6.22, 6.A.19, 6.A.20). Let ‖ · ‖ be a norm on a vector
space V . The following are equivalent:
(i) ‖ · ‖ is induced by a scalar product 〈−,−〉 on V ;
(ii) The parallelogram law holds:

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2, u, v ∈ V.

In this case, the scalar product is given by the polarization identity:

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2

4

if V is a real vector space, and

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

4

if V is a complex vector space.

Proof. We will only prove the easy direction (i)⇒ (ii). In this case, the squared norms
are inner products, and we can verify that

〈u+ v, u+ v〉+ 〈u− v, u− v〉

=
(
〈u, u〉+ 〈v, u〉+ 〈u, v〉+ 〈v, v〉

)
+
(
〈u, u〉 − 〈v, u〉 − 〈u, v〉+ 〈v, v〉

)
= 2 · 〈u, u〉+ 2 · 〈v, v〉.

In other words, ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

Geometrically, the parallelogram law states that the sum of the squares of side
lengths of a parallelogram equals the sum of the squares of its diagonal lengths.
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Angle

Definition 43 (LADR 6.A.13). Let V be a vector space with inner product
〈−,−〉. The angle θ ∈ [0, π] between two nonzero vectors u, v ∈ V is defined by

cos(θ) =
〈u, v〉
‖u‖ · ‖v‖

.

Example 60. The angle between the vectors (1, 0) and (1, 1), in the usual sense of an
angle between lines in the plane R2, is

cos(θ) =
(1, 0) · (1, 1)

‖(1, 0)‖ · ‖(1, 1)‖
=

1

1 ·
√

2
=

√
2

2
,

i.e. θ = π
4
.

Definition 44. Two vectors u, v ∈ V are orthogonal if 〈u, v〉 = 0.

Orthogonal vectors are also called perpendicular. We’ll talk about that more
tomorrow.
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Orthogonality - 7/21

The field F will always be either R or C in this section.

Orthogonal basis

Proposition 73 (LADR 6.25). Let V be a vector space and let {e1, ..., em} be an
orthonormal list of vectors of V : i.e. 〈ei, ej〉 = δij for all i, j. Then, for any
a1, ..., am ∈ F,

‖a1e1 + ...+ amem‖2 = |a1|2 + ...+ |am|2.

You may have heard of Parseval’s theorem in the study of Fourier series: given a
Fourier series f(x) =

∑∞
n=−∞ cne

2πinx,

∞∑
n=−∞

|cn|2 = ‖f‖2 =

∫ 1

0

|f(x)|2 dx.

For example, f(x) = x has the following Fourier series on [0, 1]:

x =
1

2
+

1

2πi

∑
n6=0

1

n
e2πinx, 0 < x < 1,

and therefore
1

4
+

1

4π2

∑
n6=0

1

n2
=

∫ 1

0

x2 dx =
1

3
,

and we conclude that
∑∞

n=1
1
n2 = π2

6
. This is an infinite-dimensional case of the theorem

above, and the proof is essentially the same.

Proof. Induction on m. When m = 1, ‖a1e1‖2 = |a1|2〈e1, e1〉 = |a1|2.
In general, we use the Pythagorean theorem: for any orthogonal vectors u, v ∈ V ,

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈v, u〉︸ ︷︷ ︸
=0

+ 〈u, v〉︸ ︷︷ ︸
=0

+〈v, v〉 = ‖u‖2 + ‖v‖2.
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Since em is orthogonal to a1e1 + ...+ am−1em−1, it follows that

‖a1e1 + ...+ amem‖2 = ‖a1e1 + ...+ am−1em−1‖2 + ‖amem‖2

= |a1|2 + ...+ |am−1|2 + ‖amem‖2

= |a1|2 + ...+ |am|2.

We immediately get the corollary:

Proposition 74 (LADR 6.26). Let V be a vector space and let {e1, ..., em} be an
orthonormal list of vectors. Then {e1, ..., em} is linearly independent.

Proof. If
a1e1 + ...+ amem = 0,

then taking the norm squared shows that 0 = |a1|2 + ...+ |am|2; so |ai|2 = 0 for all i; so
ai = 0 for all i.

If V has an orthonormal basis, then it is very easy to find the coefficients of v ∈ V :

Proposition 75 (LADR 6.30). Let e1, ..., en be an orthonormal basis of V . For
any v ∈ V,

v = 〈v, e1〉e1 + ...+ 〈v, en〉en.

Proof. If we write v = a1e1 + ...+ anen, then

〈v, ek〉 = 〈a1e1 + ...+ anen, ek〉 = a1〈e1, ek〉+ ...+ an〈en, ek〉 = ak.

Now we prove that every finite-dimensional space has an orthonormal basis. This
proof is algorithmic: the algorithm is called the Gram-Schmidt procedure.
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Proposition 76 (LADR 6.31). Let V be a finite-dimensional vector space with
basis {v1, ..., vn}. Define vectors e1, ..., en inductively by

e1 =
v1
‖v1‖

and

ej =
vj − 〈vj, e1〉e1 − ...− 〈vj, ej−1〉ej−1
‖vj − 〈vj, e1〉e1 − ...− 〈vj, ej−1〉ej−1‖

.

Then e1, ..., en is an orthonormal basis of V with the property that
Span(e1, ..., ej) = Span(v1, ..., vj) for all 1 ≤ j ≤ n.

Proof. We prove by induction on j that {e1, ..., ej} is orthonormal and
Span(e1, ..., ej) = Span(v1, ..., vj). When j reaches n, it follows that Span(e1, ..., en) = V ,
so {e1, ..., en} is an orthonormal basis.
j = 1: This is because 〈e1, e1〉 = 1

‖v1‖2 〈v1, v1〉 = 1.
For general j, defining ej as above, it follows that

〈ej, ek〉 =
1

‖vj − 〈vj, e1〉e1 − ...− 〈vj, ej−1〉ej−1‖
〈vj − 〈vj, e1〉e1 − ...− 〈vj, ej−1〉ej−1, ek〉

=
1

‖vj − 〈vj, e1〉e1 − ...− 〈vj, ej−1〉ej−1‖

(
〈vj, ek〉 − 〈vj, ek〉

)
= 0,

for any k < j; and 〈ej, ej〉 = 1 was guaranteed by dividing the expression
vj − ...− 〈vj, ej−1〉ej−1 by its norm.
Also, it is clear by definition that ej ∈ Span(e1, ..., ej−1)+Span(vj) = Span(v1, ..., vj−1, vj);
i.e.

Span(e1, ..., ej) ⊆ Span(v1, ..., vj).

Since {e1, ..., ej} and {v1, ..., vj} are both linearly independent, it follows that both
spaces are j-dimensional, so Span(e1, ..., ej) = Span(v1, ..., vj).

Example 61. We will find an orthonormal basis of P2(C), with its L2 product

〈p, q〉 =

∫ 1

0

p(x)q(x) dx.

Start with the basis {1, x, x2}.
(i) ‖1‖2 =

∫ 1

0
12 dx = 1, so e1 = 1.

(ii) e2 is the expression x− 〈x, 1〉1 = x−
∫ 1

0
x dx = x− 1

2
divided by its norm

‖x− 1/2‖ =

√∫ 1

0

(x− 1/2)2 dx =

√∫ 1/2

−1/2
x2 dx =

√
1/12,
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i.e. e2 =
√

12x−
√

3 =
√

3(2x− 1).
(iii) e3 is the expression

x2 − 〈x2, 1〉1− 〈x2,
√

3(2x− 1)〉
√

3(2x− 1)

= x2 −
∫ 1

0

x2 dx− 3(2x− 1)

∫ 1

0

2x3 − x2 dx

= x2 − 1

3
− 1

2
(2x− 1)

= x2 − x+
1

6

divided by its norm

‖x2 − x+ 1/6‖ =

√∫ 1

0

(x2 − x+ 1/6)2 dx =
1

6
√

5
,

i.e. e3 = 6
√

5x2 − 6
√

5x+
√

5 =
√

5(6x2 − 6x+ 1).

Remark: In general, infinite-dimensional spaces do not have orthogonal bases. The
reason is that, if {ei}i∈I is an orthogonal basis of V , then every v ∈ V must be a finite
sum v = a1e1 + ... + anen where e1, ..., en ∈ {ei}i∈I , and therefore 〈v, ei〉 = 0 for all ei
other than e1, ..., en. (In particular, all but finitely many.)
In certain sequence spaces or function spaces, where infinite sums can be defined, an in-
finite combination of the ei’s will typically have nonzero scalar products with infinitely
many ei’s, and therefore could not have been a finite sum.

A concrete example of an inner product space with no orthonormal basis is the space

`2 = {(a1, a2, a3, ...) :
∞∑
i=1

|ai|2 <∞}

of sequences whose sum of squares converges, with the inner product

〈(a1, a2, a3, ...), (b1, b2, b3, ...)〉 =
∞∑
i=1

aibi.

Orthogonal complement

Proposition 77 (LADR 6.42, 6.B.17). Let V be a finite-dimensional vector space
with inner product 〈−,−〉. Then there is a real-linear isomorphism

Γ : V −→ V ′, Γ(v)(u) := 〈u, v〉.

When V is a complex vector space, Γ is not complex-linear: because Γ(iv) = −iΓ(v)
instead of Γ(iv) = iΓ(v).
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Proof. Γ is real-linear, since 〈−,−〉 is real-linear in both components.
It is injective, because: if Γ(v) = 0, then ‖v‖2 = 〈v, v〉 = Γ(v)(v) = 0.
Since dimR(V ) = dimR(V ′), it follows that Γ is a real-linear isomorphism.

In other words, for any functional ψ ∈ V ′, there is a unique vector v ∈ V with
ψ(u) = 〈u, v〉. If we have an orthonormal basis e1, ..., en, then it is easy to find v:
writing

v = a1e1 + ...+ anen,

it follows that ψ(ei) = 〈ei, a1e1 + ...+ anen〉 = ai; so

v = ψ(e1)e1 + ...+ ψ(en)en.

Definition 45 (LADR 6.45). Let U ⊆ V be a subspace. The orthogonal
complement of U is the set

U⊥ = {v ∈ V : 〈v, u〉 = 0 for all u ∈ U}.

U⊥ itself is a vector subspace: for any v, w ∈ U⊥ and λ ∈ F, and any u ∈ U,

〈λv + w, u〉 = λ〈v, u〉+ 〈w, u〉 = λ · 0 + 0 = 0.

When V is finite-dimensional, the identification Γ : V
∼→ V ′ identifies U⊥ with U0,

since the functional 〈−, v〉 annihilates U if and only if v ∈ U⊥.

Proposition 78 (LADR 6.47). Let U ⊆ V be a finite-dimensional subspace.
Then V = U ⊕ U⊥.

Proof. (i) The intersection U ∩U⊥ is {0}, because: if u ∈ U ∩U⊥, then u is orthogonal
to itself, so

‖u‖2 = 〈u, u〉 = 0,

so u = 0.
(ii) The sum U + U⊥ is V , because: fix v ∈ V and fix an orthogonal basis {e1, ..., en}
of U . Then v − (〈v, e1〉e1 + ...+ 〈v, en〉en) is orthogonal to U , since〈

v − (〈v, e1〉e1 + ...+ 〈v, en〉en), ek

〉
= 〈v, ek〉 − 〈v, ek〉 = 0

for all k, and

v =
(
v − (〈v, e1〉e1 + ...+ 〈v, en〉en)

)
+ (〈v, e1〉e1 + ...+ 〈v, en〉en) ∈ U⊥ + U.
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In particular, when V is finite-dimensional, it follows that

dim(U⊥) = dim(U0) = dim(V )− dim(U).

Proposition 79 (LADR 6.50). Let U ⊆ V be a finite-dimensional subspace.
Then U = (U⊥)⊥.

Proof. (i) Any element u ∈ U is orthogonal to any element in U⊥ by definition of U⊥;
so u ∈ (U⊥)⊥.
(ii) Let v ∈ (U⊥)⊥, and write v = u + w with u ∈ U and w ∈ U⊥. Then
w = v − u ∈ (U⊥)⊥, so w is orthogonal to itself; therefore, w = 0 and v = u ∈ U.

Definition 46 (LADR 6.53). Let U ⊆ V be a finite-dimensional subspace (so
V = U ⊕ U⊥). The orthogonal projection onto U is the map

PU : V −→ V, PU(u+ w) = u, u ∈ U, w ∈ U⊥.

PU is also called the projection onto U along U⊥. It is the unique projector (an
operator P such that P 2 = P ) with range(P ) = U and null(P ) = U⊥.

If we have an orthonormal basis of U , then it is easier to calculate the orthogonal
projection onto U :

Proposition 80 (LADR 6.55 (i)). Let U be a finite-dimensional subspace of V .
Let e1, ..., em be an orthonormal basis of U . Then

PU(v) = 〈v, e1〉e1 + ...+ 〈v, em〉em.

Proof. Since V = U ⊕ U⊥, we can write v ∈ V uniquely in the form v = u + w with
u ∈ U and w ∈ U⊥. Since

〈v, ek〉 = 〈u+ w, ek〉 = 〈u, ek〉+ 〈w, ek〉 = 〈u, ek〉+ 0

for all k, it follows that

PU(v) = u =
m∑
k=1

〈u, ek〉ek =
m∑
k=1

〈v, ek〉ek.

Example 62. We will calculate the orthogonal projection of x3 ∈ P3(R) onto U := Span(1, x)

with respect to the inner product 〈p, q〉 =
∫ 1

0
p(x)q(x) dx.We saw earlier that {1, 2

√
3x−
√

3}
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is an orthonormal basis of U. Therefore,

PU(x3) = 〈x3, 1〉+ 〈x3, 2
√

3x−
√

3〉(2
√

3x−
√

3)

=
1

4
+

3
√

3

20
(2
√

3x−
√

3)

=
9

10
x− 1

5
.

You can verify that 〈 9

10
x− 1

5
, x3 −

( 9

10
x− 1

5

)〉
= 0.
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Self-adjoint and normal operators - 7/25

Adjoint

In the previous lecture, we showed that an inner product on a finite-dimensional space
V almost allows you to identify V with its dual V ′ via the real -linear isomorphism

ΓV : V −→ V ′, Γ(v) := 〈−, v〉

(although multiplication by i did not work out correctly); and under this identification,
the orthogonal complement of a subspace corresponds to its annihilator. Today, we will
study what happens to the dual map.

Definition 47. Let T ∈ L(V,W ) be a linear map between finite-dimensional
inner product spaces. The adjoint of T is the map

T ∗ : W −→ V

defined by
〈Tv, w〉 = 〈v, T ∗w〉, v ∈ V, w ∈ W.

Other texts use T † (“T dagger”) to denote the adjoint.

We are requiring 〈−, T ∗w〉 = 〈−, w〉 ◦ T = T ′(〈−, w〉); in other words, the diagram

V

V ′

W

W ′

T ∗

T ′

ΓV ΓW

commutes. In particular, T ∗ exists and is unique: it is T ∗ = Γ−1V ◦ T ′ ◦ ΓW . Compare
this with LADR 7.A.20.

Example 63. Consider the space V = P1(R) with its L2 inner product

〈f, g〉 =

∫ 1

0

f(x)g(x) dx,
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and the differentiation operator D ∈ L(V ). The adjoint D∗ is defined by

〈1, D∗(1)〉 = 〈D(1), 1〉 = 0, 〈x,D∗(1) = 〈D(x), 1〉 = 〈1, 1〉 = 1,

so if D∗(1) = ax+ b, then

〈1, ax+ b〉 =
1

2
a+ b = 0 and 〈x, ax+ b〉 =

1

3
a+

1

2
b = 1,

so D∗(1) = 12x− 6. Also,

〈1, D∗(x)〉 = 〈D(1), x〉 = 0, 〈x,D∗(x)〉 = 〈D(x), x〉 = 〈1, x〉 =
1

2
,

so if D∗(x) = ax+ b, then

〈1, ax+ b〉 =
1

2
a+ b = 0 and 〈x, ax+ b〉 =

1

3
a+

1

2
b =

1

2
,

so D∗(x) = 6x− 3. In other words,

D∗(ax+ b) = a(6x− 3) + b(12x− 6) = (3a+ 6b)(2x− 1).

The following theorem proves that the adjoint T ∗ is also linear, and gives a way to
calculate it quickly if we have an orthonormal basis given:

Proposition 81 (LADR 7.5, 7.10). Let T ∈ L(V,W ) be a linear map between
finite-dimensional inner product spaces, where V has orthonormal basis e1, ..., en
and W has orthonormal basis f1, ..., fm. Let M(T ) = (aij)i,j be the matrix of T .
Then T ∗ is linear and the matrix of T ∗ is

M(T ∗) = (aji)i,j;

i.e. M(T ∗) is the conjugate transpose of M(T ).

Proof. (i) T ∗ is linear, because: for any λ ∈ F, w1, w2 ∈ W and v ∈ V,

〈v, T ∗(λw1 + w2)〉 = 〈Tv, λw1 + w2〉 = λ〈Tv, w1〉+ 〈Tv, w2〉 = 〈v, λT ∗w1 + T ∗w2〉,

i.e. T ∗(λw1 + w2) = λT ∗w1 + T ∗w2.

(ii) Let (bij)i,j denote the matrix of T ∗, i.e.

T ∗fj =
n∑
i=1

bijei.

Then

bkj = 〈ek,
n∑
i=1

bijei〉 = 〈ek, T ∗fj〉 = 〈Tek, fj〉 = 〈
n∑
i=1

aikfi, fj〉 = ajk,

so bkj = ajk. In other words, bij = aji.
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Example 64. We will work out the previous example, but with less effort. Letting
{e1, e2} = {f1, f2} = {1,

√
3(2x − 1)} be the ONB from Thursday, we see that D is

represented by the matrix

(
0 2
√

3
0 0

)
. Therefore, D∗ is represented by its conjugate

transpose

(
0 0

2
√

3 0

)
, i.e.

D∗(1) = 2
√

3(
√

3(2x− 1)) = 12x− 6

and D∗(
√

3(2x− 1)) = 0, so

D∗(x) = D∗(x− 1/2) +D∗(1/2) = 1/2D∗(1) = 6x− 3.

Proposition 82 (LADR 7.7). Let T ∈ L(V,W ) be a linear map between finite-
dimensional inner product spaces. Then:
(i) null(T ∗) = range(T )⊥;
(ii) range(T ∗) = null(T )⊥.

Proof. (i) This is because

w ∈ null(T ∗) ⇔ 〈v, T ∗w〉 = 0 ∀ v ∈ V ⇔ 〈Tv, w〉 = 0 ∀ v ∈ V ⇔ v ∈ range(T )⊥.

(ii) Taking orthogonal complements implies that null(T ∗)⊥ = range(T ). Since this equa-
tion is also valid for T ∗ instead of T , we see that

null(T )⊥ = range(T ∗).

Self-adjoint operators

Definition 48 (LADR 7.11). Let (V, 〈−,−〉) be a finite-dimensional inner prod-
uct space. An operator T ∈ L(V ) is self-adjoint if T = T ∗.

When V is a real vector space, self-adjoint operators are also called symmetric;
when V is a complex vector space, self-adjoint operators are also called Hermitian.
It is more precise to say that the matrix of a self-adjoint operator with respect to an
orthonormal basis of V is Hermitian; that means, it equals its own conjugate transpose.

Example 65. The matrix

(
1 i
−i 1

)
is Hermitian; on the other hand, the matrix

(
1 i
i 1

)
is not Hermitian.
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Proposition 83 (LADR 7.13). Let T ∈ L(V ) be a self-adjoint operator. Then
every eigenvalue of T is real.

This is true by definition when V is a real vector space, but it is an interesting
statement over C.

Proof. Let Tv = λv, where v 6= 0 and λ ∈ F. Then

λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉,

so λ = λ.

Of course, the converse is false: for example, the matrix

(
1 1
0 1

)
is not Hermitian

(i.e. self-adjoint with respect to the dot product) although it has real eigenvalues. Here
is a sort of converse:

Proposition 84 (LADR 7.15). Let T ∈ L(V ) be an operator on a finite-
dimensional complex inner product space. Then T is self-adjoint if and only
if 〈Tv, v〉 ∈ R for all v ∈ V.

Proof. (i) Assume that T is self-adjoint. Then

〈Tv, v〉 = 〈v, Tv〉 = 〈Tv, v〉 for all v ∈ V ;

here, the first equality uses self-adjointness and the second is the conjugate symmetry
of 〈−,−〉.
(ii) Assume that 〈Tv, v〉 is real for all vectors v ∈ V . Using

〈T (v + w), v + w〉 − 〈T (v − w), v − w〉 = 2〈Tv, w〉+ 2〈Tw, v〉

(since the 〈Tv, v〉 and 〈Tw,w〉 in the above expression cancel), we replace w by iw and
get

〈T (v+iw), v+iw〉−〈T (v−iw), v−iw〉 = 2〈Tv, iw〉+2〈T (iw), v〉 = −2i〈Tv, w〉+2i〈Tw, v〉.

Combining these shows that

〈Tv, w〉 =
1

4

(
〈T (v+w), v+w〉+〈T (v−w), v−w〉+i〈T (v+iw), v+iw〉−i〈T (v−iw), v−iw〉

)
.

Swapping v and w and considering that

〈T (v + iw), v + iw〉 = 〈−iT (v + iw),−i(v + iw)〉 = 〈T (w − iv), w − iv〉

and 〈T (v − iw), v − iw〉 = 〈T (w + iv), w + iv〉 shows that

〈Tv, w〉 = 〈Tw, v〉 = 〈v, Tw〉, v, w ∈ V.
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In particular, the self-adjoint operators as a subset of L(V ) are a kind of general-
ization of the real numbers R ⊆ L(C).

Proposition 85 (LADR 7.16). Let T ∈ L(V ) be a self-adjoint operator such that
〈Tv, v〉 = 0 for all v ∈ V. Then T = 0.

Proof. For any v, w ∈ V , since

〈T (v + w), v + w〉 − 〈T (v − w), v − w〉 = 2〈Tw, v〉+ 2〈Tv, w〉 = 4〈Tv, w〉

(using the fact that T is self-adjoint), it follows that

〈Tv, w〉 =
〈T (v + w), v + w〉 − 〈T (v − w), v − w〉

4
= 0

for all w ∈ V. Therefore, Tv = 0.

Normal operators

Definition 49. An operator on a finite-dimensional inner product space
T ∈ L(V ) is normal if it commutes with its adjoint: TT ∗ = T ∗T.

Remark: Over C, any operator T can be decomposed into its “real” and “imagi-
nary” parts:

T =
T + T ∗

2
+ i

T − T ∗

2i
= R + iS,

where R, S are self-adjoint. T is normal if and only if R and S commute. Be careful
that R and S are not the real and imaginary parts in the usual sense: for example, the

decomposition of the normal matrix

(
0 −1
1 0

)
is

(
0 −1
1 0

)
=

(
0 0
0 0

)
+ i

(
0 i
−i 0

)
.

Proposition 86 (LADR 7.20). An operator T ∈ L(V ) is normal if and only if

‖Tv‖ = ‖T ∗v‖

for all v ∈ V.

100



Proof. The operator N := T ∗T − TT ∗ is self-adjoint, and T is normal if and only if
N = 0. By LADR 7.16,

N = 0 ⇔ 〈Nv, v〉 = 0 ∀ v ∈ V.

Writing

〈Nv, v〉 = 〈T ∗Tv, v〉 − 〈TT ∗v, v〉 = 〈Tv, Tv〉 − 〈T ∗v, T ∗v〉 = ‖Tv‖2 − ‖T ∗v‖2

makes it clear that
〈Nv, v〉 = 0 ⇔ ‖Tv‖ = ‖T ∗v‖

for all v ∈ V.

Proposition 87. Let T ∈ L(V ) be a normal operator. Then

null(T ∗) = null(T ) and range(T ∗) = range(T ).

In particular, null(T )⊥ = null(T ∗)⊥ = range(T ).

Proof. (i) By the previous proposition, ‖T ∗v‖ = 0 if and only if ‖Tv‖ = 0.
(ii) This is because range(T ∗) = null(T )⊥ = null(T ∗)⊥ = range(T ).

In particular, v ∈ V is an eigenvector of T for λ if and only if

v ∈ null(T − λI) = null(T − λI)∗ = null(T ∗ − λI),

i.e. if v is an eigenvector of T ∗ for λ.
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Spectral theorem - 7/26

Real spectral theorem

V will denote a nonzero, finite-dimensional inner product space over R or C.

The spectral theorem is arguably the most important criterion for diagonalizability:
the conditions (self-adjoint resp. normal) are often straightforward to verify, and ap-
ply to a large number of operators that occur in “real life”. For example, the Hessian
matrix of a smooth function is symmetric. Also, all rotations and reflections of Rn are
normal.

Proposition 88 (LADR 7.26, 7.27). Let T ∈ L(V ) be a self-adjoint operator.
Then T has an eigenvalue.

Proof. Assume that F = R.
Let p(x) denote the minimal polynomial of T , and assume that p has no real roots.
Then p can be factored in the form

p(x) = (x2 + b1x+ c1) · ... · (x2 + bmx+ cm),

where each x2 + bkx + ck has a pair of complex conjugate roots; in particular, its
discriminant b2k − 4ck < 0 is negative. Then T 2 + bkT + ckI is an operator with the
property that, for any nonzero v ∈ V ,

〈(T 2 + bkT + ckI)v, v〉 = 〈T 2v, v〉+ bk〈Tv, v〉+ ck〈v, v〉
= ‖Tv‖2 + bk〈Tv, v〉+ ck‖v‖2,

since 〈T 2v, v〉 = 〈Tv, Tv〉 = ‖Tv‖2 by self-adjointness. Using the Cauchy-Schwarz
inequality,

‖Tv‖2 + bk〈Tv, v〉+ ck‖v‖2 ≥ ‖Tv‖2 − |bk|‖Tv‖‖v‖+ ck‖v‖2

=
(
‖Tv‖ − 1

2
|bk|‖v‖

)2
︸ ︷︷ ︸

≥0

+
(
ck −

b2k
4

)
︸ ︷︷ ︸

>0

‖v‖2︸︷︷︸
>0

> 0.
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Therefore, (T 2 + bkT + ckI)v must have been nonzero, so T 2 + bkT + ckI is injective
and therefore invertible.

But this implies that p(T ) = (T 2 + b1T + c1I) · ... · (T 2 + bmT + cmI) is a product of
invertible operators and therefore p(T ) is invertible. Contradiction, because p(T ) = 0.

Now we prove that self-adjoint operators are semisimple: every invariant subspace
has an invariant complementary subspace. It turns out that over C, this is equivalent
to diagonalizability. It is also the key to the spectral theorem in this situation.

Proposition 89 (LADR 7.28). Let T ∈ L(V ) be a self-adjoint operator and let
U ⊆ V be an invariant subspace. Then U⊥ is also invariant, and the restrictions
T |U and T |U⊥ are self-adjoint.

Note that 〈−,−〉 restricts to a scalar product on U .

Proof. (i) U⊥ is invariant, because: for any v ∈ U⊥ and w ∈ U,

〈Tv, w〉 = 〈v, Tw〉 ∈ 〈v, U〉 = {0},

so Tv is also orthogonal to U .
(ii) T |U is self-adjoint, because

〈T |Uv, w〉 = 〈Tv, w〉 = 〈v, Tw〉 = 〈v, T |Uw〉

for any v, w ∈ U. Similarly, T |U⊥ is also self-adjoint.

Proposition 90 (LADR 7.29). Let T ∈ L(V ) be an operator.
(i) Any self-adjoint operator T is orthogonally diagonalizable: there is an
orthonormal basis of V consisting of eigenvectors of T .
(ii) If V is a real vector space, then any orthogonally diagonalizable operator is
self-adjoint.

Proof. (i) Induction on n = dim(V ). This is clear when n = 1.
In general, fix an eigenvector v1 ∈ V and assume without loss of generality that
‖v1‖ = 1. Define U := Span(v1); then U is an invariant subspace, so U⊥ is also invari-
ant. By induction, T |U⊥ is orthogonally diagonalizable: there is an orthonormal basis
{v2, ..., vn} of U⊥ consisting of eigenvectors of T |U⊥ . Then v1, ..., vn is an orthonormal
basis of V consisting of eigenvectors of T .
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(ii) Let v1, ..., vn be an orthonormal basis of V consisting of eigenvectors of T , and
let λ1, ..., λn be the corresponding eigenvalues. Then, for any i, j,

〈Tvi, vj〉 = 〈λivi, vj〉 = λiδij = λjδij = 〈vi, λjvj〉 = 〈vi, T vj〉.

This implies that 〈Tv, w〉 = 〈v, Tw〉 for any vectors v, w ∈ V . Here, we are using the
fact that λj is real in order to know that 〈vi, λjvj〉 = λj〈vi, vj〉.

Complex spectral theorem

V will denote a nonzero, finite-dimensional inner product space over C.
The following theorem comprises the main part of the complex spectral theorem.

We will give several independent proofs to make the theorem extra convincing.

Proposition 91. Let T ∈ L(V ) be a normal operator. Then T is diagonalizable.

Proof. Let p(x) be the minimal polynomial of T , and assume that p has a double root:

i.e. p(x) = (x−λ)2r(x) for some λ ∈ F and r ∈ P(C). Define q(x) := (x−λ)r(x) = p(x)
x−λ .

Then p is a factor of q2, so q(T ) is a normal operator with q(T )2 = 0. Using LADR 7.20
(proposition 86 from yesterday), it follows that

0 = ‖q(T )q(T )v‖2 = ‖q(T )∗q(T )v‖2 for all v ∈ V,

i.e. q(T )∗q(T ) = 0. Therefore,

0 = 〈q(T )∗q(T )v, v〉 = 〈q(T )v, q(T )v〉 = ‖q(T )v‖2

for all v ∈ V, so q(T ) = 0. This is a contradiction, because deg(q) < deg(p).

Proof. Consider the decomposition T = R + iS, where R, S are self-adjoint and
RS = SR. By the real spectral theorem, R and S are both diagonalizable; since they
commute, the sum R + iS is also diagonalizable.

Explicitly: each eigenspace E(λ, S) of S is R-invariant, because Sv = λv implies
S(Rv) = RSv = R(λv) = λRv. By diagonalizing R|E(λ,S) for each eigenvalue λ of S,
we get a basis of V consisting of vectors that are simultaneously eigenvectors for R and
for S. Any such vector will also be an eigenvector of R + iS.
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Proof. Induction on n = dim(V ). When n = 1, this is clear.
In general, let λ be any eigenvalue of T , and define the T -invariant subspace
U = range(T − λI). Then U is also T ∗-invariant, because:

T ∗(T − λI)v = T ∗Tv − λT ∗v = (T − λI)T ∗v ∈ U

for any v ∈ V. Therefore, T |U and T ∗|U are well-defined and T |U is normal, with
(T |U)∗ = T ∗|U . By induction, U admits a basis of eigenvectors of T . Also, since T is
normal, the orthogonal complement of U is

U⊥ = range(T − λI)⊥ = null(T − λI),

which admits a basis of eigenvectors of T by definition. Therefore, V admits a basis of
eigenvectors of T .

Proof. Let v1, ..., vk be any Jordan chain for T for some eigenvalue λ ∈ C, and assume
that k ≥ 2. In other words, Tvj = λvj + vj−1 for all j. Then

v1 = (T − λI)v2,

so
v1 ∈ range(T − λI) ∩ null(T − λI).

Since T − λI is normal, it follows that null(T − λI) = range(T − λI)⊥ and therefore
v1 = 0; contradiction.
Therefore, the Jordan normal form of T consists only of (1 × 1)-blocks; i.e. T is
diagonalizable.

Proof. Schur’s theorem states that, for any operator T , there is an orthonormal basis
{e1, ..., en} of V , with respect to which T is represented by an upper triangular matrix.
This is not hard to prove: if {v1, ..., vn} is any basis of V such that all Span(v1, ..., vk)
are T -invariant, then the Gram-Schmidt process gives us an orthonormal basis
{e1, ..., en} such that all Span(e1, ..., ek) = Span(v1, ..., vk) are T -invariant.

Assume that

M(T ) =

a1,1 ... a1,n
. . .

...
0 an,n

 .

Since T is normal,

|a1,1|2 = ‖Te1‖2 = ‖T ∗e1‖2 = |a1,1|2 + |a1,2|2 + ...+ |a1,n|2,
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so a1,2 = ... = a1,n = 0. It follows that

|a2,2|2 = |a1,2|2 + |a2,2|2 = ‖Te2‖2 = ‖T ∗e2‖2 = |a2,2|2 + |a2,3|2 + ...+ |a2,n|2,

so a2,3 = ... = a2,n = 0.
This argument shows that all nondiagonal entries of M(T ) are 0, so {e1, ..., en} is a
basis of eigenvectors of T .

Now we prove the spectral theorem:

Proposition 92 (LADR 7.24). Let T ∈ L(V ) be an operator. The following are
equivalent:
(i) T is normal;
(ii) T is orthogonally diagonalizable.

Proof. (i)⇒ (ii): We have already seen that T is diagonalizable. If v, w are eigenvectors
for distinct eigenvalues of T , with Tv = λv and Tw = µw, then

w = (T − λI)(µ− λ)−1w ∈ range(T − λI) = null(T − λI)⊥

and therefore 〈v, w〉 = 0.

(ii)⇒ (i): Let v1, ..., vn be an orthonormal basis of eigenvectors of T with eigenvalues
λ1, ..., λn. Then

〈T ∗Tvi, vj〉 = 〈Tvi, T vj〉 = 〈λivi, λjvj〉 = λiλjδij = |λi|2δij,

and
〈TT ∗vi, vj〉 = 〈T ∗vi, T ∗vj〉 = 〈λivi, λjvj〉 = λiλjδij = |λi|2δij;

these are equal, so T ∗T = TT ∗.
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Positive operators and isometries - 8/1

Positive operators

Definition 50. Let V be a finite-dimensional inner product space. A self-adjoint
operator T ∈ L(V ) is positive if

〈Tv, v〉 ≥ 0

for all v ∈ V.

Positive operators are often called positive semidefinite. This is distinguished
from positive definite operators, which have the strict inequality: 〈Tv, v〉 > 0 for all
v 6= 0.

Example 66. The orthogonal projection PU onto a subspace U ⊆ V is positive semidef-
inite, because: for any v ∈ V ,

〈PU(v), v〉 = 〈PU(v), PU(v) + v − PU(v)︸ ︷︷ ︸
∈U⊥

〉 = 〈PU(v), PU(v)〉 ≥ 0.

Proposition 93 (LADR 7.35). Let T ∈ L(V ) be an operator on a finite-
dimensional inner product space. The following are equivalent:
(i) T is positive semidefinite;
(ii) T is self-adjoint, and all eigenvalues of T are nonnegative;
(iii) T is the square of a self-adjoint operator;
(v) There is an operator R ∈ L(V ) such that T = R∗R.

Proof. (i) ⇒ (ii): Let v be an eigenvector of T with eigenvalue λ; then
λ‖v‖2 = 〈λv, v〉 = 〈Tv, v〉 ≥ 0, so λ ≥ 0.
(ii)⇒ (iii): Let e1, ..., en be an orthonormal basis of eigenvectors of T , with real nonneg-
ative eigenvalues λ1, ..., λn (which exists by the spectral theorem). Define an operator
R by Rek =

√
λkek. Then R is orthogonally diagonalizable with real eigenvalues, so it

is self-adjoint; and R2ek =
√
λk

2
ek = λkek = Tek for all k, so R2 = T.
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(iii) ⇒ (iv): If T = R2 where R is self-adjoint, then T is also R∗R.
(iv) ⇒ (i): For any v ∈ V ,

〈Tv, v〉 = 〈R∗Rv, v〉 = 〈Rv,Rv〉 ≥ 0.

In particular, knowing that (ii)⇒ (i) holds, we see that the operator R constructed
in the proof of (ii)⇒ (iii) is positive semidefinite; so every positive semidefinite operator
has a positive semidefinite square root.

There is a similar characterization of positive definite operators:

Proposition 94. Let T ∈ L(V ) be an operator on a finite-dimensional inner
product space. The following are equivalent:
(i) T is positive definite;
(ii) T is self-adjoint, and all eigenvalues of T are strictly positive;
(iii) There is an invertible operator R ∈ L(V ) such that T = R∗R.

The proof is almost exactly the same. You should work out the details!

Finally, we will show that the positive square root is unique:

Proposition 95 (LADR 7.36, 7.44). Let T ∈ L(V ) be a positive semidefinite
operator. Then the positive square root is unique. It is denoted

√
T .

Example 67. In general, an operator that has a square root (not necessarily positive
semidefinite) will have far more than two of them. For example, the square roots of(

1 0
0 1

)
on C consist of ±

(
1 0
0 1

)
, ±
(

1 0
0 −1

)
, and every matrix of the form

(
a b

(1− a2)/b −a

)
, a, b ∈ C, b 6= 0.

Proof. (i) The only positive square root of a positive multiple of the identity λI
is R =

√
λI, because: let R be positive semidefinite with R2 = λI. Then R is

diagonalizable, and for every eigenvalue µ of R, µ2 is an eigenvalue of I (i.e. µ2 = λ).
Since µ is nonnegative, it must be

√
λ.

Since R is diagonalizable with no eigenvalues other than
√
λ, its minimal polynomial

must be x−
√
λ; therefore, R−

√
λI = 0 and R =

√
λI.

(ii) Let T be an arbitrary positive semidefinite operator. On each eigenspace
E(λ, T ), the only positive square root of T |E(λ,T ) = λI|E(λ,T ) is

√
λI|E(λ,T ). Therefore,

Rv =
√
λv for any eigenvector v ∈ E(λ, T ), so R is uniquely determined.
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One of the important applications of positive operators is in classifying the inner
products on Rn (or Cn):

Proposition 96. Every inner product on Cn has the form

〈v, w〉 = vTGw

for a unique, positive definite (with respect to the dot product) matrix G (called
the Gram matrix of the inner product). Conversely, if G is a positive definite
matrix, then 〈v, w〉 = vTGw defines a scalar product on Cn.

Proof. Let e1, ..., en be the standard basis of Cn, and define G by

Gij = 〈ei, ej〉.

Then, for any v = (v1, ..., vn) and w = (w1, ..., wn),

〈v, w〉 =
∑
i,j

〈viei, wjej〉 =
∑
i,j

viwj〈ei, ej〉 = vTGw.

The matrix G is positive definite, because:
(i) it is self-adjoint, i.e. Hermitian:

Gji = 〈ej, ei〉 = 〈ei, ej〉 = Gij;

(ii) for any v 6= 0, (Gv) · v = (Gv)Tv = vTGv = 〈v, v〉 > 0.

Conversely, if G is positive definite, then 〈v, w〉 := vTGw is sesquilinear;

〈w, v〉 = wTGv = (wTGv)T = vTGTw = vTGw = 〈v, w〉,

and for any nonzero vector v,

〈v, v〉 = vTGv = (Gv) · v > 0.

Isometries

Definition 51 (LADR 7.37). A linear map S ∈ L(V,W ) between inner product
spaces is an isometry if ‖Sv‖ = ‖v‖ for all v ∈ V.

This differs from the definition in the textbook, which only refers to operators on a
single space as isometries.
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Isometric operators on real inner product spaces are usually called orthogonal op-
erators; isometric operators on complex inner product spaces are usually called unitary
operators.

Proposition 97 (LADR 7.42 (a),(e)). Let S ∈ L(V,W ) be a linear map between
finite-dimensional inner product spaces. The following are equivalent:
(i) S is an isometry;
(ii) S∗S = I.

Proof. (i) ⇒ (ii): Assume that ‖Sv‖ = ‖v‖ for all v. Then

〈S∗Sv, v〉 = 〈Sv, Sv〉 = 〈v, v〉 for all v ∈ V,

so S∗S − I is a self-adjoint operator with the property that

〈(S∗S − I)v, v〉 = 0

for all v ∈ V. This implies that S∗S − I = 0, so S∗S = I.
(ii) ⇒ (i): If S∗ = S−1, then

〈Sv, Sv〉 = 〈S∗Sv, v〉 = 〈v, v〉

for all v ∈ V ; taking square roots shows that ‖Sv‖ = ‖v‖ for all v ∈ V.

In particular, every isometric operator is normal: its adjoint is its inverse.
Remark: The adjoint of any isometric operator is also isometric: this is because

S∗S = I implies that S∗ = S−1, so (S∗)∗S∗ = SS∗ = SS−1 = I. On Rn with the
dot product, this reduces to the statement that, if the columns of a square matrix are
orthonormal, then the rows of that matrix are also orthonormal.
The adjoint of an isometry between two different spaces does not need to be isometric.

Proposition 98 (LADR 7.42 (b), (c), (d)). Let S ∈ L(V,W ) be a linear map.
The following are equivalent:
(i) S is an isometry;
(ii) 〈Su, Sv〉 = 〈u, v〉 for all u, v ∈ V ;
(iii) For any orthonormal basis e1, ..., en of V , S(e1), ..., S(en) is an orthonormal
list in W ;
(iv) There is an orthonormal basis e1, ..., en of V such that S(e1), ..., S(en) is an
orthonormal list in W .

Proof. (i) ⇒ (ii) Since S∗S = I, it follows that 〈Su, Sv〉 = 〈S∗Su, v〉 = 〈u, v〉 for all
v ∈ V.
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(ii) ⇒ (iii): This is because 〈S(ei), S(ej)〉 = 〈ei, ej〉 = δij for all i, j.
(iii) ⇒ (iv): This is clear.
(iv) ⇒ (i): For any v = λ1e1 + ...+ λnen, by the generalized Pythagorean theorem,

‖Sv‖2 = ‖λ1S(e1) + ...+ λnS(en)‖2 = |λ1|2 + ...+ |λn|2 = ‖λ1e1 + ...+ λnen‖2 = ‖v‖2,

so ‖Sv‖ = ‖v‖.

Proposition 99 (LADR 7.43). Let S ∈ L(V ) be an operator on a finite-
dimensional complex inner product space. The following are equivalent:
(i) S is an isometry;
(ii) S is normal, and the absolute value of any eigenvalue of S is 1.

Proof. (i) ⇒ (ii): Every isometry S commutes with its adjoint S∗ = S−1. Also, if λ
is an eigenvalue of S with eigenvector v, then ‖v‖ = ‖Sv‖ = ‖λv‖ = |λ| ·‖v‖, so |λ| = 1.

(ii) ⇒ (i): Since S is normal, if λ is any eigenvalue of S with eigenvector v,

S∗Sv = S∗(λv) = λS∗v = λλv = |λ|2v = v.

Therefore, S∗S agrees with I on a basis of eigenvectors of S, so S∗S = I.
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Polar and singular value decomposition - 8/2

Polar decomposition

Proposition 100 (LADR 7.45). Let T ∈ L(V ) be an operator on a finite-
dimensional inner product space. Then there is an isometry S such that

T = S
√
T ∗T .

Here,
√
T ∗T is the positive semidefinite square root of T ∗T.

Proof. We define the linear map

S1 : range(
√
T ∗T ) −→ range(T ), S1(

√
T ∗Tv) := Tv.

This is well-defined, because: if
√
T ∗Tv1 =

√
T ∗Tv2, then

T ∗Tv1 =
√
T ∗T
√
T ∗Tv1 =

√
T ∗T
√
T ∗Tv2 = T ∗Tv2,

so
‖Tv1 − Tv2‖2 = 〈T (v1 − v2), T (v1 − v2)〉 = 〈T ∗T (v1 − v2)︸ ︷︷ ︸

=0

, v1 − v2〉 = 0

and T (v1) = T (v2).

S1 is surjective by definition: every vector Tv ∈ range(T ) is the image of
√
T ∗Tv.

Also, S1 preserves norms: for any v ∈ V,

‖
√
T ∗Tv‖2 = 〈

√
T ∗Tv,

√
T ∗Tv〉 = 〈T ∗Tv, v〉 = 〈Tv, Tv〉 = ‖Tv‖2.

This implies in particular that it is injective: if Tv = 0, then ‖
√
T ∗Tv‖ = ‖Tv‖ = 0,

so
√
T ∗Tv was 0.

Since range(
√
T ∗T ) and range(T ) are isomorphic subspaces of V (via the isomor-

phism S1), they have the same dimension. Taking orthogonal complements, it follows
that

dim range(
√
T ∗T )⊥ = dim range(T )⊥,
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so we can find an orthonormal basis e1, ..., em of range(
√
T ∗T )⊥ and a linear map

S2 : range(
√
T ∗T )⊥ −→ range(T )⊥

such that S2(e1), ..., S2(em) is also an orthonormal basis. In particular, ‖S2(v)‖ = ‖v‖
for all v ∈ range(

√
T ∗T )⊥.

Let S : V → V be the linear function with S|range(√T ∗T ) = S1 and
S|range(√T ∗T )⊥ = S2. Then S is an isometry, because: for any vector

v = u+ w ∈ V, with u ∈ range(
√
T ∗T ), w ∈ range(

√
T ∗T )⊥,

we know that S(u) ∈ range(T ) and S(w) ∈ range(T )⊥ are orthogonal, so the
Pythagorean theorem implies that

‖Sv‖2 = ‖Su+ Sw‖2 = ‖Su‖2 + ‖Sw‖2 = ‖u‖2 + ‖w‖2 = ‖v‖2.

By construction, for any v ∈ V,

S
√
T ∗Tv = S1

√
T ∗Tv = Tv;

so S
√
T ∗T = T.

Remark: The proof can be made much shorter if we assume that T is invertible: in
this case,

√
T ∗T is also invertible, since its square T ∗T is positive definite. Define S by

S := T (
√
T ∗T )−1;

then since T ∗ = (S
√
T ∗T )∗ =

√
T ∗TS∗, it follows that

S∗S =
√
T ∗T

−1√
T ∗T · S∗S ·

√
T ∗T
√
T ∗T

−1
=
√
T ∗T

−1
T ∗T
√
T ∗T

−1
= I,

so S is unitary.

Example 68. The polar decomposition of complex numbers is a special case. For
any nonzero λ ∈ C\{0}, interpreted as an operator on C, the adjoint is the complex
conjugate: λ∗ = λ. The polar decomposition becomes

λ = reiθ,

where r =
√
λ∗λ = |λ| and eiθ = λ

|λ| .

Remark[LADR 7.D.8, 7.D.9] Given any other factorization T = SP , where S is iso-
metric and P is positive (semidefinite), we see that

T ∗T = P ∗S∗SP = P ∗P = P 2,

and therefore P =
√
T ∗T is the positive square root of T ∗T. In this sense, the polar

decomposition is unique: the operator P is uniquely determined and if T is invertible,
then the isometry S = TP−1 is uniquely determined.

113



Singular value decomposition

Singular value decompositions of a matrix (or operator) are used in applied mathematics
and statistics. Instead of studying the operator T itself, we study the eigenvalues of
the positive semidefinite operator

√
T ∗T ; the spectral theorem guarantees that

√
T ∗T

will have nice properties (for example, diagonalizable with real eigenvalues), and we use
this to approximate properties of T .
Although we will not go into the applications here, you may remember a similar idea
from Math 54: to approximate solutions to an unsolvable system of equations Ax = b,
we studied the normal equations (ATA)x = AT b instead.

Definition 52 (7.49). Let T ∈ L(V ) be an operator. A singular value of T is
an eigenvalue of

√
T ∗T .

Since
√
T ∗T is positive, the singular values s1, ..., sn of T are all real and nonnegative.

Remark: The greatest singular value of T is often called the spectral norm of T ,
denoted ‖T‖2.
This is definite, because: if all eigenvalues of

√
T ∗T are 0, then it follows that

√
T ∗T = 0;

using the polar decomposition, we conclude that T = 0.
It is homogeneous, because: for any λ ∈ C, the eigenvalues of

√
(λT )∗(λT ) = |λ|

√
T ∗T

are exactly |λ| times the eigenvalues of
√
T ∗T .

The triangle inequality is harder to verify.
Question for the reader: is the spectral norm induced by an inner product on L(V )?

Proposition 101 (LADR 7.51). Let T ∈ L(V ) have singular values s1, ..., sn.
Then there are orthonormal bases e1, ..., en and f1, ..., fn of V such that

Tv = s1〈v, e1〉f1 + ...+ sn〈v, en〉fn

for all v ∈ V.

Proof. Let e1, ..., en be an orthonormal basis of eigenvectors of
√
T ∗T with eigen-

values s1, ..., sn. Let T = S
√
T ∗T be the polar decomposition of T , and define

f1 = Se1, ..., fn = Sen. Since

v = 〈v, e1〉e1 + ...+ 〈v, en〉en,

it follows that

Tv = S
√
T ∗Tv = S

(
s1〈v, e1〉e1 + ...+ sn〈v, en〉

)
= s1〈v, e1〉f1 + ...+ sn〈v, en〉fn.

This can be formulated as follows: the matrix of T with respect to the orthonormal
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bases B = {e1, ..., en} and C = {f1, ..., fn} is

MB
C (T ) =

s1 0
. . .

0 sn

 .

This property determines the singular values:

Proposition 102. Assume that e1, ..., en and f1, ..., fn are orthonormal bases of
V with the property that Tek = skfk for nonnegative real numbers sk. Then
s1, ..., sn are the singular values of T .

Proof. Since

〈ej, T ∗fk〉 = 〈Tej, fk〉 = 〈sjfj, fk〉 = δjksj = δjksk = 〈ej, skek〉

for all 1 ≤ j, k ≤ n, it follows that T ∗fk = skek. Therefore, T ∗Tek = skT
∗fk = s2kek, so

s2k is an eigenvalue of T ∗T . Therefore, its nonnegative square root sk is an eigenvalue
of
√
T ∗T , i.e. a singular value of T .

The proofs above are deceptively short. Calculating the singular value decomposi-
tion is a lot of work, even for very simple operators.

Example 69. We will work through the singular value decomposition of the matrix

A =

(
1 0
1 1

)
(with respect to the dot product on R2). In other words, we will find

orthogonal matrices P and Q and a diagonal matrix Σ with nonnegative entries such
that

A = PΣQ−1 = PΣQT .

In the notation above, the columns of Q will be e1, e2 and the columns of P will be f1, f2.

The eigenvalues of ATA =

(
2 1
1 1

)
are 3±

√
5

2
, so the singular values of A are

s1 =

√
3 +
√

5

2
≈ 1.618, s2 =

√
3−
√

5

2
≈ 0.618.

The corresponding orthonormal basis of eigenvectors of ATA is (up to a choice of ±1)

e1 =

√5+
√
5

10√
5−
√
5

10

 , e2 =

−√5−
√
5

10√
5+
√
5

10

 .
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This allows us to compute the positive square root

√
ATA = QΣQT

=

√5+
√
5

10
−
√

5−
√
5

10√
5−
√
5

10

√
5+
√
5

10

√3+
√
5

2
0

0
√

3−
√
5

2

 √
5+
√
5

10

√
5−
√
5

10

−
√

5−
√
5

10

√
5+
√
5

10


=

(
3/
√

5 1/
√

5

1/
√

5 2/
√

5

)
,

and therefore the polar decomposition

A = S
√
ATA, S =

(
1 0
1 1

)(
3/
√

5 1/
√

5

1/
√

5 2/
√

5

)−1
=

(
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

)
.

Finally, the matrix P will be

P =
(
Se1 Se2

)
=

(
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

)√5+
√
5

10
−
√

5−
√
5

10√
5−
√
5

10

√
5+
√
5

10

 =

√5−
√
5

10
−
√

5+
√
5

10√
5+
√
5

10

√
5−
√
5

10

 .

The singular value decomposition is now

A = PΣQT =

√5−
√
5

10
−
√

5+
√
5

10√
5+
√
5

10

√
5−
√
5

10

√3+
√
5

2
0

0
√

3−
√
5

2

 √
5+
√
5

10

√
5−
√
5

10

−
√

5−
√
5

10

√
5+
√
5

10

 .

The first practical algorithm for computing the SVD (and essentially the same al-
gorithm still used today) was found by Stanford professor Gene Golub and Berkeley
professor William Kahan in 1965. Golub was so proud of this that he referenced it on his
license plate: https://upload.wikimedia.org/wikipedia/commons/9/90/Profsvd.

JPG
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Complexification - 8/3

Complexification

Complexifying a real vector space is an abstraction of creating Cn from Rn by attaching
imaginary parts to real vectors.

Definition 53 (LADR 9.2). Let V be a real vector space. The complexification
of V is the set

VC = V × V,

with its componentwise addition. Scalar multiplication by complex numbers is
defined by

(a+ bi) · (v, w) := (av − bw, bv + aw).

This makes VC a C-vector space. Elements (v, w) ∈ VC are usually denoted v + iw.

Proposition 103 (LADR 9.4). Let V be a real vector space with basis v1, ..., vn.
Then v1, ..., vn are a basis of VC.

Here, vk denotes vk + 0i ∈ VC.

Proof. (i) v1, ..., vn spans VC, because: let v + iw ∈ VC be any element, and write

v = λ1v1 + ...+ λnvn, w = µ1v1 + ...+ µnvn, λk, µk ∈ R.

Then v + iw = (λ1 + iµ1)v1 + ...+ (λn + iµn)vn.
(ii) v1, ..., vn is linearly independent, because: assume that

(λ1 + iµ1)v1 + ...+ (λn + iµn)vn = 0.

Comparing the real and imaginary parts shows that

λ1v1 + ...+ λnvn = µ1v1 + ...+ µnvn = 0

in the real vector space V , so λ1 = µ1 = ... = λn = µn = 0.
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Definition 54 (LADR 9.5). Let V be a real vector space and let T ∈ L(V ) be
an operator. The complexification of T is the map

TC : VC −→ VC, TC(v + iw) = T (v) + iT (w).

TC is C-linear, because: it is R-linear, and

TC(i(v + iw)) = TC(iv − w) = T (−w) + iT (v) = i(T (v) + iT (w)) = iTC(v + iw)

for all v, w ∈ V.

Proposition 104 (LADR 9.7). Let T ∈ L(V ) be an operator on a real vector
space, and fix a basis v1, ..., vn. Then the matrix M(T ) of T equals the matrix
M(TC) of TC.

In particular, the complexification of a matrix map A ∈ Rn,n is just the same matrix,
where the entries are interpreted as complex numbers: A ∈ Cn,n.

Proof. If M(T ) = (aij)i,j, then Tvj =
∑n

i=1 aijvi; therefore,

TC(vj) = T (vj) =
n∑
i=1

aijvi,

so M(TC) = (aij)i,j.

TC inherits many of the properties of T . We will list a few here.

Proposition 105 (LADR 9.10). Let T ∈ L(V ) be an operator on a real vector
space. Then the minimal polynomial of T equals the minimal polynomial of TC.

Proof. Using the definition TC(u+ iv) = T (u) + iT (v), it follows that

T 2
C(u+ iv) = TC(T (u) + iT (v)) = T 2(u) + iT 2(v),

and repeating this argument shows that

T nC (u+ iv) = T n(u) + iT n(v)

for all u, v ∈ V. Therefore,

p(TC)(u+ iv) = p(T )u+ ip(T )v, u, v ∈ V

for any real polynomial p ∈ P(R). In particular, if p is the minimal polynomial of T ,
then we see that

p(TC)(u+ iv) = p(T )u+ ip(T )v = 0 + 0i.
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We need to check that allowing complex coefficients does not let us find a polynomial
q ∈ P(C) of smaller degree such that q(TC) = 0. Assume that q(TC) = 0 and write

q(x) =
n∑
k=0

(ak + ibk)x
k.

Then

0 = q(TC)v =
n∑
k=0

(ak + ibk)T
k
Cv =

( n∑
k=0

akT
kv
)

+ i
( n∑
k=0

bkT
kv
)

for all v ∈ V, so
∑n

k=0 akT
k =

∑n
k=0 bkT

k = 0. Therefore, both
∑n

k=0 akx
k and∑n

k=0 bkx
k are polynomial multiples of p; so

∑n
k=0(ak + ibk)x

k is a (complex) poly-
nomial multiple of p.

Proposition 106 (LADR 9.11). Let T ∈ L(V ) be an operator on a real vector
space. A real number λ ∈ R is an eigenvalue of T if and only if it is an eigenvalue
of TC, and

E(λ, TC) = E(λ, T )C, G(λ, TC) = G(λ, T )C.

Proof. We first show that null(TC) = null(T )C; i.e. the null space of TC is the complex-
ification of the null space of T . This is because

u+ iv ∈ null(TC) ⇔ Tu+ iTv = 0 + 0i ⇔ u, v ∈ null(T ).

Applying this to T − λI and (T − λI)k, it follows that

E(λ, T )C = null(T − λI)C = null(TC − λI) = E(λ, TC)

and

G(λ, T )C =
∞⋃
k=1

null(T − λI)kC =
∞⋃
k=1

null(TC − λI)k = G(λ, TC).

It will be useful to have a notion of taking the complex conjugate of an operator.
The idea is that, for matrices, the complex conjugate of a matrix should just consist of
the complex conjugate in each entry.

For any v + iw ∈ VC, define v + iw := v − iw; and for any S ∈ L(VC), define S by

S(u+ iv) = S(u− iv).

In other words, for v ∈ VC, we define Sv := S(v). Then

S(i(u+ iv)) = S(−v + ui) = S(−v − ui) = iiS(−v − ui) = iS(u− vi) = iS(u+ iv),
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so S is also C-linear. We can check the following properties:
(i) Sv = Sv for all v ∈ VC, by definition;
(ii) S + T = S + T for all S, T ∈ L(VC);
(iii) for any S, T ∈ L(VC) and v ∈ VC,

S · Tv = ST · v = STv = (ST )v = STv,

so ST = S · T .

Proposition 107. Let S ∈ L(VC) be an operator on the complexification of a
real vector space V . Then S = TC for some T ∈ L(V ) if and only if S = S.

Proof. Assume that S = S. Then, for any v ∈ V,

Sv = Sv = Sv = Sv.

Therefore, S defines an operator T : V → V , Tv + 0i := S(v + 0i). Then S = TC,
because: for any v + iw ∈ VC,

S(v + iw) = Sv + iSw = Tv + iTw = TC(v + iw).

On the other hand, the conjugate of any operator TC is

TC(v + iw) = TC(v − iw) = T (v)− iT (w) = T (v) + iT (w) = TC(v + iw),

i.e. TC = TC.

Passing to TC can create new (nonreal) eigenvalues. The eigenspace of any nonreal
eigenvalue and its complex conjugate are closely related:

Proposition 108 (LADR 9.12). Let T ∈ L(V ) be an operator on a real vector
space and λ ∈ C. For any k ∈ N and u, v ∈ V,

(TC − λI)k(u+ iv) = 0 ⇔ (TC − λI)k(u− iv) = 0.

Proof. This is because

(TC − λI)k(u− iv) = (TC − λI)k(u+ iv).

In particular, the complex conjugation is an R-linear map between G(λ, TC) and
G(λ, TC), so the algebraic multiplicities of λ and λ are equal.
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Definition 55. Let T ∈ L(V ) be an operator on a real vector space. The
characteristic polynomial of T is defined as the characteristic polynomial of
its complexification TC.

As before, this can also be computed as the determinant det(xI − T ) (once the
determinant has been defined). The Cayley-Hamilton theorem holds: any operator T
satisfies its characteristic equation, because TC satisfies its characteristic equation.
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Normal operators on a real space - 8/4

Real normal operators

Given a real inner product space V , the complexification becomes an inner product
space via

〈v1 + iw1, v2 + iw2〉 := 〈v1, v2〉+ 〈w1, w2〉+ i
(
〈w1, v2〉 − 〈v1, w2〉

)
.

(You will show this on the problem set.)

Proposition 109 (LADR 9.B.4). Let T ∈ L(V ) be an operator. Then:
(i) T is self-adjoint if and only if TC is self-adjoint;
(ii) T is normal if and only if TC is normal.

Proof. This will be clear when we show that the complexification of T ∗ is always (TC)∗.
For any v1, v2, w1, w2 ∈ V,

〈TC(v1 + iw1), v2 + iw2〉 = 〈T (v1) + iT (w1), v2 + iw2〉

= 〈T (v1), v2〉+ 〈T (w1), w2〉+ i
(
〈T (w1), v2〉 − 〈T (v1), w2〉

)
= 〈v1, T ∗(v2)〉+ 〈w1, T

∗(w2)〉+ i
(
〈w1, T

∗(v2)〉 − 〈v1, T ∗w2〉
)

= 〈v1 + iw1, T
∗(v2) + iT ∗(w2)〉

= 〈v1 + iw1, (T
∗)C(v2 + iw2)〉,

so (T ∗)C = (TC)∗.

The eigenvalues of the complexified operator TC are either real or come in complex
conjugate pairs. First, we will study the complex conjugate pairs by themselves.
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Proposition 110 (LADR 9.27). Let T ∈ L(V ) be a normal operator on a 2-
dimensional real inner product space. Assume that T is not self-adjoint. Then
the matrix of T with respect to every orthonormal basis of V has the form(

a −b
b a

)
, b 6= 0.

Conversely, any matrix of this form is normal and not symmetric, which implies
that T is normal and not self-adjoint.

The matrix

(
a −b
b a

)
is unique up to the sign of b, because its eigenvalues are a± ib,

which must be the two eigenvalues of TC.

Proof. (i) If the matrix of T with respect to an orthonormal basis {e1, e2} is

(
a b
c d

)
,

then the matrix of T ∗ is

(
a c
b d

)
. Therefore,

a2 + b2 = ‖T ∗e1‖2 = ‖Te1‖2 = a2 + c2,

so b = ±c. Since T is not self-adjoint, b = −c and b is nonzero. Also,

(a+ b)2 + (−b+ d)2 = ‖T (e1 + e2)‖2 = ‖T ∗(e1 + e2)‖2 = (a− b)2 + (b+ d)2,

which implies that 2ab− 2bd = −2ab+ 2bd, so 2ab− 2bd = 0 and therefore a = d.

(ii) It is straightforward to check that(
a −b
b a

)(
a b
−b a

)
=

(
a2 + b2 0

0 a2 + b2

)
=

(
a b
−b a

)(
a −b
b a

)
.

We can always assume that b > 0, because: if T is represented by

(
a b
−b a

)
with

respect to the basis e1, e2, then it is represented by

(
a −b
b a

)
with respect to the basis

e2, e1.

Proposition 111 (LADR 9.30). Let V be an inner product space and let
T ∈ L(V ) be normal. Let U be a T -invariant subspace of V . Then U⊥ is also
T -invariant; U is also T ∗-invariant; and the adjoint of T |U is (T ∗)|U .

Compare the third proof of the complex spectral theorem in the notes from 7/26.
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Proof. Since TC is normal, we have seen on midterm 2 that there is a polynomial
p(x) =

∑n
k=0(ak + ibk)x

k ∈ P(C) such that p(TC) = (TC)∗ = (T ∗)C. It follows that

(T ∗)C =
1

2
((T ∗)C + (T ∗)C) =

1

2
(p(TC) + p(TC)) =

n∑
k=0

akT
k
C ,

so T ∗ =
∑n

k=0 akT
k =: q(T ) is a real polynomial expression in T . Therefore:

(i) If U is T -invariant, then U is T k-invariant for all exponents k; so U is also
q(T ) = T ∗-invariant;

(ii) Let PU denote the orthogonal projection onto U (which is self-adjoint). The
statement that U is T ∗-invariant means that PU⊥T

∗PU = 0: i.e. the U⊥-component of
any element T (u), u ∈ U is 0. Taking adjoints shows that

0 = (PU⊥T
∗PU)∗ = PUTPU⊥ ,

which means that U⊥ is also T -invariant.

(iii) This is because 〈T |U(u), v〉 = 〈Tu, v〉 = 〈u, T ∗v〉 = 〈u, T ∗|U(v)〉 for all u, v ∈ U.

Proposition 112 (LADR 9.34). Let V be a real inner product space and
T ∈ L(V ). Then T is normal if and only if there is an orthonormal basis of
V , with respect to which T is represented by a block diagonal matrix of (1 × 1)-

blocks and (2× 2)-blocks of the form

(
a −b
b a

)
with b > 0.

Proof. In view of 9.27, it is clear that any matrix of this form is normal.

Assume that T is normal. We use induction on dim(V ).

(i) If dim(V ) = 1, then T is represented by a (1× 1)-block.

(ii) If dim(V ) = 2, then T is either self-adjoint (in which case it is orthogonally
diagonalizable; i.e. we get two (1 × 1)-blocks) or it is represented by a matrix of the

form

(
a −b
b a

)
with b > 0.

(iii) If dim(V ) ≥ 3, then we can find a proper invariant subspace U : if T has a real
eigenvalue, then we can let U be the span of an eigenvector. Otherwise, if TC has a
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complex eigenvalue (a+ ib) with complex eigenvector u+ iv, then

T (u) + iT (v) = TC(u+ iv) = (a+ ib)(u+ iv) = (au− bv) + i(bu+ av)

implies that U = Span(u, v) is an invariant subspace. Since T |U and T |U⊥ are normal,
they can both be represented by matrices of this form; therefore, T can be represented
by a matrix of this form.

Real isometries

We proved earlier that (T ∗)C = (TC)∗ for any operator T ∈ L(V ) on a real inner product
space. In particular, T is an isometry if and only if TC is an isometry.

Proposition 113 (LADR 9.36). Let S ∈ L(V ) be an operator on a finite-
dimensional real inner product space. The following are equivalent:
(i) S is an isometry;
(ii) There is an orthonormal basis of V , with respect to which S is represented by
a block-diagonal matrix consisting of (1 × 1)-blocks ±1 and (2 × 2)-blocks of the
form (

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ (0, π).

In other words, every isometry is a combination of rotations (the blocks

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
)

and reflections (the blocks (−1)) performed in sequence.

Proof. Any isometry S is normal (it commutes with its adjoint S∗ = S−1), so it
has a representation with respect to an orthonormal basis by a matrix consisting

of (1 × 1)-blocks and (2 × 2)-blocks of the form

(
a −b
b a

)
, with b > 0. Also, the

complexification SC is an isometry on VC, so its eigenvalues all have absolute value

1. This forces the (1 × 1)-blocks to be ±1, and the (2 × 2)-blocks

(
a −b
b a

)
have

eigenvalues a± ib, so a2 + b2 must be 1. This means that a = cos(θ) and b = sin(θ) for
some θ ∈ (0, π).

On the other hand, the blocks (±1) and

(
a −b
b a

)
have inverse equal to their trans-

pose, so this is true for the entire matrix of S; therefore, S is represented by an isometry
with respect to an orthonormal basis of V , so S itself is an isometry.
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Trace - 8/8

Alternating forms

The trace of a matrix is the sum of its diagonal: for example,

tr

1 2 3
4 5 6
7 8 9

 = 1 + 5 + 9 = 15.

It turns out that the trace is invariant under similarity: tr(PAP−1) = tr(A) for any
invertible matrix P . This implies that the trace is the same under change of basis, so we
expect that we can define it without needing to choose a basis and work in coordinates.

On a complex vector space, the trace turns out to be the sum with multiplicites of
the eigenvalues; but this definition is difficult to work with and is not valid over other
fields. We will give a basis-free definition using the concept of alternating forms, which
will also be useful tomorrow to talk about the determinant. Alternating forms will not
be tested on the exam.

Definition 56. Let V be a vector space over F and let k ∈ N be a natural
number. An alternating k-form on V is a map

ω : V × ...× V︸ ︷︷ ︸
k times

−→ F

with the following properties:
(i) ω is linear in every component.
(ii) ω is alternating : if the list (v1, ..., vk) contains two copies of the same vector,
then ω(v1, ..., vk) = 0.

Example 70. The determinant

ω
((a1

b1

)
,

(
a2
b2

))
:= det

(
a1 a2
b1 b2

)
= a1b2 − a2b1

is an alternating 2-form on R2: it is linear in each column vector, and if the column vec-
tors are equal, then the determinant is 0. The determinant is the example of alternating
form that you should always have in mind.
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These are called alternating because it alternates between positive and negative
whenever we swap the order of two vectors. You are probably familiar with this property
of the determinant. It follows from the calculation

0 = ω(v1, ..., v + w, ..., v + w, ..., vk)

= ω(v1, ..., v, ..., v, ..., vk) + ω(v1, ..., v, ..., w, ..., vk)

+ ω(v1, ..., w, ..., v, ..., vk) + ω(v1, ..., w, ..., w, ..., vk)

= ω(v1, ..., v, ..., w, ..., vk) + ω(v1, ..., w, ..., v, ..., vk),

so
ω(v1, ..., v, ..., w, ..., vk) = −ω(v1, ..., w, ..., v, ..., vk).

Proposition 114. Let V be a vector space over F and k ∈ N.
(i) The alternating k-forms on V form a vector space, denoted Ωk(V ).
(ii) If V is finite-dimensional with n = dim(V ), then

dim Ωk(V ) =

(
n

k

)
is the binomial coefficient

(
n
k

)
= n!

k!(n−k)! = #{subsets of {1, ..., n} of size k}.

In particular, Ωn(V ) is 1-dimensional.

Proof. Calculating the dimension of Ωk(V ) rigorously will take too much time. The idea
is that, if v1, ..., vn is a basis of V , then we can define an alternating form ω ∈ Ωk(V )
uniquely by specifying the values ω(vi1 , ..., vik), where {i1, ..., ik} ⊆ {1, ..., n} runs
through the subsets of size k.

Trace

The trace of an operator is defined similarly to the dual map.

Proposition 115. Let V be an n-dimensional vector space. Let T ∈ L(V ) be an
operator. Then

tr(T ) : Ωn(V ) −→ Ωn(V ),

tr(T )ω(v1, ..., vn) := ω(Tv1, v2, ..., vn) + ω(v1, T v2, ..., vn) + ...+ ω(v1, v2, ..., T vn)

=
n∑
k=1

ω(v1, ..., T vk, ..., vn)

is a well-defined linear map, called the trace of T .
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Proof. It is not hard to see that

ω(Tv1, v2, ..., vn) + ω(v1, T v2, ..., vn) + ...+ ω(v1, v2, ..., T vn)

is linear in every component. If vj = vk, then most of the terms above are 0, since they
contain two equal vectors; we are left with

ω(v1, ..., T vj, ..., vk, ..., vn) + ω(v1, ..., vj, ..., T vk, ..., vn)

= ω(v1, ..., T vj, ..., vj, ..., vn) + ω(v1, ..., vj, ..., T vj, ..., vn)

which is also 0 because ω(v1, ..., vj, ..., T vj, ..., vn) results from ω(v1, ..., T vj, ..., vj, ..., vn)
by swapping the vectors in the jth and kth positions.

Since Ωn(V ) is 1-dimensional, the map tr(T ) is actually multiplication by a scalar.
The trace of T will usually refer to that scalar.

Example 71. Let T =

(
1 2
3 4

)
∈ L(R2). We consider the alternating 2-form

ω
((a

c

)
,

(
b
d

))
:= ad− bc

from earlier. If e1, e2 is the standard basis of R2, then

tr(T )ω(e1, e2) = ω(Te1, e2) + ω(e1, T2) = det

(
1 0
3 1

)
+ det

(
1 2
0 4

)
= 1 + 4 = 5,

and ω(e1, e2) = 1; so tr(T ) = 5.

Proposition 116 (LADR 10.13, 10.16). Let T ∈ L(V ) and let v1, ..., vn be a basis
of V . Let M(T ) = (aij)i,j be the matrix of T . Then tr(T ) = a11 + a22 + ...+ ann
is the sum of the diagonal of that matrix.

This means we have recovered the definition at the beginning of these notes.

Proof. After writing Tv1 = a11v1 + ...+ an1vn, we see that

ω(Tv1, v2, ..., vn) = a11ω(v1, v2, ..., vn) + ...+ an1ω(vn, v2, ..., vn) = a11ω(v1, v2, ..., vn)

for any ω ∈ Ωn(V ), since all but the first term in this sum contain ω evaluated at two
copies of the same vector. A similar argument shows that

ω(v1, ..., T vk, ..., vn) = akkω(v1, ..., vn)

for all indices k, so

tr(T )ω(v1, ..., vn) = (a11 + ...+ ann)ω(v1, ..., vn),

i.e. tr(T ) = a11 + ...+ ann.
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In particular, the trace is also the sum of the eigenvalues of T , if V is a complex
vector space:

Proposition 117 (LADR 10.16). Let T ∈ L(V ) be an operator on a finite-
dimensional complex vector space. Then tr(T ) is the sum of the eigenvalues of
T , with algebraic multiplicities.

Proof. Choose a basis of T with respect to which T is represented by its Jordan normal
form. Then the diagonal of that matrix consists of exactly the eigenvalues of T , with
algebraic multiplicities counted, and the previous proposition shows that tr(T ) is the
sum of that diagonal.

Example 72. The complex matrix A =

1 1 1
1 2 4
1 3 9

 has eigenvalues

λk = 4 + 2
√

11 cos
(arctan(

√
106/35) + 2πk

3

)
, k = 0, 1, 2.

In particular, λ0 = 10.603..., λ1 = 0.151..., λ2 = 1.245... It is difficult to calculate this
by hand. However, we easily calculate that their sum is

λ0 + λ1 + λ2 = tr(A) = 1 + 2 + 9 = 12.

The following theorem is much easier to prove using the definition as the sum of the
diagonal than the definition as the map on alternating forms, or the sum of eigenvalues:

Proposition 118 (LADR 10.14). Let S, T ∈ L(V ) be operators. Then

tr(ST ) = tr(TS).

Proof. Assume that S is represented by A = (aij)i,j and T is represented by B = (bij)i,j
with respect to some basis of V . Then

tr(ST ) =
n∑
k=1

(AB)kk =
n∑
k=1

n∑
l=1

aklblk =
n∑
l=1

n∑
k=1

blkakl =
n∑
l=1

(BA)ll = tr(TS).

Be careful: this only means that the trace is invariant under cyclic permutations of

operators! For example, if A =

(
1 0
1 1

)
, B =

(
1 1
1 0

)
and C =

(
1 1
0 1

)
, then

tr(ABC) = tr(BCA) = tr(CAB) = 4,
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while
tr(ACB) = tr(CBA) = tr(BAC) = 3.

An important corollary: on finite-dim. vector spaces over Q,R or C, there are no
operators S, T such that ST −TS = I. This is because tr(ST −TS) = 0 but tr(I) 6= 0.

Trace on an inner product space

On an inner product space, the trace is easier to write:

Proposition 119. Let V be a finite-dimensional inner product space with or-
thonormal basis e1, ..., en. Let T ∈ L(V ). Then

tr(T ) =
n∑
k=1

〈Tek, ek〉.

Proof. Since
Tej = 〈Tej, e1〉e1 + ...+ 〈Tej, en〉en, j ∈ {1, ..., n},

it follows that the representation matrix of T with respect to the basis {e1, ..., en} is
(〈Tej, ei〉)i,j. Therefore, the trace is the sum of the diagonal of this matrix:

tr(T ) =
n∑
k=1

〈Tek, ek〉.

This has several useful applications. One is an easy estimate of the largest eigenvalue
of a matrix (a special case of Schur’s inequality):

Proposition 120. Let A = (aij)i,j be a square complex matrix and let λ be an

eigenvalue of A. Then |λ| ≤
√∑

i,j |aij|2.

Proof. Let e1 be an eigenvector of A for λ, such that ‖e1‖ = 1. Extend e1 to an
orthonormal basis e1, ..., en of Fn. Then:
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∑
i,j

|aij|2 =
∑
i,j

aijaji

= tr(AA∗)

= tr(A∗A)

=
n∑
k=1

〈A∗Aek, ek〉

=
n∑
k=1

〈Aek, Aek〉

= |λ|2 +
∑
k 6=1

‖Aek‖2

≥ |λ|2.

Example 73. The largest eigenvalue of1 1 1
1 2 4
1 3 9


is

4 + 2
√

11 cos
(arctan(

√
106/35)

3

)
= 10.603...,

while the bound we have found above is

√
12 + 12 + 12 + 12 + 22 + 42 + 12 + 32 + 92 =

√
115 = 10.724...

Not bad. (Of course, it won’t always be this close.)
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Determinant - 8/9

Determinant

Like yesterday, we will first give a basis-free definition of the determinant using alter-
nating forms, and then discuss the practical aspects of the determinant by studying it
on matrices.

Proposition 121. Let V be an n-dimensional vector space and let T ∈ L(V ) be
an operator. Let ω ∈ Ωn(V ) be an alternating form. Then

ψ(v1, ..., vn) := ω(Tv1, ..., T vn)

defines an alternating form.

Proof. Since T is linear and ω is linear in each component, it follows that ψ is linear in
each component. Also, if vj = vk for any indices j 6= k, then Tvj = Tvk, and therefore

ω(Tv1, ..., T vn) = 0;

so ψ is alternating.

Since Ωn(V ) is 1-dimensional, it follows that there is a scalar, called the determi-
nant det(T ), such that

det(T )ω(v1, ..., vn) = ω(Tv1, ..., T vn), ω ∈ Ωn(V ).

Example 74. Recall that on R2, there is a nonzero alternating 2-form ω defined by

ω
((x1

y1

)
,

(
x2
y2

))
= x1y2 − x2y1.

In particular, ω(e1, e2) = 1. If T =

(
1 2
3 4

)
, then

det(T ) = det(T )ω(e1, e2) = ω(Te1, T e2) = ω
((1

3

)
,

(
2
4

))
= −2.

132



Proposition 122 (LADR 10.40). Let S, T ∈ L(V ) be operators. Then

det(ST ) = det(S) · det(T ).

Proof. For any alternating form ω ∈ Ωn(V ) and v1, ..., vn ∈ V,

det(ST )ω(v1, ..., vn) = ω(STv1, ..., STvn)

= det(S)ω(Tv1, ..., T vn)

= det(S)det(T )ω(v1, ..., vn),

so det(ST ) = det(S)det(T ).

Permutations and the Leibniz formula

Definition 57 (LADR 10.27). (i) A permutation σ on n numbers is a bijective
function σ : {1, ..., n} → {1, ..., n}.
(ii) The sign sgn(σ) of a permutation σ is (−1)e, where e number of pairs of
indices (j, k) such that j < k but σ(j) > σ(k).

The permutation σ can be written out as the list (σ(1), ..., σ(n)).

Example 75. The sign of the permutation (5, 3, 2, 4, 1) is 1, because: the pairs of
elements that are not in order in the list (5, 3, 2, 4, 1) are

(5, 3), (5, 2), (5, 4), (5, 1), (3, 2), (3, 1), (2, 1), (4, 1).

There are 8 of these.

Every permutation is made up of cyclic permutations. For example, (5, 3, 2, 4, 1)
consists of the cycles

1→ 5→ 1→ 5→ 1→ ...

and
2→ 3→ 2→ 3→ 2→ ...

and
4→ 4→ 4→ 4→ 4→ ...

The length of each cycle is the number of distinct numbers it contains. We write the
cycles as tuples without commas: here, they are (1 5), (2 3) and (4).

A faster way to calculate the sign of the permutation is as follows: we multiply −1
for every cycle of even length. For example, (5, 3, 2, 4, 1) consists of two cycles (1 5) and
(2 3) of length two and one cycle (4) of length 1; the sign is (−1) · (−1) = 1.
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Proposition 123. Let ω ∈ Ωn(V ) be an alternating form. For any permutation
σ and v1, ..., vn ∈ V,

ω(vσ(1), ..., vσ(n)) = sgn(σ) · ω(v1, ..., vn).

Compare to LADR 10.38.

Proof. ω is alternating, so every time we swap two vectors vj and vk, the sign changes:

ω(v1, ..., vj, ..., vk, ..., vn) = −ω(v1, ..., vk, ..., vj, ..., vn).

More generally, applying a cyclic permutation of length ` can be understood as a se-
quence of `− 1 swaps: for example, the cyclic permutation

1 −→ 2 −→ 3 −→ 4 −→ 1 −→ 2 −→ 3 −→ 4 −→ 1 −→ ...

i.e. the permutation

(
1 2 3 4
2 3 4 1

)
, is equivalent to swapping (3, 4), then (2, 3), then

(1, 2) in that order.

This implies that, if σ is a cyclic permutation of length `, then

ω(vσ(1), ..., vσ(n)) = (−1)`−1ω(v1, ..., vn).

Here, (−1)`−1 is 1 if σ has odd length and it is 1 if σ has even length. The claim follows
by splitting σ into its cycles, since sgn(σ) is the product of (−1)`−1 as ` runs through
the lengths of the cycles of σ.

Using this notation, we can write down an explicit formula for the determinant. In
practice, it is extremely slow, and therefore rarely used; the most important consequence
is probably that the determinant is a polynomial expression in the entries of a matrix
and it is therefore continuous, differentiable, etc.

Proposition 124 (LADR 10.33). Let T ∈ L(V ). Let v1, ..., vn be a basis of V
and assume that the representation matrix of T is (aij)i,j. Then

det(T ) =
∑
σ

sgn(σ) · aσ(1),1aσ(2),2...aσ(n),n.

Proof. Each Tvj is the linear combination Tvj =
∑n

i=1 aijvi. Using linearity in each
component, for any ω ∈ Ωn(V ), we can write

ω(Tv1, ..., T vn) = ω
( n∑
i1=1

ai11vi1 , ...,
n∑

in=1

ainnvin

)
=

n∑
i1=1

...
n∑

in=1

ai11...ainnω(vi1 , ..., vin).
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Note that ω vanishes whenever we plug in two copies of the same vector; so this sum is
actually only over those lists (i1, ..., in) that are permutations: i.e.

det(T )ω(v1, ..., vn) =
∑
σ

aσ(1)1...aσ(n)nω(vσ(1), ..., vσ(n)).

Using the previous result, we can rewrite this as

det(T )ω(v1, ..., vn) =
∑
σ

sgn(σ) · aσ(1),1aσ(2),2...aσ(n),nω(v1, ..., vn),

so det(T ) =
∑

σ sgn(σ) · aσ(1),1aσ(2),2...aσ(n),n.

Example 76. You may be familiar with this formula in the case of (3 × 3)-matrices
under the name Sarrus’ rule: the determinant of a (3 × 3)-matrix is calculated by
copying the left two columns to the right of the matrix and adding diagonally as

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

+ + +

− − −

or written out,

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33+a12a23a31+a13a21a32−a31a22a13−a32a23a11−a33a21a12.

Here, the upper left - lower right diagonals correspond to the permutations

(1, 2, 3), (3, 1, 2), (2, 3, 1)

with positive sign +1 and the lower left - upper right diagonals correspond to the
permutations

(3, 2, 1), (1, 3, 2), (2, 1, 3)

with negative sign −1.

The most practical way to calculate determinants is via Gaussian elimination (row
reduction). Some matrices (those with a lot of zero entries) can be calculated quickly
by expanding along a row or column. You have probably seen this in Math 54.
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Determinant and eigenvalues

Proposition 125 (LADR 10.42). Let T ∈ L(V ) be an operator on a complex
vector space. Then det(T ) is the product of the eigenvalues of T , counted by
algebraic multiplicity.

Proof. Let A = (aij)i,j be the Jordan normal form of T . Since aij = 0 whenever i > j,
the only nonzero terms in the Leibniz formula

det(T ) =
∑
σ

sgn(σ) · aσ(1),1...aσ(n),n

must have σ(1) = 1; and therefore σ(2) = 2, and so on until σ(n) = n. In other words,
the only σ resulting in a nonzero term is the identity, and the determinant is just the
product along the diagonal:

det(T ) = a11 · ... · ann.

Finally, note that the Jordan normal form has the eigenvalues along the diagonal, each
counted as often as their algebraic multiplicity.

The same argument shows that the determinant of any upper-triangular matrix is
the product along the diagonal.

Example 77. Recall that the eigenvalues of

1 1 1
1 2 4
1 3 9

 were

λ0 = 4 + 2
√

11 cos
(arctan(

√
106/35)

3

)
= 10.603...

λ1 = 4 + 2
√

11 cos
(arctan(

√
106/35) + 2π

3

)
= 0.151...

λ2 = 4 + 2
√

11 cos
(arctan(

√
106/35) + 4π

3

)
= 1.245...

To multiply these together directly would probably involve some mysterious and com-
plicated trig identities. However, we know that the result will be

det

1 1 1
1 2 4
1 3 9

 = det

1 1 1
0 1 3
0 2 8

 = det

1 1 1
0 1 3
0 0 2

 = 2.
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